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Abstract: This paper presents the investigation of groundwater vulnerability to seawater intrusion of
the aquifer system in the coastal area of Laspias River, NE Greece, for the year 2023, by applying the
GALDIT, SITE and SIVI methods, in the context of the groundwater management of the area. The
relevant research works include the collection and analysis of data and information regarding the
geological and geomorphological environment, as well as the hydrogeological system of the area.
The calculation of the GALDIT, SITE and SIVI indices values is described, and the results from the
application of the methods are presented, as well as the design of relevant groundwater vulnerability
maps of the study area. This paper concludes with findings and proposals useful for the reliable
assessment of the hydrogeological regime of the wider study area.

Keywords: coastal aquifer vulnerability; hydrogeological research; groundwater hydrochemical
evaluation; GALDIT; SITE; SIVI

1. Introduction

Coastal zones are among the most important areas around the globe as they are among
the most populated and invested-in regions [1–3]. Seawater intrusion is among the main
threatening factors for the quantity and quality of groundwater resources in coastal aquifers
worldwide. A type of popular and easy-to-use approach in the study of seawater intrusion
vulnerability assessments is the indexing method [4]. Very little published guidance can
be found for rapidly assessing the vulnerability of coastal aquifers to seawater intrusion
at regional scales (i.e., aquifer scale), particularly in the case of insufficient long-term
data [5–8].

Two well-known indices are called GALDIT and SITE, which would serve as the
foundation for the creation of the seawater intrusion vulnerability index (SIVI), a new index
designed to address some of these deficiencies [9]. Each of these two indices has benefits
and drawbacks.

The vulnerability of the aquifer to seawater intrusion has been calculated using an
index called GALDIT, which is based on six parameters: groundwater occurrence, aquifer
hydraulic conductivity, height of groundwater level above sea elevation, distance from
shore, impact magnitude of the current seawater intrusion and aquifer thickness [10].
For evaluating the possible long-term effects of groundwater use on seawater intrusion,
GALDIT has been extensively utilized [8,11–18]. Using its hydrogeological data, the
GALDIT indicator model is applied to a region of interest, assigning ratings based on the
particular conditions, including seawater intrusion. As a result, locations that are more
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vulnerable to seawater intrusion than other places can be defined. It is crucial to note
that the GALDIT index is a relative tool and does not eliminate the requirement for more
thorough field research [11].

One of the newest indices for assessing groundwater quality impacts was developed
by [19]. In order to evaluate the susceptibility of coastal aquifers in Spain to seawater
intrusion, they created the SITE index (Surface area affected, Intensity of salinization,
Temporality, Evolution over the medium- to long-term). There are certain restrictions
on each of the indexes listed. For instance, the SITE index lacks intrinsic qualities, and
the GALDIT index ignores the region’s dynamic properties. These shortcomings have
prompted other researchers to enhance them through the application of fresh methodologies
or the fusion of them [9].

The SITE index’s goal is to characterize the intrusion process in a form that is simple
to calculate and understand [19]. It is based on data that are readily available and easy
to obtain. The technique provides numerical and alphabetic findings that enable both
qualitative and quantitative differentiation between the water quality statuses of various
aquifers. It is based on the concentrations of chloride ions in groundwater at various sites
in the aquifer over time.

When compared to other indices, the SITE index has the following benefits [9]: 1. The
only necessary data are those for the Cl concentration, which is typically obtained in the
majority of monitoring wells. Other water quality metrics, including the HCO3 ion, which
is not measured in some stations, are required for some indices. 2. Simplicity: The concepts
and phrasing are simple to use and comprehend. But there are also certain restrictions
with the SITE index. While taking into account the region’s intensity and dynamics, it
ignores the aquifer’s inherent qualities and geographic location. Conversely, the GALDIT
index considers the aquifer’s fundamental traits, but it ignores its dynamic aspects. It
also requires some data on water quality, such as HCO3, which are not measured in most
groundwater monitoring locations [19].

The following benefits have been considered while proposing the SIVI index [9]:
(a) easy input data; (b) covering all elements of vulnerability, including intrinsic and
dynamic qualities of the region. This allows the index to address the shortcomings of both
indices and package them into a new index.

This paper presents the assessment of groundwater vulnerability to seawater intrusion
using GALDIT, SITE and SIVI methods in the coastal area of Laspias River, NE Greece,
for the year 2023, in the context of the groundwater management of the area. The related
research includes the collection and evaluation of data and information about the geological
and geomorphological setting, as well as the area’s hydrogeological system. The calculation
of the GALDIT, SITE and SIVI indices is discussed, and the outcomes of applying the
methodologies are shown, as well as the design of relevant groundwater vulnerability
maps for the study area. This paper ends with observations and recommendations for a
reliable assessment of the hydrogeological regime of the wider study area.

2. Material and Methods

According to the GALDIT method, the variables that determine the extent of ground-
water intrusion in a region include [20–23] groundwater occurrence (G), aquifer hydraulic
conductivity (A), height of groundwater level above sea level (L), distance from the beach
(distance inland perpendicular from shoreline) (D), impact of current seawater intrusion
status (I) and aquifer thickness (T). Each parameter has been given a specific weight (1–4)
based on how important it is in relation to seawater intrusion. Furthermore, the parameter
value is rated with values of 2.5, 5, 7.5 and 10 and categorized into 4 classes (Table 1). A
high ranking denotes a high susceptibility to seawater pollution. The following formula
estimates the final GALDIT index:
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GALDIT index =
∑6

i=1(Wi · Ri)

∑6
i=1 Wi

(1)

where R and W are the rating and the weight, respectively. The final GALDIT index
vulnerability is classified into high (>7.5), moderate (5–7.5) and low (<5). The high GALDIT
index vulnerability illustrates the high vulnerability of the study area.

Table 1. Rating of GALDIT parameters.

Parameter Weight Classification Rating

Groundwater occurrence (G) 1

Confined aquifer 10
Unconfined aquifer 7.5

Leaky confined aquifer 5
Bounded aquifer 2.5

Aquifer hydraulic conductivity
(A) (m/d) 3

High >40 10
Medium 40–10 7.5

Low 10–5 5
Very low <5 2.5

Height of groundwater level
above sea level (L) (m) 4

High <1.0 10
Medium 1.0–1.5 7.5

Low 1.5–2.0 5
Very low >2.0 2.5

Distance from the shore (D) (m) 4

High <2500 10
Medium 2500–5000 7.5

Low 5000–7500 5
Very low >7500 2.5

Impact of existing status of
seawater intrusion (I) 1

High >2 10
Medium 1.5–2.0 7.5

Low 1.0–1.5 5
Very low <1 2.5

Thickness of the aquifer (T) (m) 2

High >10 10
Medium 7.5–10 7.5

Low 5–7.5 5
Very low <5 2.5

The acronym SITE comes from the following parameters [11]: S: surface area of ground-
water affected by salinization, I: intensity of the intrusion, T: temporality or seasonality, E:
evolution of seawater intrusion.

In comparison to other seawater intrusion indices, the SIVI index is more broadly
applicable because it takes into account the most crucial factors affecting seawater intrusion
vulnerability, as proposed by [9]. These factors include (1) the size of the affected area,
(2) the intensity of the intrusion, (3) its seasonality, (4) its geographical situation and
(5) intrinsic features of the region. The SIVI index’s geographically independent applied
parameters allow it to be utilized in any coastal aquifer.

The SITE value and SIVI index are calculated by Equations (10) and (11), respectively,
as presented in Table 2.

The study area is located in the southern coastal part of Xanthi Prefecture in the eastern
Delta of Nestos River, NE Greece (Figure 1). The area is characterized mainly by low relief
with small plains and small hilly outcrops in the north part of the study area. The western
lands are irrigated by the Laspias River and its interconnected ditches, while the river is
the final recipient of the surface water from the hydrographic network and the residual
irrigation water from the irrigation network in the study area, as well as the effluent from
the Wastewater Treatment Plant of Xanthi Municipality [24].
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Table 2. Parameters and equations for calculating SITE index και SIVI index values ([9,19], modified).

Parameter Equation Explanation

Surface area of groundwater
affected by salinization (S) S = Sa

St
(2)

St: the total aquifer surface
Sα: the surface that
exceeds the amount of chloride ion concentration
from the reference value Vr

Intensity of the intrusion (I) I = ∑ Si(>vr)Cli(>vr)
Sa

(3)

Si: the surface area (km2) between the isochloride
lines (with a value greater than or equal to Vr)
CIi: the mean chlorine concentration between two
isochloride lines

Temporality or seasonality (T) T0 =
1
n ∑n

x=1 f (x) − f
f

(4) f (x): the mean chloride concentration for a particular
year
f : the mean of the
whole series

T = 1.25 × T0 (5)

Evolution of seawater
intrusion (E)

E = Cln
Cln−1

(6) Cln και Cln−1: the average chloride concentration
in the current and preceding situation, respectively

Aquifer type (A) Unconfined, leaky, confined
aquifer

Hydraulic conductivity (C) C = Sb
St

(7) Sb: the surface that exceeds the amount of hydraulic
conductivity from the reference value

Height of groundwater level
above sea elevation (H) H = Sc

St
(8)

Sc: the surface that the height of groundwater
level above sea elevation is less than the reference
value

Distance from shoreline (D) D = Sd
St

(9) Sd: the surface that exceeds the amount of distance
from shore from the reference value

SITE value SITE =
3S + 3(S/4)I + T + E

30 (10)

SIVI index SIVI index = ∑n
i=1 Pavi

28 (11) Pavi: the ith parameter assigned value

The study area is mainly covered by clay, sandy clay, sand and, in some cases,
pebbles [25]. Nearly all the study area is used for agricultural activities, with the main
crops being maize, cereals, cotton and sunflower [24].

The existence of the seawater intrusion phenomenon in the unconfined aquifer system
is demonstrated and confirmed by relevant hydrogeological analyses of the hydrochem-
ical conditions in the study area. Groundwater overpumping is linked to a qualitative
degradation of groundwater primarily caused by human activity [25].

Figure 2 shows the annual rainfall values at the Xanthi meteorological station for
the period 2009–2023. A relatively constant value variation is observed for the period
2012–2015, as well as low values in the years 2011, 2016, 2017, 2020 and 2022, with a
remarkably low value in 2011 and 2022 and an increasing trend in the years 2018 and 2019,
as well as a significant downward trend in the 2019–2023 period (meteorological data from
http://meteosearch.meteo.gr (accessed on 1 March 2024)).

Figure 3 shows the average annual temperature values at the meteorological station of
Xanthi for the period of operation (2009–2023) showing an increasing trend, approximately
of the order of 0.8 ◦C, specifically from 15.6 ◦C to 16.4 ◦C, except for the drop to 15.7 ◦C
from 14.6 ◦C in 2021 and 16.4 ◦C from 15.5 ◦C in 2021.

Within the larger region’s Quaternary coastal and alluvial deposits, two hydrogeologi-
cal systems are identified in the study area [26]. The first hydrogeological system consists
of approximately 30 m thick phreatic to semi-confined aquifers. This hydrogeological
system gets most of its water from precipitation and from nearby small streams and canals.
Alternate confined aquifers with a thickness of approximately 200 m make up the second
deeper hydrogeological system of the study area. The recharge of the second system comes
from lateral groundwater inflows from the nearby hydrogeological basin of Vistonida
Lake [25] and Nestos River infiltration through old, buried riverbeds (Figure 1).

http://meteosearch.meteo.gr
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Figure 1. Study area and network of monitoring groundwater wells.

The groundwater level fluctuations were monitored in the study area during the
periods April and October 2023, and piezometric maps of the groundwater system of the
study area were designed for the studied aquifer (Figure 4), which is recharged mainly from
the N-NE part of the study area and from old riverbeds at the SW part of the study area.

The estimation of the groundwater hydraulic parameters after analyzing relevant
pumping test data in the broader study area is derived in values for the following [26]:
(1) transmissivity (T), ranging from 4.0 × 10−4 to 1.1 × 10−2 m2/s, (2) storage coefficient
(S), varying from 10−3 to even lower by positions, characterizing the aquifer of the study
area as mainly unconfined to semi-confined towards the eastern boundary of the study
area. The major groundwater flow direction (Figure 4) is from northwest to south.
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To monitor the groundwater quality of the study area, a network of 10 sampling wells
was selected in such a way to correspond to the under-investigation aquifer and to cover
the area as well as possible. The research period included the pumping period of July
2023, where chemical analyses were carried out in the Laboratory of Engineering Geology
and Groundwater Research of the Department of Civil Engineering of the Democritus
University of Thrace, Greece. The examined parameters were as follows: Ca2+, Mg2+,
Na+, K+, HCO3

−, Cl−, SO4
2−, NO3

−, NO2
−, NH4

+, PO4
3−, SiO2, Fe2+, Mn2+, hardness

(permanent, non-permanent, total), pH, electrical conductivity (EC).
In Table 3, the statistical analysis of some of the major chemical constituents from

groundwater samples (July 2023) is presented (maximum drinking water levels are men-
tioned, Ca+2: 100 mg/L, Mg+2: 50 mg/L, SO4

2−: 250 mg/L, HCO3
−: 500 mg/L, PO4

2−:
0.50 mg/L, NO3

−: 50 mg/L, NO2
−: 0.5 mg/L, NH4: 0.5 mg/L, Cl−: 250 mg/L, K+:

12 mg/L, Na+: 200 mg/L, Fe2+: 0.25 mg/L, Mn2+: >0.10 mg/L, EC: 2500 µS/cm, [27]).
The values of electrical conductivity EC and chlorides Cl− of the samples range from

652.00 µS/cm to 3770.00 µS/cm and from 63.83 mg/L to 815.58 mg/L, respectively (Table 3,
Figures 5 and 6). The highest values are observed in the southern coastal part of the study
area, where seawater intrusion has been confirmed from previous relevant hydrogeological
research in the area [24–26]. Also, some lower values appear and are locally limited in the
northern part where a possible influence from the upstream restricted geothermal field
outside the main study area has been noticed by [24].

The concentration values of nitrate (NO3
−) range from 0.00 mg/L to 62.40 mg/L, with

four (4) of the ten (10) samples being out of the acceptable limits (allowable: 50 mg/L).
Regarding the suitability of the water samples analyzed for irrigation, based on TDS

(Total Dissolved Solids), SAR (Sodium Adsorption Ratio), the concentrations of sodium
(Na), chlorine (Cl−), bicarbonate ion (HCO3

−), the value criteria %E.sp (%Na, alkalinizing
degree) and conductivity EC, the results according to ratings and rankings by [28–30],
generally all samples were identified as problematic.
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Table 3. Statistical analysis of some of the major chemical constituents from groundwater samples
(July 2023).

Min Max Aver SD

Ca2+ (mg/L) 48.10 200.40 115.11 53.66
Mg2+ (mg/L) 9.72 72.90 35.31 21.08
SO4

2− (mg/L) 64.00 300.00 176.10 92.78
HCO3

− (mg/L) 131.15 895.48 421.27 217.12
PO4

2− (mg/L) 0.13 3.88 1.49 1.14
NO3

− (mg/L) 0.00 62.40 31.33 24.30
Cl− (mg/L) 63.83 815.58 326.41 251.69
EC (µS/cm) 652.00 3770.00 1944.80 966.39

pH 6.72 7.86 7.27 0.30
K+ (mg/L) 2.50 34.30 12.41 9.33

Na+ (mg/L) 105.00 500.00 258.00 148.70
Fe2+ (mg/L) 0.00 0.96 0.16 0.30
Mn2+ (mg/L) 0.50 4.90 1.55 1.28

Na+/Cl− 0.75 2.54 1.58 0.64
SO4

2−/Cl− 0.18 1.38 0.60 0.42
(Ca2++Mg2+)/(Na++K+) 0.18 1.50 0.89 0.40
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The SAR (Sodium Adsorption Ratio) values range from 1.90 to 15,38. The parts of
the study area that face increased serious problems (SAR value > 6) regarding quality
degradation due to increased SAR value, are the south-southwest and the central to eastern
part (Figure 7). In these parts, where the SAR value exceeds 6, there seems to be a risk of
toxicity for the existing crops.
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The use of the ratio Cl/(CO3 + HCO3) in meq/L, which is also referred to as the
Revelle coefficient, was proposed as a criterion for seawater penetration [31] in order to
prevent an incorrect diagnosis of seawater intrusion caused by a temporary increase in TDS.
The range of Revelle values from 1 to 10 indicates moderate to severe pollution caused by
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seawater intrusion, while values greater than 10 may be considered evidence of serious
pollution [27]. The study area’s groundwater is found to be “good” to “slightly polluted” by
seawater intrusion, according to Revelle values (min value: 0.40, max value: 3.57, average
value: 1.34) (Figure 8).
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Subsequently, the ionic ratios Na+/Cl−, SO4
2−/Cl− and (Ca2++Mg2+)/(Na++K+) were

calculated, and relative hydrochemical maps were designed (Figures 9–11). The relevant
concluding remarks are summarized in the following:

– The Na+/Cl− ratio is related to groundwater salinization and seawater intrusion or to
the existence of residual saline deposits within the aquifer [32]. The north part and
the south coastal part of the area are considered problematic, as groundwater has
undergone salinization (Na+/Cl− < 0.876 ± 10%).

– The SO4
2−/Cl− ratio demonstrates the evolution of the salinity of aquifers and is also

used to investigate the hydrochemical conditions of coastal aquifers [32]. In the north
and the S-SW coastal section of the aquifer, it appears that groundwater is chlorinated
or of seawater origin (SO4

2−/Cl− = 0.1–0.2).
– The ionic ratio (Ca2++Mg2+)/(Na++K+) is related to groundwater recharge and gives

information about the areas where the groundwater is recharged [27]. Noticeable
inflows from the west and the north are detected (Ca2++Mg2+)/(Na++K+ > 1), a
finding which is also confirmed in the piezometric maps in Figure 4. Sections of low
recharge are located in the S and SW coastal sections.
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Finally, as far as the Piper diagram in Figure 12 is concerned, all groundwater samples
points are located at the upper part of the rhombic diagram.
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3. Results and Discussion

In the following, the calculation of the GALDIT, SIVI and SITE vulnerability indices
is described, both as a general assessment and characterization of the vulnerability of the
groundwater system of the research area for April and October 2023, as well as a spatial
distribution of the variation in their values.

The data used are based on the analysis and processing of hydrogeological and
hydrochemical measurements in the study area, which have been carried out in current
and previous hydrogeological investigations in the study area [25,33–35].

Finally, a comparison is made of the results from the application of the SITE and SIVI
methods with the results obtained from the investigation of groundwater vulnerability
with the GALDIT method in the same area. The whole process of calculating GVI (GALDIT
vulnerability index), SITE and SIVI values is presented in Tables 4–7.

Table 4. Calculation of GVI values.

Well → 26 74 147 229 28 50 14 17 18 23

Groundwater
occurrence (G)

G Unconfined
W1 1 1 1 1 1 1 1 1 1 1
R1 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5

W1xR1 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5

Aquifer hydraulic
conductivity (A) *

A (×10−5

m/s)
6.0 12.0 20.0 20.0 4.0 12.0 3.0 3.0 3.0 3.0

A (m/day) 5.18 10.37 17.28 17.28 3.46 10.37 2.25 2.59 2.59 2.59
W2 3 3 3 3 3 3 3 3 3 3

R2 (rating) 5 7.5 7.5 7.5 2.5 7.5 2.5 2.5 2.5 2.5
W2xR2 15.0 22.5 22.5 22.5 7.5 22.5 7.5 7.5 7.5 7.5

Height of
groundwater level

above sea level
(L)—April 2023

L (m) 7.57 6.10 4.26 2.80 2.95 0.35 10.35 3.63 2.80 2.88
W3 4 4 4 4 4 4 4 4 4 4
R3 2.5 2.5 2.5 2.5 2.5 10 2.5 2.5 2.5 2.5

W3xR3 10 10 10 10 10 40 10 10 10 10
Height of

groundwater level
above sea level

(L)—October 2023

L (m) 5.66 2.65 3.49 2.23 2.48 −0.45 8.30 3.18 2.96 2.89
W3 4 4 4 4 4 4 4 4 4 4
R3 2.5 2.5 2.5 2.5 2.5 10 2.5 2.5 2.5 2.5

W3xR3 10 10 10 10 10 40 10 10 10 10

Distance from the
shore (D)

D (m) 7113 6443 4796 3730 4187 1965 5910 4327 3343 2433
W4 4 4 4 4 4 4 4 4 4 4
R4 5 5 7.5 7.5 7.5 10 5 7.5 7.5 10

W4xR4 20 20 30 30 30 40 20 30 30 40

Impact of existing
status of seawater

intrusion (I)

I (Revelle) 0.84 3.57 1.79 1.98 0.82 1.57 0.45 1.16 0.40 0.78
W5 1 1 1 1 1 1 1 1 1 1
R5 2.5 10.0 7.5 7.5 2.5 7.5 2.5 5 2.5 2.5

W5xR5 2.5 10 7.5 7.5 2.5 7.5 2.5 5 2.5 2.5

Thickness of the
aquifer (T) (m)

T (m) 27 27 27 27 27 27 27 27 27 27
W6 2 2 2 2 2 2 2 2 2 2
R6 10 10 10 10 10 10 10 10 10 10

W6xR6 20 20 20 20 20 20 20 20 20 20
GVI April 2023

GVI October 2023
5.0 6.0 6.5 6.5 5.2 9.2 4.5 5.3 5.2 5.8
5.0 6.0 6.5 6.5 5.2 9.2 4.5 5.3 5.2 5.8

Note: *: [24,36].
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Table 5. Parameter values for the calculation of SITE and SIVI index values (April and October 2023)
(valuation and characterization of values from [9,19]).

Cl (mg/L) 0–250 mg/L ≥250 mg/L
Sα (km2) 18.46 23.00
St (km2) 41.46

S → 0.555

Cl (mg/L) 250–532.80/L 532.80–815.58 mg/L
Si (km2) 16.478 6.522

Cln (mg/L) 391.40 674.20
Si xCl (km2) 6449.489 4397.132

I → 471.592

year
Cln(

f )
(mg/L)

1
n

n
∑

x=1
f (x)

(2023)
(mg/L)

f (mg/L)
(2021, 2022, 2023)

T0
↓

T
↓

2021 * 324.81
326.41 315.68 0.034 0.0422022 ** 295.82

2023 326.41

Cln−1
(mg/L)
(2022 **)

Cln
(mg/L)
(2023)

E
↓

295.82 326.41 1.103

K (m/s) *** 0–8 × 10−5 m/s >8 × 10−5 m/s
Si (km2) 9.76 13.24
Sb (km2) 13.24
St (km2) 23.00

C → 0.576

h (m) <1.0 m ****
April 2023

<1.0 m ****
October 2023

Sc (km2) 2.37 2.90
St (km2) 41.46

H → 0.057 0.070

Distance from
shoreline ****

Sd
(km2)

St
(km2)

D
↓

>7 km 38.09 41.46 0.919
Notes: *: [36], **: [37], ***: [24,25,38–40], ****: in combination with Figures 1 and 5.

Table 6. Calculation of SITE and SIVI index values (April 2023, October 2023) (valuation and
characterization of values from [9,11]).

Calculated Value Assigned Value Characterization

S 0.555 3 High
I 471.592 1 low
T 0.042 0 Very low
E 1.103 1 Moderate deterioration
A Unconfined 3 High
C 0.576 3 High

H (April 2023) 0.057 0 Very low
H (October 2023) 0.070 0 Very Low

D 0.919 2 Very Far

SITE value → 0.408 Moderate

SIVI Index → 0.464 (April and
October 2023) Moderate
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Table 7. Calculation of SIVI index values for the study area and for each monitoring well (April 2023
and October 2023).

26 74 147 229 28 50 14 17 18 23

Cl− July 2023 (mg/L) 63.83 585.09 407.79 460.98 257.09 815.58 99.29 390.06 99.29 85.10

Hydraulic conductivity (×10−5

m/s)
6.0 12.0 20.0 20.0 4.0 12.0 3.0 3.0 3.0 3.0

Water table (h)
April 2023 (m) 7.57 6.10 4.26 2.80 2.95 0.35 10.35 3.63 2.80 2.88

October 2023 (m) 5.66 2.65 3.49 2.23 2.48 −0.45 8.30 3.18 2.96 2.89
Distance from shoreline (d) (m) 7113 6443 4796 3730 4187 1965 5910 4327 3343 2433

S
cv _ 0.555 0.555 0.555 0.555 0.555 _ 0.555 _ _

av 0 3 3 3 3 3 0 3 0 0

I
cv _ 471.592 471.592 471.592 471.592 471.592 _ 471.592 _ _

av 0 1 1 1 1 1 0 1 0 0

T
cv 0.042 0.042 0.042 0.042 0.042 0.042 0.042 0.042 0.042 0.042
av 0 0 0 0 0 0 0 0 0 0

E
cv 1.103 1.103 1.103 1.103 1.11 1.103 1.103 1.103 1.103 1.103
av 1 1 1 1 1 1 1 1 1 1

A
cv UA UA UA UA UA UA UA UA UA UA
av 3 3 3 3 3 3 3 3 3 3

C
cv _ 0.576 0.576 0.576 _ 0.576 _ _ _ _

av 0 3 3 3 0 3 0 0 0 0

H
April 2023 cv _ _ _ _ _ 0.057 _ _ _ _

av 0 0 0 0 0 0 0 0 0 0

October 2023
cv _ _ _ _ _ 0.070 _ _ _ _

av 0 0 0 0 0 1 0 0 0 0

D
cv _ 0.919 0.919 0.919 _ 0.919 _ 0.919 _ _

av 0 2 2 2 0 2 0 2 0 0
SIVI Index (April 2023) 0.14 0.46 0.46 0.46 0.29 0.50 0.14 0.36 0.14 0.14

SIVI Index (October 2023) 0.14 0.46 0.46 0.46 0.29 0.50 0.14 0.36 0.14 0.14

Notes: cv/av: calculated value/assigned value, UA: unconfined aquifer.

Table 4 shows the procedure for calculating the GVI values.
Based on the results of the GALDIT method in the study area, a vulnerability map

was designed for April and October 2023 (Figure 13). The map shows four (4) zones
of groundwater vulnerability to seawater intrusion in the area. From the comparison
of the distribution map of the GALDIT index values for both study periods with the
distribution map of chloride concentration (Figure 5), a relative identification of the high
vulnerability parts with the parts of moderate pollution from seawater intrusion and
correspondingly with the parts with increased chloride concentration values is observed.
This is an initial serious proof step to demonstrate the credibility of the effort to assess
groundwater vulnerability in the study area from seawater intrusion using the GALDIT
method. The identification of the part with high vulnerability that extend mainly south
towards the coastline is established.

The following are important points regarding the process of calculating SITE and SIVI
values (Table 5):

– Reference value (higher acceptable value) Vr = 250 mg/L (Ministerial Decision 1811/
2011—Official Gazette 3322/B′ 30 December 2011).

– The characterization of the S, I, T, E, A, C, H, D values is based on relative ranges of
value variation as presented in corresponding tabulations of [9,19].

– The denominators of Equations (9) and (10) (Table 1) have the values 30 and 28,
respectively, because these are the maximum values that the SITE and SIVI indices
can take.

– Regarding the valuation of the aquifer under investigation, which is an unconfined
aquifer [16], parameter (A) was evaluated with the assigned value of 3 (high vulnera-
bility) (Tables 2 and 6).
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– The area measurement of individual sections: [A] Cl−: ≥250 mg/L (23.00 km2) (in
red), [B] Cl−: <250 mg/L (18.46 km2) (all remaining section) (Figure 14) was carried
out after a similar demarcation of the sections based on the maps of Figures 1 and 5
(total area St: 41.46 km2).

– Based on the results from pumping tests in the study area [24] and in combination
with Figure 14, it emerged that the value of 8 × 10−5 m/s can be characterized as the
reference value for the C parameter.

– Based on the piezometric maps of Figure 4 and in combination with Figures 5 and 14,
height of groundwater level parameter (L) was calculated. Based on Equation (7),
as presented in Table 2 and according to [9], the value of 1.0 m is taken as the (L)
reference value for April and October 2023.
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In Table 6, it can be seen that the final values of the SITE and SIVI indices for the entire
study area amount to 0.408 (SITE) and 0.464 (SIVI) (for both April and October 2023), with
consequent characterization of the vulnerability of the study aquifer to seawater intrusion
as Moderate [19].

Finally, a comparison is made of the results from the application of the SITE and SIVI
methods with the results obtained from the investigation of groundwater vulnerability
with the GALDIT method in the same area.

Table 7 presents the results from the calculation of SIVI index values for the study area
and for each monitoring well (April and October 2023) based on Equation (10) (Table 2).
Then follows the presentation of a distribution map of SIVI vulnerability index values
designed taking into account SIVI index values for each well for the months of April and
October 2023 (Figure 15). More specifically, the SIVI index values vary from 0.14 to 0.50 for
both April and October 2023. The highest values of the index appear in the south of the
study area.
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From the analysis of the SIVI vulnerability index distribution map, it was found that
the variation in the SIVI index values is the same for both calculation periods. From the
comparison of the distribution map of the SIVI index for both study periods with the
distribution maps of the chloride (Cl−) concentration values and the electrical conductivity
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(EC) values, as well as the distribution maps of the GALDIT vulnerability index, the
following can be concluded:

– There is a relative identification of the parts of greater vulnerability with the parts of
moderate pollution from seawater intrusion and with the parts with increased chloride
concentration values. This is a strong piece of evidence in highlighting the reliability of
the effort to assess groundwater vulnerability of the study area to seawater intrusion
with the SITE and SIVI methods.

– It is found that, in April and October 2023, the values of the SIVI index increased
towards the southeast part, with a maximum value of 0.50, while the values decreased
towards the east part and the north NW part, with a minimum value of 0.14.

– A relative matching in the southeastern part of the study area is found, between the
SIVI vulnerability index (Figure 15) and chloride (Cl−) concentration values, with a
maximum value of 815.5 (Figure 5), and electrical conductivity (EC) values, with a
maximum value of 3770 µS/cm (Figure 6), as well as the GALDIT vulnerability index
(GVI) values, with a maximum value of 9.2 (Figure 13).

4. Conclusions

This paper describes the investigation of coastal groundwater vulnerability to seawater
intrusion in the coastal area of Laspias River, NE Greece, using GALDIT, SITE and SIVI
methods, in the context of groundwater management in the area. Using the geological,
hydrological and hydrogeological data from the relevant measurements of the area for
the time periods of April and October 2023, the unconfined aquifer was mapped with the
distinction in vulnerability zones.

The application of the methods and the calculation of the values of each method was
achieved by relative tabulation of the process and the subsequent design of vulnerability
maps. During GALDIT method application, specific characteristics of the aquifer of the
study area were involved in the calculation related to hydrogeological, hydrochemical
and spatial data (type of aquifer, hydraulic conductivity, distance from coastline, thickness
of aquifer, altitude of groundwater level, Revelle values). The SIVI and SITE method
procedures took into account data similar to the GALDIT method (aquifer type, hydraulic
conductivity, distance from coastline, altitude of groundwater level), as well as some addi-
tional data related to the extent of the affected area by seawater intrusion, its seasonality and
evolution of seawater intrusion based on the concentrations of chloride ions in groundwater
at various sites in the aquifer throughout space and time.

All three methods, despite the advantages and disadvantages of each method, as
described especially in the introduction of this paper, come to the conclusion that high vul-
nerability values extend mainly south towards the coastline of the study area corresponding
to the parts with increased values of chloride concentration and electrical conductivity, thus
enhancing the reliability of the research procedure of assessing groundwater vulnerability
to seawater intrusion in the study area.

It would be very interesting to assess and evaluate the vulnerability of the system over
the last decade or more. The process is proposed to include the application of GALDIT,
SITE and SIVI methods with as much available hydrological and hydrogeological data and
information as can be collected. The results would be very useful in conducting the most
reliable hydrogeological assessment of the hydrogeological regime of the system and can
significantly contribute to the planning of further research and activities in the context of
the rational utilization and management of the groundwater potential at the eastern Delta
of the Nestos River.
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