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Abstract: Due to the existence of an inlet elbow, transmission shaft, and other structural components,
the inflow of axial-flow pumps as turbines (PATs) becomes non-uniform, resulting in the complexity
of internal flow and adverse effects such as structural vibration. In this paper, numerical methods
were employed to explore the non-uniform inflow effects on impeller forces and internal flow field
characteristics within an axial-flow PAT. The study results indicated that non-uniform inflow caused
uneven pressure distribution inside the impeller, which leads to an imbalance in radial forces and
offsetting the center of radial forces. With an increasing flow rate, the asymmetry of radial forces
as well as the amplitude of their fluctuations increased. Non-uniform inflow was found to induce
unstable flow structures inside the impeller, leading to low-frequency, high-amplitude pressure
fluctuations near the hub. Using the enstrophy transport equation, it was shown that the relative
vortex generation term played a major part in the spatiotemporal evolution of vortices, with minimal
viscous effects.

Keywords: axial-flow pump; pump as turbine; impeller force; non-uniform inflow; axial force fluctuations

1. Introduction

Pumps are the most typical and widely used piece of hydraulic machinery with an
extensive range of applications in fields such as drainage and irrigation, water transfer,
industry, and water environment [1,2]. As a vane-type hydraulic machinery, in addition to
its basic functions, the pump also has the ability to operate in reverse to generate electricity.
Comparing different types of pumps, axial-flow pumps, owing to their geometric structure,
have excellent flow passage characteristics and can generate more electrical energy under
the same head and geometry [3]. According to the existing literature, in small-scale hy-
dropower stations, it is feasible for reverse-run axial-flow pumps to replace conventional
hydraulic turbines for hydroelectricity generation [4–6]. Axial-flow pumps working as
turbines (pump as turbine, PAT) not only generate clean energy but also generate consider-
able economic benefits [5]. Compared with traditional turbine units, PATs have a simple
structure, low cost, and easy maintenance, making them highly suitable for facilitating
the sustainable use of water resources in remote rural regions [7,8]. However, the design
and manufacture of axial-flow pumps usually only consider the performance under con-
ventional pump conditions, rather than reverse operating conditions [9]. Additionally,
considering the existence of an inlet elbow, transmission shaft, and other structural com-
ponents, the inflow conditions during the reverse operation of axial-flow pumps are poor,
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resulting in reduced uniformity in fluid distribution within the impeller’s front section.
The formation of non-uniform inflow induces an imbalance in impeller forces, increasing
the complexity of internal flow inside the PAT [10–12]. This leads to poor stability of the
axial PAT with lower efficiency, vibrations, and a limited high-efficiency range [13,14],
presenting a substantial menace to the secure and stable operation of hydraulic machinery.
Consequently, it becomes significant to explore the non-uniform inflow effects on impeller
forces within axial-flow PATs.

Currently, extensive studies have been carried out to investigate the issue of impeller
forces within hydraulic machines. Zhang et al. [15] used numerical methods to study the
blade arrangement effects on impeller radial forces within a centrifugal pump. The findings
showed that the radial force vector diagram of the symmetric impeller exhibited a hexagonal
shape, whereas it was close to circular for the staggered impeller. The staggered blade
arrangement could evidently decrease the radial force fluctuation. In a study conducted by
Tan et al. [16], a comparative analysis was performed on the radial forces of a centrifugal
pump with varying guide vane outlet angles. The findings demonstrated that a decreasing
outlet angle led to improved flow uniformity within the pump, resulting in a significant
reduction in radial force fluctuations. Zhu et al. [17] numerically simulated a reversible
pump turbine to investigate the impact of leading-edge cavitation on the impeller axial force
operating under pumping conditions and found the axial force exhibited a pattern of initial
increase followed by a rapid decrease with the progression from no cavitation to critical
cavitation. The cavitation that occurred in impeller blades affected the load distribution,
thus causing changes in the axial force. Jin et al. [18] investigated the characteristics of
impeller axial force within the varying-speed centrifugal pump, where it was revealed
that the axial force evolution demonstrated a comparable trend to that of the pump head.
Under the variable speed conditions, when the rotational speed changed from high to
low, the axial force direction exhibited a shift from a positive to a negative orientation.
Qian et al. [19], with the aim to optimize the impeller blade parameters in multistage
pumps, established a multivariate regression model. Optimum parameter combinations
were obtained, taking into consideration the pump performance and axial force.

In addition, recent years have again seen many more scholars discussing the non-
uniform inflow effects on hydraulic machinery. It was revealed that non-uniform inflow
resulted in increased impeller axial force fluctuations, pressure pulsation levels, and hy-
draulic losses, potentially contributing to a subsequent reduction in pump head and effi-
ciency [20–22]. Meng et al. [10] analyzed the impact of non-uniform inflow within a vertical
axial-flow pump and found that the increasing inflow non-uniformity would increase the
stress of the impeller, consequently raising the risk of failure due to fatigue. In a study
conducted by Wang et al. [23,24], research results showed that the reduced uniformity of
inflow resulted in a decrease in pump head and operational efficiency, which made the flow
inside the impeller more complex and impeller forces more unbalanced. Zhang et al. [25]
investigated the non-uniform inflow effects on the flow field and impeller load within the
axial-flow pump. The non-uniformity of pump inflow was observed to considerably alter
the velocity distribution of the impeller inlet zone, causing the variation in the angle of
attack, and affecting the impeller load distribution. Luo et al. [26] performed numerical
simulations on a water-jet pump to explore the energy losses and pressure fluctuation
characteristics caused by non-uniform inflow, finding that the non-uniform inflow resulted
in intense pressure pulsation near the channel inlet zone and within the impeller and
diffuser flow fields, causing significant energy losses.

From the above-discussed literature, it is evident that recent research on the impeller
force characteristics within hydraulic pumps primarily focused on the pump’s conventional
mode of operations for mixed and axial-flow pumps. On the other hand, published studies
on the same aspect, but now considering the pump’s reverse mode of operations are, to
the authors’ best knowledge, still limited. This hinders PAT technology’s fast-paced and
widespread adoption as a cost-effective alternative for small-scale hydroelectric energy gen-
eration. Consequently, this study aimed to investigate impeller forces, pressure pulsation,
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and flow characteristics inside the axial-flow PAT under non-uniform inflow conditions.
This is performed in the hope of providing a theoretical foundation for guaranteeing
hydraulic stability within axial-flow PATs.

The rest of this paper is organized as follows: Section 2 introduces the geometric model
and numerical methods. Section 3 presents the obtained results, including a comprehensive
discussion on the effects of non-uniform inflow on impeller forces within an axial-flow PAT.
Finally, Section 4 provides this study’s drawn concluding remarks.

2. Flow Geometry and Modeling
2.1. Geometric Model

The subject of this study is an axial-flow pump model, with the computational domain
comprising four sections: the inlet pipe, guide vane, impeller, and outlet pipe, which are
defined in reverse operating conditions, as illustrated in Figure 1. The fundamental design
parameters of the pump are presented in Table 1.
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Figure 1. Geometric model of the PAT.

Table 1. Design parameters of the PAT.

Parameters Value

Design flow rate Q (L/s) 396.94
Design head H (m) 4.91

Rotational speed n (r/min) 1450
Number of impeller blades 3

Number of guide vane blades 6
Impeller diameter D (mm) 299.2

2.2. Governing Equations

The continuity and momentum equations are as follows:

∂ui
∂xi

= 0 (1)

∂(ρui)

∂t
+

∂(ρuiuj)

∂xj
= − ∂p

∂xi
+

∂

∂xj
(µ

∂ui
∂xj

) +
∂τij

∂xj
(2)

where ρ denotes the density; t represents the time; xi and xj denote the Cartesian coordinate
components in the i and j directions, respectively; ui and uj denote the corresponding
components of the velocity; p represents the pressure; µ represents the dynamic viscosity;
and τij represents the Reynolds stress [27].
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2.3. Turbulence Model

The turbulence model employed in this study is the SST k-ω model, which treats differ-
ent flow regions differently through a blending function, allowing for accurate simulation
of separation vortices induced by various pressure gradients [28,29].

The k and ω equations are written as follows:

∂(ρk)
∂t

+
∂

∂xj
(ρujk) =

∂

∂xj

[(
µ +

µt

σk

)
∂k
∂xj

]
+ Pk − β∗ρkω (3)

∂(ρω)

∂t
+

∂

∂xj
(ρujω) =

∂

∂xj

[(
µ +

µt

σω

)
∂ω

∂xj

]
+ α

ω

k
Pk − βρω2 + 2ρ(1 − F1)

σω2

ω

∂k
∂xj

∂ω

∂xj
(4)

µt =
a1kρ

max(a1ω, SF2)
(5)

F1 and F2 are calculated as follows:

F1 = tanh


{

min

[
max

( √
k

β∗ωy
,

500µ

ρy2ω

)
,

4ρσω2k
CDkωy2

]}4
 (6)

F2 = tanh


[

max

(
2
√

k
β∗ωy

,
500µ

ρy2ω

)]2
 (7)

where k represents the turbulent kinetic energy, ω represents the turbulent frequency,
Pk denotes the production of turbulence kinetic energy, S denotes the mean rate of the strain
tensor, and y denotes the distance from the wall. The associated constants are as follows:
a1 = 0.31, β* = 0.09, β = 0.075, σk = 1.176, σω = 2, and σω2 = 0.856 [30,31].

2.4. Mesh Generation

Utilizing ICEM-CFD 19.2 software, the entire computational domain has been divided
into a structured hexahedral mesh. The impeller region is structured using a J-type topology,
while the guide vane region utilizes an H-type topology. The near-wall region is refined
using additional mesh refinement techniques. To verify the mesh independence, the grid
convergence index (GCI) [32] is employed to assess the numerical errors introduced by
the mesh scheme. Three sets of grids are designed from coarse to fine to verify the grids’
independence. The efficiency and torque are chosen as the parameters for grid convergence
analysis and their calculated discrete error parameter values are shown in Table 2. The GCI
results are less than 1%, which satisfies the mesh convergence criteria [33,34]. Considering
both computational accuracy and efficient resource utilization, a total mesh count of
9.1 million is determined. Figure 2 presents the local refinement mesh of the impeller blade.
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Table 2. Mesh independence study.

Parameter φ = η (%) φ = T (N·m)

N1 19,886,600
N2 9,092,056
N3 4,092,919

Mesh refinement factor r21 1.30
Mesh refinement factor r32 1.30

Numerical value φ1 85.70150254 182.42646
Numerical value φ2 85.69843456 182.09172
Numerical value φ3 85.61868887 181.81577

Extrapolated value φext 85.3617362 181.6503352
Relative error ea 0.09% 0.15%

Extrapolated error eext 0.3% 0.09%
Grid convergence index

GCIfine
0.38% 0.11%

2.5. Numerical Details

In this paper, spatial discretization is carried out by adopting the finite volume method,
and the SIMPLEC algorithm is applied to achieve a coupled pressure-velocity solution.
The inlet and outlet boundary conditions are set as pressure inlet and pressure outlet,
respectively. The impeller region is defined as a rotating zone, and other regions are
considered stationary. For the dynamic-static interface, steady-state simulations adopt the
Frozen Rotor approach, while transient simulations are set as the Transient Rotor-Stator. For
transient simulations, the initial data are obtained from the steady-state simulation results,
and the simulation progresses with the time step size of approximately 1.15 × 10−4 s,
corresponding to a 1◦ rotation of the impeller per time step. The first-order implicit
scheme is used to discretize time terms, and the second-order upwind scheme is used for
spatial discretization. All wall surfaces are assumed to be non-slip walls, and numerical
simulations are considered to have converged when the residual is below 10−5.

3. Results and Analysis
3.1. CFD Validation

Figure 3 represents the comparison of the external characteristics of the axial-flow
PAT attained numerically and experimentally. (The experimental data are provided by
Jiangsu Aerospace Hydraulic Equipment Co., Ltd., Gaoyou, China) With an increasing flow
rate, the efficiency initially rises and then gradually declines. When deviating from the
best efficiency point (BEP) indicated by the outlined annotation in Figure 3, the efficiency
gradually lowers, attaining the lowest value under the smallest flow condition. From
the graph, it is obvious that the simulation results align well with the experimental data,
particularly in the optimum condition. The level of numerical error as compared to the
experimental data is negligible, indicating the high precision of the utilized numerical
scheme and, thus, the trustworthiness of related findings.
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3.2. Analysis of the Impeller Force

Figure 4 illustrates the pressure distribution at the guide vane inlet for three flow
conditions (0.8 QBEP, 1.0 QBEP, and 1.2 QBEP). From this graph, the pressure distribution at
the guide vane inlet is non-uniform in the radial Y and Z directions. There is a noticeable
low-pressure region in the +Y direction, the distribution of which is asymmetric in the
Z direction. Under low-flow conditions, the low-pressure values in the +Z region are
smaller compared to the −Z region, while the opposite is observed under the optimum and
high-flow-rate conditions. This non-uniformity in the fluid distribution at the guide vane
inlet is caused by the presence of components such as the inlet elbow and the transmission
shaft, which results in an asymmetric pressure distribution at the guide vane inlet in the
radial direction.
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Figure 5 presents the pressure distribution on the pressure surface of impeller blades
for one blade period (T/3), where T is the impeller rotation period. At low-flow conditions,
a localized low-pressure region is observed in close proximity to the blade leading edge
(LE). In the flow direction, there is a gradual increase in pressure. However, at optimum
and high-flow conditions, a localized high-pressure region is located near the blade LE,
and there is a gradual decrease in the flow direction. In this graph, it can be noticed that
the pressure distribution on impeller blades exhibits non-uniformity in the radial direction.
As the forces on the impeller blades are integrated from the pressure, there is an imbalance
in the radial forces.

By conducting transient simulations of the PAT under three flow rate conditions,
the three-dimensional impeller forces are obtained, as shown in Figure 6. The transient
simulations are carried out for a total of 20 periods, and the analysis of impeller forces
is performed during the last period. When axial-flow pumps operate in reverse power
generation, the main flow direction is −X, resulting in axial force Fx remaining negative.
The projection on the YZ plane represents the radial forces trajectory, with most of the radial
forces located in the −Z and +Y directions. The magnitudes of axial and radial forces differ
in the orders of magnitude, resulting in irregular-shaped force trajectories in the XY and XZ
planes. Evidently, the shape of the radial force trajectory deviates from circular or elliptical
and exhibits asymmetry. With the increasing flow rate, the range of radial force trajectories
expands, and the degree of asymmetry in the radial forces increases. This may be due to
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the fact that the impeller inflow reduces the uniformity of the pressure distribution in the
flow field around the impeller, which leads to an imbalance in the radial forces.
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Figure 6. Three-dimensional forces distribution characteristics of impeller: (a) 0.8 QBEP; (b) QBEP; and
(c) 1.2 QBEP.

Figure 7 illustrates the variation laws of axial force and total radial force of the impeller
with time under three flow rate conditions, where tn represents the impeller rotation period.
The total radial force is written in Equation (9). In Figure 7b, the trajectory of the total radial
force at the initial and final moments approximately forms a closed loop in one period,
indicating that the impeller force has become relatively stable. At different operating
conditions, the variation in impeller force is approximately the same. The impeller forces in
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the radial direction and axial direction show periodic changes within one impeller rotation
period, with the peaks and valleys roughly occurring at the same moments. With an
increasing flow rate, both the axial force and radial force exhibit a gradual increment.

Fr =
√

Fy
2 + Fz

2 (8)

In this paper, the force coefficient CF is used to reflect the pulsation amplitude, which
is defined as follows:

CF =
(Fi − Fave)

0.5ρutip
2 A2

(9)

where Fi represents the transient force, Fave represents the average force over a time period,
A2 denotes the area of the impeller outlet, and utip is the circumferential velocity of the
impeller blade tip [35].
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Figure 7. The variation laws of axial force and total radial force of the impeller with time under three
flow rate conditions: (a) axial force Fx; (b) total radial force Fr.

Figure 8 displays the pulsation characteristics of the axial and radial forces of the
impeller under three flow rate conditions, where fn is the impeller rotation frequency.
When the PAT operates away from the optimum condition, the axial force exhibits a larger
fluctuation amplitude, which is 1.5 times that of the optimum condition. Under high-flow
conditions, the radial force displays the most intense fluctuation amplitude, resulting in the
strongest vibrations in the PAT. With the decreasing flow rate, the fluctuation amplitude of
radial forces gradually reduces. When subjected to the same flow conditions, the fluctuation
amplitude of the radial force in the Y direction is observed to be lesser in comparison to the
Z direction. Furthermore, under low-flow and optimum conditions, the difference in the
amplitude of radial force fluctuations between the two directions is more pronounced. The
axial force exhibits the most intense fluctuation at 6f n, while the dominant frequency of
radial forces is 3f n.
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3.3. Pressure Pulsation of Impeller Blades

To study the flow characteristics inside the PAT, the frequency domain characteristics of
pressure values at various monitoring points on impeller blades were analyzed employing
the Fast Fourier Transform method. Figure 9 presents the schematic diagram depicting
the locations of pressure monitoring points on impeller blades. Figure 10 illustrates the
frequency domain of pressure fluctuations at various positions on the pressure surface. In
this figure, the vertical coordinate represents the pressure coefficient, which is calculated
as follows:

Cp =
(Pi − Pave)

0.5ρutip
2 (10)

In this formula, Pi stands for the transient pressure and Pave is the average pressure
over a time period [36].

When PAT operation deviates from the optimum condition, the pressure pulsation
amplitude close to the blade LE along the flow direction becomes the largest. This is due to
the fact that, when deviating from the optimum condition, the non-uniformity of impeller
inflow increases, leading to intense pressure fluctuations near the blade LE. Nevertheless,
pressure fluctuations close to the blade trailing edge (TE) under optimum conditions are
the most intense, indicating that under these conditions, the impeller inflow has relatively
favorable inflow conditions, with an unstable flow structure occurring in the blade TE
region. Under three flow rate conditions, pressure fluctuations on the pressure surface
are most severe near the hub, gradually decreasing in amplitude from the impeller hub
towards the shroud. As the flow rate increases, pressure fluctuations become more intense.
For all studied flow conditions, the dominant frequency of pressure fluctuations is 1fn.
This is due to the setting of the rotor-stator interface in CFX simulations which causes the
monitoring points on the blades to rotate with the impeller. Relatively, the inlet elbow
seems to be rotating relative to the monitoring points.

The frequency domain characteristics of pressure pulsation on blade suction surfaces
are presented in Figure 11. Observing closely, at low-flow conditions, pressure pulsations
are more severe near the impeller shroud on the suction surface. Along the radial direction,
pressure pulsation amplitudes are found to gradually increase from the impeller hub
towards the shroud. Under optimum and high-flow conditions, the maximum amplitude
of pressure pulsations is located near the hub on the suction surface, from where the
fluctuation amplitude decreases toward the shroud, along the radial direction. Along the
flow direction, there is a gradual reduction in the amplitude of fluctuations from the blade
LE toward the TE zone. The pressure pulsation amplitude of the dominant frequency
is found to grow larger as the flow rate increases. For all studied flow conditions, the
maximum pressure fluctuation amplitude on the suction surface occurs at 1fn. According
to the above analysis, for an axial-flow PAT, the presence of an inlet elbow gives rise to
non-uniform inflow conditions, leading to complex pressure fluctuations on the blade.
These fluctuations further contribute to the instability of the impeller force.
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Figure 9. Schematic diagram of pressure pulsation monitoring points of impeller blade; (a) pressure
surface; (b) suction surface.
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Figure 10. Frequency domain of pressure fluctuation on pressure surface: (a) 0.8 QBEP; (b) QBEP; and
(c) 1.2 QBEP.
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Figure 11. Frequency domain of pressure fluctuation on the suction surface: (a) 0.8 QBEP; (b) QBEP;
and (c) 1.2 QBEP.



Water 2024, 16, 1428 11 of 16

3.4. Analysis of the Flow Field Inside the Impeller

From the above analysis, it can be obtained that there are unstable flow structures
inside the impeller that affect the uniformity of pressure distribution and the balance of
radial forces; thus, the flow field of the impeller section is analyzed. The flow field close to
the impeller hub side (span = 0.1 in the spanwise direction) is selected for further analysis.

Figure 12 shows the enstrophy distribution on a blade-to-blade surface close to the
hub under different flow conditions. The formula for enstrophy is defined as ω2/2, where
ω is the vorticity [37]. By comparing the enstrophy distribution in the Z direction near
the impeller hub when t = 0, it is evident that in the −Z direction, there is a region of
high enstrophy that persists, surpassing the enstrophy value observed in the +Z direction,
indicating that the strength of the vortex flow which exists in the −Z direction is more
intense. As the flow rate increases, the greater the difference in entropy values between
the +Z and −Z direction regions. The unstable vortex structure leads to low-frequency,
high-amplitude pressure pulsations, which further worsen the imbalance of radial forces
on the impeller. For different flow conditions, the enstrophy zone close to the blade TE is
found to gradually increase with time, and the vortex intensity increases with an increasing
flow rate.

To further investigate the generation and development of vortices, the vortex flow is
analyzed using the enstrophy transport equation [38,39], which is defined as follows:

∂(ωiωi/2)
∂t

= Gω + Rω + Cω + Bω + Vω (11)
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Equation (11) represents the enstrophy transport equation, where each term on the
right is defined as follows:

Gω = ωiSijω j − uj
∂(ωiωi/2)

∂xj
, (12)

Rω = νt

(
∂2ωi

∂xj∂xj
ωi +

∂2ω j

∂xj∂xi
ωi

)
− 2

3
εijk

∂2k
∂xi∂xj

ωk, (13)

Cω = −2

(
∂
(
ciuj

)
∂xj

ωi −
∂
(
ciuj

)
∂xi

ω j

)
, (14)

Bω =
1
ρ2 εijkωi

∂ρ

∂xj

∂p
∂xk

, (15)

Vω = ν
∂2ωi

∂xj∂xj
ωi. (16)

where ωi represents the Reynolds-averaged vorticity; Sij is the mean strain tensor; εijk is
the permutation symbol; ci is the angular velocity; uj is the Reynolds-averaged velocity;
ν represents the kinematic viscosity; νt represents the eddy viscosity; Gω is the relative
vortex generation term, indicating the stretching and bending of vorticity owing to velocity
gradients; Rω represents the Reynolds stress dissipation term; Cω represents the Coriolis
force term; Bω is a baroclinic torque term, representing the variation in vorticity because of
the non-parallelism of pressure and density gradients, which is neglected due to the fluid
incompressibility; and Vω is a viscous term, representing the vorticity variation caused by
the fluid viscosity.

Figures 13–15 show the distribution of each term of the enstrophy transport equation
on the considered blade-to-blade surface inside the impeller for all studied flow conditions.
The crucial role of the relative vortex generation term Gω in the evolution and development
of vortices is clearly evident, followed by the Reynolds stress dissipation term Rω and
Coriolis force term Cω, while the viscosity term Vω has the least influence. Influenced
by the impeller’s inflow conditions, there are high-value regions of enstrophy near the
blade LE, resulting in sustained pressure fluctuations at the same zone and vicinities. With
an increasing flow rate, the regions of enstrophy near the blade LE gradually extend to
adjacent blades, and the values of enstrophy gradually increase. Meanwhile, the blade TE
region also exhibits a high value for each term in the entropy transport equation, and the
region expands gradually with time.



Water 2024, 16, 1428 13 of 16

Water 2024, 16, x FOR PEER REVIEW 14 of 18 
 

 

velocity gradients; Rω represents the Reynolds stress dissipation term; Cω represents the 

Coriolis force term; Bω is a baroclinic torque term, representing the variation in vorticity 

because of the non-parallelism of pressure and density gradients, which is neglected due 

to the fluid incompressibility; and Vω is a viscous term, representing the vorticity variation 

caused by the fluid viscosity. 

Figures 13–15 show the distribution of each term of the enstrophy transport equation 

on the considered blade-to-blade surface inside the impeller for all studied flow condi-

tions. The crucial role of the relative vortex generation term Gω in the evolution and de-

velopment of vortices is clearly evident, followed by the Reynolds stress dissipation term 

Rω and Coriolis force term Cω, while the viscosity term Vω has the least influence. Influ-

enced by the impeller’s inflow conditions, there are high-value regions of enstrophy near 

the blade LE, resulting in sustained pressure fluctuations at the same zone and vicinities. 

With an increasing flow rate, the regions of enstrophy near the blade LE gradually extend 

to adjacent blades, and the values of enstrophy gradually increase. Meanwhile, the blade 

TE region also exhibits a high value for each term in the entropy transport equation, and 

the region expands gradually with time. 

 

Figure 13. Distribution of each term of the enstrophy transport equation on the blade-to-blade sur-

face under 0.8QBEP. 

Gω s−3

−1×109                                                  1×109   

0           T/12         T/6          T/4          T/3 0           T/12         T/6          T/4          T/3

Rω s−3

−1×108                                                  1×108   

0           T/12         T/6          T/4          T/3

Cω s−3

−1×108                                                  1×108   

0           T/12         T/6          T/4          T/3

Vω s−3

−1×106                                                  1×106   

Figure 13. Distribution of each term of the enstrophy transport equation on the blade-to-blade surface
under 0.8QBEP.

Water 2024, 16, x FOR PEER REVIEW 15 of 18 
 

 

 

Figure 14. Distribution of each term of the enstrophy transport equation on the blade-to-blade sur-

face under QBEP. 

 

Gω s−3

−1×109                                                  1×109   

0           T/12         T/6          T/4          T/3 0           T/12         T/6          T/4          T/3

Rω s−3

−1×108                                                  1×108   

0           T/12         T/6          T/4          T/3

Cω s−3

−1×108                                                  1×108   

0           T/12         T/6          T/4          T/3

Vω s−3

−1×106                                                  1×106   

Gω s−3

−1×109                                                  1×109   

0           T/12         T/6          T/4          T/3

Rω s−3

−1×108                                                  1×108   

0           T/12         T/6          T/4          T/3

0           T/12         T/6          T/4          T/3

Cω s−3

−1×108                                                  1×108   

0           T/12         T/6          T/4          T/3

Vω s−3

−1×106                                                  1×106   

Figure 14. Distribution of each term of the enstrophy transport equation on the blade-to-blade surface
under QBEP.



Water 2024, 16, 1428 14 of 16

Water 2024, 16, x FOR PEER REVIEW 15 of 18 
 

 

 

Figure 14. Distribution of each term of the enstrophy transport equation on the blade-to-blade sur-

face under QBEP. 

 

Gω s−3

−1×109                                                  1×109   

0           T/12         T/6          T/4          T/3 0           T/12         T/6          T/4          T/3

Rω s−3

−1×108                                                  1×108   

0           T/12         T/6          T/4          T/3

Cω s−3

−1×108                                                  1×108   

0           T/12         T/6          T/4          T/3

Vω s−3

−1×106                                                  1×106   

Gω s−3

−1×109                                                  1×109   

0           T/12         T/6          T/4          T/3

Rω s−3

−1×108                                                  1×108   

0           T/12         T/6          T/4          T/3

0           T/12         T/6          T/4          T/3

Cω s−3

−1×108                                                  1×108   

0           T/12         T/6          T/4          T/3

Vω s−3

−1×106                                                  1×106   

Figure 15. Distribution of each term of the enstrophy transport equation on the blade-to-blade surface
under 1.2QBEP.

4. Conclusions

In this study, an axial-flow pump as a turbine was numerically simulated for different
flow conditions near its BEP. This study’s main goal was to analyze the non-uniform inflow
effects on impeller forces within axial-flow PATs. The conclusions were as follows:

(1) The presence of the inlet elbow and transmission shaft reduces the uniformity of the
fluid distribution in front of the guide vane in the axial-flow PAT, and the impact of
inflow non-uniformity can still be felt farther downstream within the impeller flow
field. This influences the pressure distribution within the impeller, leading to an
imbalance of impeller forces and a subsequent offset in the center of radial forces. With
a gradual increase in PAT influx, the amplitudes of impeller radial force fluctuations
are found to correspondently increase.

(2) The inflow non-uniformity caused by the inlet elbow structure of the PAT is found to be
the main factor influencing the pressure fluctuations on impeller blades. Under three
tested flow conditions, pressure fluctuations are more severe near the impeller hub
side, the fluctuation amplitude of which gradually decreases from the hub towards
the shroud. When deviating from the optimum condition, the amplitude of pressure
fluctuations exhibits its highest magnitude in close proximity to the blade leading edge
along the flow direction. Moreover, as the flow rate increases, pressure fluctuations on
the blade surface become more intense.

(3) Non-uniform inflow is found to induce unstable flow structures such as vortices inside
the impeller, leading to low-frequency, high-amplitude pressure fluctuations near
the hub. The development process of the vortices is analyzed using the enstrophy
transport equation, indicating that the relative vortex generation term near the hub is
obviously greater than the other three terms and consistently dominates. The Coriolis
force term exhibits a greater effect on the evolution process of vortices compared to
the Reynolds stress dissipation term, and the viscosity term has the least influence.
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