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Abstract: The surface area changes of 151 natural lakes over 37 months in the Yellow River Basin,
based on remote sensing data and 21 meteorological indicators, employing spatial distribution
feature analysis, principal component analysis (PCA), correlation analysis, and multiple regression
analysis, identify key meteorological factors influencing these variations and their interrelationships.
During the study period, lake area averages were from 0.009 km2 to 506.497 km2, with standard
deviations ranging from 0.003 km2 to 184.372 km2. The coefficient of variation spans from 3.043 to
217.436, indicating considerable variability in lake area stability. Six primary meteorological factors
were determined to have a significant impact on lake surface area fluctuations: 24 h precipitation,
maximum daily precipitation, hours of sunshine, maximum wind speed, minimum relative humidity,
and lakes in the source region of the Yellow River generally showed a significant positive correlation.
For maximum wind speed (m/s), 28 lakes showed significant correlations, with five positive and
twenty-three negative correlations, correlation coefficients ranging from −0.34 to −0.63, average
−0.47, indicating an overall negative correlation between lake surface area and maximum wind speed.
For maximum daily precipitation (mm), 36 lakes had 21 showing a positive correlation, indicating a
positive correlation between lake surface area and daily precipitation in larger lakes. Furthermore,
of the 117 lakes with sufficient data to model, the predictive capabilities of various models for lake
surface area changes showcased distinct advantages, with the random forest model outperforming
others in a dataset of 65 lakes, Ridge regression is best for 28 lakes, Lasso regression performs best for
20 lakes, Linear model is only best for 4 cases. The random forest model provides the best fit due to its
ability to handle a large number of feature variables and consider their interactions, thereby offering
the best fitting effect. These insights are crucial for understanding the influence of meteorological
factors on lake surface area changes within the Yellow River Basin and are instrumental in developing
predictive models based on meteorological data.

Keywords: Yellow River Basin; remote sensing data; lake surface area changes; meteorological factors;
multiple regression analysis; principal component analysis

1. Introduction

Surface water bodies (SWBs), encompassing a wealth of natural lakes and widely
distributed artificial reservoirs, bear crucial freshwater resources. SWBs are fundamental to
China’s geographical environment, ecosystems, and socio-economic development. Statis-
tically, China’s surface water bodies store substantial freshwater, playing a decisive role
in national water resource security and ecological balance. In the complex hydrological
cycle, surface water bodies serve a key role, regulating precipitation runoff, groundwater
replenishment, and regional water balance. Additionally, they significantly contribute
to carbon cycling [1], sediment and nutrient transport [2], and react markedly to climate
change [3] by influencing local climatic conditions [4,5]. SWBs also foster unique and
diverse ecosystems [6], providing extensive ecosystem services, such as food and water
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supply. The surface area of SWBs is a crucial attribute, as it is the medium through which
SWBs interact with many earth system processes and is closely linked to methane emissions,
heat flux, and evaporation [7,8].

Lake surface area as the main role of SWBs’ features and their driving mechanisms
are significant topics in water resource management, ecological environmental protection,
and climate change response studies. Recently, with the increase in the number of bands
in remote sensing imagery and the growing global demand for water resource research,
large-scale extraction of water bodies has become a focal point. Studies by Chen Chen
et al., Mo Guifen et al., and Wang Lixuan et al., based on Landsat TM/ETM+ and OLI
remote sensing images, revealed the spatiotemporal dynamics of surface water areas in the
Altai Mountain ice lakes, the Central Asian countries, and the Sichuan–Tibet transportation
corridor glaciers and analyzed their driving forces. They showed that ice lakes in the Altai
region are highly sensitive to climate change; surface water area changes in the Central
Asian countries are mainly influenced by socio-economic factors, with climate factors
having a negligible impact; glacier melting intensity in the Sichuan–Tibet corridor varies
significantly at different altitudes, with accelerated glacier area retreat and simultaneous
expansion of surface water area in the 4501–5000 and 5001–5500 m elevation ranges [9–11].
Shi Jiancong et al. and Yuan Ruiqiang et al., based on Landsat series data, analyzed the
spatiotemporal variations and driving factors of surface water in the Aral Sea basin and
Inner Mongolia, showing a decreasing trend in the Aral Sea basin’s surface water area,
mainly driven by temperature among climate factors, while surface water changes in Inner
Mongolia are complex, caused by both climate and human activities, with human activities
being the main factor in the reduction of surface water area and lake shrinkage [12,13].
Shunburiji et al., based on 2009–2018 HJ-1A/B remote sensing data, studied the changes in
surface water area in various leagues (cities) of the Inner Mongolia Autonomous Region,
showing that the surface water area in Inner Mongolia continuously increased from 2009 to
2013 and sharply decreased from 2013 to 2017, with rainfall, runoff, reservoir construction,
landfilling, and river diversion all being driving factors of these changes [14].

Existing research shows that the area of surface water bodies (SWBs) varies due to
natural and climatic factors, exhibiting significant spatiotemporal differences. The Yellow
River Basin is a critical area for China’s ecological security and water resource management,
providing essential support for agriculture, industry, and the livelihoods of millions. More-
over, the basin showcases a variety of ecological environments and climatic conditions,
serving as an ideal natural laboratory for understanding the complex interactions between
water bodies and climate change. It includes areas with diverse precipitation patterns, from
arid deserts in the upper reaches to more humid climates downstream, offering a unique
opportunity to study the impact of different meteorological conditions on lake dynamics.
Additionally, the Yellow River Basin is experiencing significant environmental changes
due to natural processes and human activities, including climate change, water diversion,
and land-use change, further highlighting the need for a comprehensive analysis of its
lake ecosystems. Understanding the spatiotemporal variability of lake surface areas in
this region and identifying the meteorological factors driving these changes are crucial
for developing sustainable water resource management strategies and adapting to climate
change impacts. Zhang et al. developed a new combined extraction rule to build an entire
annual-scale open-surface water body dataset for 1986–2020 in the Yellow River Basin using
all of the available Landsat images [15], and Deng et al. used Landsat series images on the
Google Earth Engine (GEE) platform, along with the HydroLAKES and China Reservoir
datasets, to establish an extraction process for surface water bodies from 1986 to 2021 in the
Yellow River Basin [16].

Based on current SWBs’ surface area research, although extensive research has been
conducted on the dynamics of SWBs’ surface area using remote sensing technology, current
studies focus on annual scale changes, with relatively less attention given to the detailed
characteristics, storage dynamics, and responses to climate change of SWBs on a monthly
scale [17,18].
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This is mainly attributed to the following limitations of remote sensing imagery:
(1) Temporal resolution: Not all remote sensing satellites can provide the necessary temporal
resolution to capture changes in lake area each month, and cloud cover and atmospheric
conditions can limit the ability to obtain clear images [19]. (2) Cloud cover and atmospheric
conditions: one of the main limitations of optical remote sensing is cloud obstruction, which
complicates the accurate identification of lake boundaries [20]. (3) Image processing and
data gaps: extracting water bodies from satellite imagery requires complex processing steps,
and technical issues can lead to data gaps, affecting the creation of continuous monthly
time series [21]. (4) Seasonal variability and dynamic water surfaces: changes in lake areas
are influenced by seasonal precipitation, evaporation, and human activities, requiring
precise remote sensing data and complex hydrological models to capture these changes [22].
(5) Spatial resolution: high-resolution imagery is necessary for monitoring changes in small
lakes, but satellites with high-resolution imaging have lower coverage frequencies, which
may not support monthly global monitoring [23]. Therefore, monthly scale research on
SWBs’ surface area based on optical imagery faces significant challenges. The presence of
these issues poses significant challenges for current research on monthly scale surface water
bodies’ (SWBs’) area time series based on optical imagery. To address these challenges,
synthetic aperture radar (SAR) data, which can penetrate cloud cover, offers a viable
alternative for water body detection methods that are not easily obstructed by clouds [24].
This approach can be enhanced by integrating data from multiple satellite systems and
utilizing advanced cloud-penetrating radar imagery. To address these challenges, SAR has
become a valuable tool because it can penetrate cloud cover [25]. The method of detecting
water bodies using SAR data is not affected by cloud cover, allowing researchers to combine
data from multiple satellite systems and use advanced radar imagery that can penetrate
clouds. For example, researchers have analyzed global monthly scale surface water bodies’
(SWBs’) area using frequent, high-resolution C-band SAR observations provided by the
Copernicus Sentinel-1 mission.

In summary, this study focuses on the Yellow River Basin in China, integrating pre-
vious research that utilized frequent, high-resolution C-band SAR observations from the
Copernicus Sentinel-1 mission to analyze the lake surface area data of the Yellow River
Basin, along with a meteorological dataset for the region. It aims to reveal the variability
of lake water bodies in the Yellow River Basin and their climatic driving factors. The
overall goal is to answer the following fundamental Earth science questions: What are the
characteristics of monthly scale surface area changes in the Yellow River Basin? What are
the meteorological driving factors behind the changes in natural lake surface areas, and
how do they each contribute? The research findings are expected to provide valuable in-
sights into the scientific understanding of hydrological and climatic processes in the Yellow
River Basin, offering valuable information for policymakers and stakeholders involved in
environmental protection and water resource planning in the region.

2. Materials and Methods
2.1. Study Area

The Yellow River Basin, stretching across the northern part of China, is the second-
largest river basin in the country, covering an area of approximately 795,000 square kilome-
ters (Figure 1). It is known for its complex hydrological and climatic systems, playing a
crucial role in the ecological balance, agricultural productivity, and water resource manage-
ment in the region [26,27]. The basin originates from the Bayan Har Mountains in Qinghai
Province, flowing through nine provinces before discharging into the Bohai Sea. This
extensive journey encompasses diverse climatic zones, ranging from arid and semi-arid
climates in the upper and middle reaches to more humid conditions in the lower basin.
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Figure 1. Location and distribution of meteorological stations in the Yellow River basin.

Climatically, the Yellow River Basin experiences significant variability, with precipita-
tion patterns markedly changing across its expanse. The upper reaches are characterized by
cold and dry conditions with minimal precipitation, while the middle reaches enjoy slightly
higher rainfall, critical for agriculture and industry. The lower basin benefits from the East
Asian monsoon, receiving the majority of its rainfall during the summer months, which
significantly influences the hydrological regime and the availability of water resources.

The Yellow River Basin is home to numerous lakes and reservoirs, which serve as key
water sources for irrigation, hydropower, and domestic use. Among these, notable lakes
include Dongping, Hongze, Hulun, and the Wuliangsuhai, each playing a pivotal role in
the basin’s water system [28]. These lakes and reservoirs are not only essential for local
water security but also support rich biodiversity and provide vital habitats for various
aquatic and terrestrial species.
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2.2. Data

93 meteorological stations across the Yellow River Basin were selected, covering a total
of 37 months from January 2017 to January 2020 (Figure 1a). In total, 21 meteorological
indices were analyzed as driving factors. The data were sourced from the China Meteoro-
logical Data Sharing Service System: https://data.cma.cn/ (accessed on 31 March 2024).
The dataset is developed based on the measured meteorological data of China National
Meteorological Information Center, and the data are reliable and in line with the reality.

The monthly surface area data for the lakes in this study were obtained from https:
//doi.org/10.1029/2022GL098987 (accessed on 31 March 2024) and https://doi.org/10.528
1/zenodo.6345234 (accessed on 31 March 2024) [29].Taking Dongping and Gyaring as ex-
amples, the available time series of lake surface area is shown in Figure 1b–d. This database
was developed using software that processes data from multiple sources, including help
from Bruno Collischonn of the Brazilian National Water and Sanitation Agency (ANA)
in locating the data: https://www.ana.gov.br/sar0/MedicaoSin (accessed on 31 March
2024), Google Earth Engine (GEE): https://developers.google.com/earth-engine/datasets/
catalog/COPERNICUS_S1_GRD (accessed on 31 March 2024); https://developers.google.
com/earth-engine/datasets/catalog/JRC_GSW1_3_MonthlyHistory (accessed on 31 March
2024), and the HydroLAKES dataset: https://www.hydrosheds.org/page/hydrolakes (ac-
cessed on 31 March 2024), with the output available at https://doi.org/10.5281/zenodo.64
50466 (accessed on 31 March 2024). The data are openly accessible. The database contains a
total of 151 lakes in the Yellow River Basin (Figure 1a).

2.3. Method

Initially, we utilized GISPro and R language tools for our analysis. Based on meteoro-
logical station data and the boundaries of the Yellow River Basin, Thiessen polygons were
generated for each weather station. These polygons facilitated the linkage between weather
stations and lakes according to the spatial attributes of the Thiessen polygons (Figure 1a),
thereby establishing a database for both lake surface area and meteorological time series.

Four characteristic parameters—mean, standard deviation, coefficient of variation,
and slope (represents the rate of temporal change in lake surface area over the 37-month
study period—were selected to analyze the central tendency, dispersion, and distribution
shape of lake changes in the Yellow River Basin. Using the correlation coefficient, the
correlation relationship between lake area changes and 21 meteorological factors was
established. Based on the correlation coefficient matrix, the Principal Component Analysis
(PCA) method was used to extract the main meteorological factors that are significantly
correlated [30]. Further, the spatial distribution characteristics of these primary correlated
meteorological factors were analyzed, and regression models were established to describe
these relationships.

With the surface area of each studied lake as the target variable and selected mete-
orological factors as independent variables, this study employs four different regression
models for predictive analysis, namely linear model (LM), ridge regression, lasso regression,
and random forest (RF) [31]. To comprehensively evaluate and compare the performance
of each model, this research has chosen the following three commonly used accuracy
assessment indicators: mean absolute error (MAE), root mean square error (RMSE), and
coefficient of determination (R2).

Mean absolute error (MAE), root mean square error (RMSE) and coefficient of determi-
nation (R2) are commonly used performance indicators in statistical analysis and prediction
models. Here are their basic equations:

(1) Mean absolute error (MAE)

MAE is the average of the absolute value of the difference between the observed and
predicted values. It can be calculated by the following equation:

MAE =
1
n∑n

i=1 | yi − ŷi | (1)

https://data.cma.cn/
https://doi.org/10.1029/2022GL098987
https://doi.org/10.1029/2022GL098987
https://doi.org/10.5281/zenodo.6345234
https://doi.org/10.5281/zenodo.6345234
https://www.ana.gov.br/sar0/MedicaoSin
https://developers.google.com/earth-engine/datasets/catalog/COPERNICUS_S1_GRD
https://developers.google.com/earth-engine/datasets/catalog/COPERNICUS_S1_GRD
https://developers.google.com/earth-engine/datasets/catalog/JRC_GSW1_3_MonthlyHistory
https://developers.google.com/earth-engine/datasets/catalog/JRC_GSW1_3_MonthlyHistory
https://www.hydrosheds.org/page/hydrolakes
https://doi.org/10.5281/zenodo.6450466
https://doi.org/10.5281/zenodo.6450466
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where yi is the i true value, ŷ is the i predicted value, and n is the sample size.

(2) Root mean square error (RMSE)

RMSE is the square root of the mean of the square of the difference between the
observed and predicted values. It can be calculated by the following equation:

RMSE =

√
1
n∑n

i=1(yi − ŷi)
2 (2)

where the definitions of yi, ŷ, and n are the same as above.

(3) Coefficient of determination (R2)

R2 is an index reflecting the goodness of fit of the model, and the closer the value is to
1, the better the model fit. It can be calculated by the following equation:

R2 = 1 − ∑n
i=1

(
yi − ŷi)

2

∑n
i=1(yi − y)2 (3)

where y is the average of all observations.
The evaluation of the models uses a 10-fold cross-validation method, which divides

the dataset into ten equal parts, using nine parts for model training and the remaining one
part for testing in a rotating cycle until each part has been used for testing. This process
helps to assess the models’ generalization ability on unseen data, providing robust insights
into their predictive capabilities and potential performance on new observations.

Among these, the average value of RMSE serves as the primary criterion for selecting
the optimal model. The model with the smallest average RMSE value is chosen as the final
optimal model, aiming to achieve the best predictive performance on the given dataset.

Ultimately, the optimal regression model for each lake is selected, thereby establishing
a predictive model library for the surface area of lakes in the Yellow River Basin. This
approach ensures the robustness and reliability of the predictive models, enhancing our
understanding of the spatiotemporal variations in lake surface areas within the region.

3. Results
3.1. Surface Area Characteristics of Lakes in the Yellow River Basin

Figure 2 shows the spatial distribution characteristics of the mean surface area, stan-
dard deviation (std), coefficient of variation (CV), and slope of 151 natural lakes in the
Yellow River Basin over 37 months.

In the Yellow River basin, the average lake area varies from 0.009 km2 (HyLake_ID
174904) to 506.497 km2 (HyLake_ID 1377: Ngoring) as illustrated in Figure 2a. Larger
average values are predominantly observed in the western plateau region, exemplified
by HyLake_ID 1377: Ngoring and HyLake_ID 1385: Gyaring (403.265 km2), reflecting
the characteristic distribution of expansive lakes in the upper reaches of the Yellow River.
Conversely, smaller average values are mainly found in the lower Yellow River and eastern
areas, which may be associated with higher human activity and lower precipitation levels
in these regions.

The standard deviation of lake area ranges from 0.003 km2 (HyLake_ID 174904)
to 184.372 km2 (HyLake_ID 1385), with the spatial distribution of standard deviation
exhibiting good consistency with the mean values (Figure 2a,b). This consistency suggests
that the physical size of lakes (mean surface area) and their variability over time (indicated
by standard deviation) may be influenced by similar natural and anthropogenic factors,
which affect the stability and variability of lakes on a large scale. For instance, larger
lakes within broad geographic regions may be more exposed to the impacts of large-scale
climatic pattern changes, such as seasonal fluctuations in precipitation, directly affecting
lake surface areas.
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The coefficient of variation, as a key indicator of the stability of lake area changes,
spans widely in this dataset from 3.043 (HyLake_ID 1359) to 217.436 (HyLake_ID 172846)
(Figure 2c). This range not only reveals the relative stability differences in lake area fluctu-
ations but also reflects the sensitivity of lakes to external environmental changes. Lakes
with higher coefficients of variation, such as HyLake_ID 172846, HyLake_ID 173698, and
HyLake_ID 174535, exhibit distinct spatial clustering characteristics, primarily concen-
trated in specific areas of the Yellow River basin: the Mu Us Desert and the Zhengzhou to
Bohai segment of the river’s lower reaches. This distribution pattern not only reflects the
regional characteristics of geographical and climatic factors’ impact on lake area changes
but also suggests the presence of similar ecological conditions and hydrological dynamics
in these regions.

During the study period in the Yellow River basin, the slope of lake area change trends
exhibited significant variability, ranging from −0.161 (HyLake_ID 1314: Wu-liang-su) to
0.635 (HyLake_ID 1385: Gyaring) (Figure 2d). This variation unveils the differing trends
of lake area expansion or reduction over time within the region, reflecting the unique
hydrological and environmental conditions of individual lakes. Specifically, lakes with
a positive slope, such as Lake Gyaring (HyLake_ID 1385), demonstrated a noticeable
increase in surface area during the observation period. This growth could be closely
related to regional increases in precipitation, accelerated snowmelt processes due to rising
temperatures, and other changes in the watershed’s hydrological cycle. These shifts indicate
that some lakes are experiencing accumulations and expansions of water, which could
have significant implications for local ecosystems and water resource management. In
contrast, lakes with a negative slope, such as Wu-liang-su Lake (HyLake_ID 1314), showed
a decreasing trend, possibly indicating water body shrinkage and lake degradation. This
reduction could result from the overexploitation of water resources, such as irrigation
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and industrial water use, or due to climate change-induced decreases in precipitation and
increased evaporation rates. These findings underscore the importance of sustainable water
resource management and the urgent need for climate change adaptation strategies.

Analysis of the relationship models between various indicators and geographic coordi-
nates (Figure 3 and Table 1) indicates that most indicators show either minimal explanation
for data variability or lack statistical significance in relation to latitude and longitude. This
may suggest that these indicators are less influenced by geographic coordinates or that other
unconsidered factors are affecting them. Models of standard deviation against latitude,
standard deviation against longitude, and slope against longitude revealed some statistical
significance, especially the relationship between standard deviation (Std_value) and longi-
tude, which was most pronounced. This suggests that data variability (standard deviation)
and change trends (slope) might vary to some extent across different geographic locations.
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Table 1. Relation curve of lake surface area change index and latitude and longitude in Yellow
River basin.

Index Regression Model R2 p

mean_value__lat Value = 72.727 − 1.691 × Pour_lat 0.006 0.363
mean_value_lon Value = 149.650 − 1.301× Pour_long 0.024 0.056
Std_value__lat Value = 22.130 − 0.509 × Pour_lat 0.004 0.046
Std_value_lon Value = 61.710 − 0.545 × Pour_long 0.031 0.029
CV_value__lat Value = 4.360 + 1.122× Pour_lat 0.005 0.400
CV_value_lon Value = −17.618 + 0.591 × Pour_long 0.011 0.203
Slope_value__lat Value = 0.0127 − 0.003 × Pour_lat 0.015 0.133
Slope_value_lon Value = 0.197 − 0.002 × Pour_long 0.033 0.025

3.2. Indicator Selection

Figure 4 presents the results of a principal component analysis (PCA) examining the
correlations between various meteorological indicators and lake surface area, including a
scree plot of the variance contributions of each principal component to the total dataset vari-
ance and a biplot. The analysis reveals that the first principal component (PC1) accounts for
55.16% of the variability in the data, and the second principal component (PC2) captures an
additional 17.75%. When considering the three principal components (PC1–PC3) together,
they account for 81.217% of the total variation in the dataset (Figure 4a). This significant
proportion suggests that these components are sufficient to represent the majority of the
information and structure within the dataset, making them pivotal in understanding the
underlying patterns.
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Figure 4b illustrates the distribution of sample scores along the first principal com-
ponent (principal component 1, horizontal axis) and the second principal component
(principal component 2, vertical axis). The biplot in Figure 4b displays the dispersion
of samples primarily along the horizontal axis, captured by PC1, which accounts for the
largest proportion of variability. In contrast, PC2 reveals the second-largest proportion
of variability along the vertical direction. PC3 offers an additional perspective on the
distribution of data points in the depth dimension (Figure 4c).

In terms of component loadings, 20-20 hourly precipitation (mm) and #maximum daily
precipitation (mm) exhibit high loadings on PC1, indicating their significant contribution
to this component. For PC2, variables such as hours of sunshine and maximum wind
speed (m/s) demonstrate high loadings, signifying their pivotal role on this axis. On
PC3, minimum relative humidity (%) and average 2-minute wind speed (m/s) show high
loadings (Table 2).

Table 2. Principal component loading matrix.

Index PC1 PC2 PC3

# 20-20 hourly precipitation (mm) −0.284 * −0.064 −0.063
# Maximum wind speed (m/s) 0.166 −0.355 ** 0.027
Maximum wind speed direction(◦) 0.140 −0.107 −0.220
# Average 2-minute wind speed (m/s) −0.172 −0.123 0.454 **
Average temperature (◦C) −0.273 −0.182 −0.031
Average atmospheric pressure (hPa) −0.186 0.331 0.221
Average vapor pressure (hPa) −0.282 −0.121 −0.082
Average relative humidity (%) −0.233 0.165 −0.341
Average minimum temperature (◦C) −0.275 −0.173 −0.041
Average maximum temperature (◦C) −0.271 −0.191 −0.020
Number of days with precipitation ≥ 0.1 mm −0.276 −0.086 −0.120
# Hours of sunshine 0.020 −0.409 * −0.028
Monthly percentage of sunshine (%) 0.033 0.144 0.130
Maximum wind speed (m/s) 0.148 −0.313 0.161
Direction of maximum wind speed (◦) 0.187 −0.006 −0.330
# Maximum daily precipitation (mm) −0.283 ** −0.064 −0.052
Minimum temperature (◦C) −0.275 −0.170 −0.042
Minimum atmospheric pressure (hPa) −0.218 0.289 0.114
Maximum temperature (◦C) −0.268 −0.198 0.011
Maximum atmospheric pressure (hPa) −0.173 0.288 0.317
# Minimum relative humidity (%) −0.109 0.245 −0.529 *

Note: “#” represents the selected indicators, “*” represents the maximum absolute value, and “**” represents the
second largest absolute value.
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After evaluating the contributions of individual variables to each principal compo-
nent, this study identifies the top two variables with the highest loadings from each of
the three principal components analyzed, totaling six primary indicators for subsequent
spatiotemporal correlation and modeling analyses.

3.3. Correlation Analysis

Taking Lake HyLake_ID 1377 (Ngoring, mean area = 506.500 km2) and HyLake_ID
174771 (mean area = 2.960 km2) as examples, the analysis demonstrates significant correla-
tions between meteorological factors and lake surface areas for these distinct environments
(Figure 5).
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For HyLake_ID 1377, there is a strong positive correlation between “20-20 hourly
precipitation” and the lake surface area, with a correlation coefficient of 0.6364 and a
p-value < 0.01, suggesting that increased precipitation is associated with an expansion of
the lake surface area. Conversely, “maximum wind speed” shows a moderate negative
correlation (correlation coefficient of −0.508, p-value < 0.01), indicating that higher wind
speeds may be associated with a reduction in lake surface area. Other meteorological factors,
such as “hours of sunshine” and “maximum daily precipitation”, also show strong positive
correlations with the lake surface area, with correlation coefficients of 0.6303 (p-value < 0.01)
and 0.3015 (p-value = 0.070), respectively. However, the correlation between “minimum
relative humidity” and lake surface area is weaker, with a correlation coefficient of 0.3015
and a p-value of 0.070, suggesting a less significant relationship.

Similarly, for HyLake_ID 174771, significant correlations are observed between meteo-
rological factors and lake surface area. “20-20 hourly precipitation” shows a strong positive
correlation with the lake surface area (correlation coefficient of 0.788, p-value < 0.01), re-
inforcing the idea that precipitation is a critical factor in lake surface dynamics. Unlike
Lake 1377, “maximum wind speed” for Lake 174771 exhibits a slightly weaker negative
correlation with the lake surface area (correlation coefficient of −0.553, p-value < 0.01),
which may indicate a different impact of wind on smaller lakes. Furthermore, “hours
of sunshine” and “maximum daily precipitation” have substantial positive correlations
with the lake surface area, with correlation coefficients of 0.766 (p-value < 0.01) and 0.1745
(p-value = 0.302), respectively. The correlation between “minimum relative humidity”
and lake surface area, similar to Lake 1377, remains weaker and not significant, with a
correlation coefficient of 0.175 and a p-value of 0.302, indicating minimal impact on the
lake’s size.

These findings suggest that, despite the considerable size difference between Lakes
1377 and 174771, both lakes exhibit similar trends in the influence of meteorological fac-
tors on their surface areas. 20-20 hourly precipitation, maximum daily precipitation and
maximum wind speed significantly impact lake surface areas, whereas wind speed shows
moderate negative correlations, and relative humidity appears to have minimal effects.

To elucidate the spatial distribution characteristics of the correlation and significance
between lake surface areas and meteorological factors in the Yellow River Basin, we cre-
ated a distribution map showing the correlation and significance between lakes in the
Yellow River Basin and changes in meteorological factors, as illustrated in Figure 6. For
the 20-20 hourly precipitation (mm), among 118 lakes, 38 exhibited significant correlations,
with 22 positively correlated (correlation coefficients ranging from 0.41 to 0.79, average
0.59) and 16 negatively correlated (correlation coefficients ranging from −0.36 to −0.64,
average −0.43). Spatially, lakes in the source region of the Yellow River generally showed a
significant positive correlation. For maximum wind speed (m/s), 28 lakes showed signif-
icant correlations, with five positive and twenty-three negative correlations (correlation
coefficients ranging from −0.34 to −0.63, average −0.47), indicating an overall negative
correlation between lake surface area and maximum wind speed. For average 2-minute
wind speed (m/s) and hours of sunshine, 25 and 22 lakes, respectively, showed significant
correlations without a clear pattern. For maximum daily precipitation (mm), 36 lakes had
21 showing a positive correlation, indicating a positive correlation between lake surface
area and daily precipitation in larger lakes. For minimum relative humidity (%), 24 lakes
exhibited significant correlations but without a discernible pattern.
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3.4. Multivariate Regression Analysis

Taking Lake HyLake_ID 1377 (Ngoring, mean area = 506.500 km2) and HyLake_ID
173250 (mean area = 1.620 km2) as examples, the model analysis results are presented
in Figure 7. For HyLake_ID 1377, the lasso model demonstrates the lowest average root
mean square error (RMSE) of 0.247, outperforming other models in this analysis. Its
consistent and low error rate across different validation sets indicates superior stability and
generalization ability. In contrast, for HyLake_ID 173250, the linear regression model
achieves the lowest average RMSE of 0.227, marking it as the best performer in this
instance. This comparison highlights the variability in model responses across different
lakes within the basin, underscoring the importance of model selection tailored to specific
lake characteristics.

Figure 8 reflects the optimal model fitting results for the surface area of lakes in the
Yellow River Basin. The random forest (RF) model performs best in 65 lakes, demonstrating
its superiority in dealing with the relationship between the surface area of lakes in the
Yellow River Basin and meteorological factors. The strength of the random forest model lies
in its ability to handle a large number of input variables and automatically select variables,
thus providing deep insights into complex data relationships. Ridge regression is best for
28 lakes, indicating that the introduction of L2 regularization can effectively improve the
model’s predictive accuracy and stability when data exhibit multicollinearity. Lasso regres-
sion performs best for 20 lakes; its use of L1 regularization helps in simplifying variables
and enhancing the model’s interpretability, which is particularly important in determining
the impact of key meteorological factors on the changes in lake surface area. Although
the linear model is only best for four cases, it remains the foundation for analyzing linear
relationships, providing us with an initial benchmark for model comparison (Figure 7a).
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These results suggest that nonlinear models (such as RF) might be more suitable for cap-
turing the complex dynamic relationships between the surface area of lakes in the Yellow
River Basin and meteorological factors. The random forest model provides the best fit due
to its ability to handle a large number of feature variables and consider their interactions,
thereby offering the best fitting effect. Meanwhile, regularized linear models (lasso and
ridge) demonstrate robustness in datasets with high multicollinearity, which is crucial for
reducing model overfitting and improving prediction accuracy.
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In comparing the fitting results of the average surface area of lakes in the Yellow
River Basin across different models, the Lasso model exhibits relatively lower average
surface area values, with data points primarily clustered in the lower range and with
relatively minor dispersion. The linear model (LM) results show a wider distribution, with
data points stretching from values close to 0 up to higher values, though most remain
concentrated in the lower range of average surface area. The random forest (RF) model
outcomes are scattered across the entire range of values, with a notably higher outlier point
visible in the graph, suggesting that the random forest model may predict larger average
lake surface areas in certain cases. The ridge regression (ridge) model displays relatively
greater variability, with data points concentrated across various average surface area values,
including some higher ones (Figure 7b). Overall, there are certain disparities in the fitting
effects of the models on the average surface area of lakes in the Yellow River Basin.

4. Discussion

This study conducts a comprehensive analysis of the variability of lake surface area
in the Yellow River Basin and its influencing factors through the integrated application
of spatial distribution analysis, principal component analysis (PCA), correlation analysis,
and multiple regression models. Due to the abundance and accessibility of precipitation
and temperature data, many studies have identified precipitation and temperature as the
primary climatic factors, demonstrating their significant impact on lake surface area [32–34].
Our research further selects the main factors from a large set of meteorological factors,
identifying maximum wind speed (m/s), average 2-minute wind speed (m/s), hours of
sunshine, and minimum relative humidity (%) as key elements affecting changes in lake
surface area. It quantifies the specific impact of these main meteorological elements on
lake area and establishes regression models to analyze the combined effects of multiple
meteorological factors.

Previous studies on changes in lake surface area often focused on uniform change
patterns within a large scale, such as considering the variations over many years, while
research on how monthly-scale meteorological conditions affect lake systems based on
high-resolution C-band SAR observations from the Copernicus Sentinel-1 is relatively
scarce [35,36]. Our study captures the rapid response of lake surface area to seasonal mete-
orological condition changes. This fine-grained temporal-scale analysis provides a more
acute and timely understanding of the hydrological cycle and ecosystem changes in lakes,
aiding in a better comprehension of the short-term responses of lakes to climate change.
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This discovery of a negative correlation between lake area and maximum wind speed
prompts a deeper consideration of how lake ecosystems respond to climatic factors. This
negative correlation may reflect the influence of climatic conditions around the lake on the
lake’s hydrodynamics and hydrological processes. Firstly, the negative correlation could be
associated with evaporation from the lake surface. Under conditions of higher wind speeds,
the rate of evaporation from the water surface may increase, leading to a decrease in water
levels or increased evaporation, which could result in a reduction in lake area, thereby
showing a negative correlation with maximum wind speed [37,38]. Secondly, higher wind
speeds are often associated with cyclonic systems in the climate, which can be accompanied
by precipitation events [39]. During precipitation, lake water levels might rise, causing an
expansion of lake area [40]. Therefore, the negative correlation between lake water levels
and wind speed might reflect these climate-driven hydrological processes, where lake
water level changes are influenced by both wind speed and cyclonic systems. In summary,
the negative correlation between lake water bodies and maximum wind speed indicates
the sensitivity of lake ecosystems to climatic changes. Further research could explore how
lake hydrological processes are affected by climate change and extreme weather events,
and how these changes impact the stability and functionality of lake ecosystems.

Analysis of the results from our models shows differences in the capacity to fit relation-
ships between lake surface area and meteorological factors across the Yellow River Basin
due to the individual differences in lakes as entities within ecosystems. It is challenging to
explain their internal variation rules with a unified regional-scale model. Our study focuses
on individual lakes within the research scale, establishing specific surface area change
meteorological driving models for different lakes, highlighting the individual differences in
each lake as an independent ecosystem. This approach overcomes the problem of unified
regional-scale models failing to explain all lakes’ internal variation rules. By customizing
models for each lake, our method provides a basis for implementing targeted environ-
mental management strategies. This customized approach is more likely to successfully
address the specific issues faced by particular lakes, thereby improving resource utilization
efficiency and conservation effects.

Despite providing new insights into the variability of lake surface areas in the Yellow
River Basin, we also recognize the limitations of our study. Firstly, although we considered
multiple meteorological factors in our models, the lack of consideration for anthropogenic
factors and other potential influences, such as contributions from groundwater flow and
ice/snow melt to lake water volumes, were not covered in this analysis. Secondly, due
to limitations in climate models and data acquisition capabilities, predictions of lake area
changes under future climate change scenarios remain uncertain. Future research should
aim at more refined models and more comprehensive data collection to reveal these complex
dynamic processes.

5. Conclusions

This study investigates the surface area changes of 151 natural lakes over 37 months in
the Yellow River Basin, using spatial distribution feature analysis, PCA, correlation analysis,
and multiple regression analysis to reveal the key factors affecting lake surface area changes
and their correlation with meteorological factors, and assesses the applicability of different
statistical models in specific environments. Key findings include the following:

(1) Key influencing factors: Six main meteorological factors were identified as having a
significant impact on lake surface area changes, including 24 h precipitation, maxi-
mum daily precipitation, hours of sunshine, maximum wind speed, minimum relative
humidity, and average 2 min wind speed. These factors play a decisive role in the
dynamics of lake water balance and surface area changes.

(2) The correlation and spatial distribution analysis between lake surface area and meteo-
rological factors showed that lakes in the source area of the Yellow River usually have
a significant positive correlation with 24 h precipitation, while most lakes exhibit a
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negative correlation with maximum wind speed, reflecting clear spatial differences in
the response of lakes in different geographical locations to meteorological changes.

(3) Spatial variability in model performance: In predicting changes in lake surface area in
the Yellow River Basin, different models showed their own advantages. The random
forest (RF) model performed best across a dataset of 65 lakes, proving its superiority
in handling the complex dynamics between lake surface area and meteorological
factors in the Yellow River Basin.

In summary, the findings of this study are significant for understanding how meteo-
rological factors influence changes in lake surface area within the Yellow River Basin and
provide a scientific basis for lake surface area change prediction models based on mete-
orological data. Future research needs to further explore other potential environmental
and anthropogenic factors and how these factors affect lake surface area changes through
complex mechanisms. This study not only provides valuable insights for lake management
and conservation in the Yellow River Basin and similar regions globally but also presents
new challenges and opportunities for addressing climate change and sustainable water
resource management.
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