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Abstract: Drought is a natural disaster with severe global agricultural and economic impacts. Accu-
rate drought indices are needed for improved assessment and monitoring; however, most existing
drought indices poorly represent agricultural drought due to complex interactions among meteoro-
logical factors, crop and soil conditions. Here, we compute an integrated drought condition index
(IDCI) based on the 3-month standardized precipitation evapotranspiration index (SPEI3), vegeta-
tion cover index (VCI) and soil moisture condition index (SMCI). We apply the IDCI to monitoring
agricultural drought in Xinjiang, China. After regional evaluations with soil moisture, precipitation
and air temperature observations, as well as with the scaled crop yields index, the IDCI was used to
describe spatiotemporal changes in regional drought in Xinjiang during 2000–2018, revealing adverse
impacts on crop yield (beet, wheat and vegetables). The IDCI is strongly correlated with observed
soil moisture and performs better than SMCI, VCI or SPEI3, demonstrating that the IDCI is suitable
for agricultural drought monitoring. The most severe drought occurred in the spring to autumn of
2008. Droughts before 2008 were more serious than those after 2008, in terms of both severity and
frequency. Droughts in northern, southern and eastern Xinjiang, as well as in the Tianshan Mountains,
were generally increasing before 2008 and then weakened after 2008.

Keywords: agricultural drought; integrated drought condition index; drought frequency; crop yield

1. Introduction

Climate warming accelerates changes in precipitation and temperature, leading to
extreme meteorological and hydrological events [1–6] such as droughts [7–10]. Drought
is caused by a long-term lack of precipitation and leads to decreased soil moisture [11]
and river flow [12], as well as reduced reservoir [13] and groundwater capacities [14].
Drought severely affects water resources, agricultural production, human health and
ecosystems [15–18], but drought monitoring and forecasting is difficult because of its
complex nature [19]. The American Meteorological Association classifies droughts into
four categories: meteorological, agricultural, hydrological and socio-economic [20–22]. A
meteorological drought is caused by a lack of precipitation. An agricultural drought is
caused by insufficient effective water for crop growth [23]. A hydrological drought is
caused by a decrease in river flow and reservoir storage, or a decrease in groundwater
level. Finally, a socio-economic drought is related to a shortage of economic materials
caused by drought. In China, the annual average non-harvest area was 2.5 × 106 hm2

during 1989–2013, and the grain loss was 1.62 × 1010 kg; these factors lead to an average
direct economic loss of 1.0 × 1011 CNY per year [24]. Therefore, it is critically important to
monitor drought.
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Many studies have focused on drought indices, drought monitoring and drought-
related impacts [23]. McKee et al. [25] proposed a standard precipitation index (SPI) based
on the precipitation probability method. Hertig and Tramblay [26] analyzed 13 regions
in the Mediterranean using the SPI and found that drought severity and frequency in-
creased in all regions during 2070–2100. Vicente-Serrano et al. [27] proposed a standardized
precipitation evapotranspiration index (SPEI) based on the cumulative probability of the
difference in precipitation and potential evapotranspiration. Yu et al. [28] indicated a
trend towards more severe droughts in China, based on the SPEI. Kogan [29] proposed the
vegetation condition index (VCI); Gebrehiwot et al. [30] analyzed drought in the Northern
highlands of Ethiopia with VCI and found the southern part of that region has suffered
from a repeated drought cycle in the past decade. Palmer [31] proposed the Palmer drought
severity index (PDSI) based on water balance and established the self-calibrated PDSI
(SC-PDSI). Wang et al. [32] used the SC-PDSI to analyze spatiotemporal changes in drought
in China during 1961–2009 and found a clear trend towards wetter conditions throughout
the year. Zhang et al. [33] used the VIC to analyze drought on the Loess Plateau over the
past decades, reporting that drought has become increasingly serious in the upper reaches
of the Yellow River while drought has been alleviated in the middle reaches of the Yellow
River. Vicente-Serrano et al. [34] proposed the standardized streamflow index (SSI), which
was then used by Wang et al. [35] to analyze hydrological drought in northwestern China,
revealing that the duration and severity of drought in Aibi Lake, Irtysh River, Kaidu River,
Aksu River, Yarkand River and Horton River decreased with time; meanwhile, the duration
and severity of drought in the Tarim River (upstream) was increasing. Bloomfield and
Marchant [36] proposed a standardized groundwater level index (SGI), which was used
by Feng et al. [37] to analyze drought in the Gaotai, Linze, Ganzhou region; this showed
increasing drought from 1986 to 2010. Overall, these different drought indices lead to dif-
ferent conclusions because they consider different factors, resulting in inconsistent results.
For example, the SPI and SPEI reflect drought from the perspective of precipitation and
evapotranspiration. The PDSI and SC-PDSI reflect drought from the perspective of precipi-
tation, evapotranspiration and soil moisture. The VCI, SMCI, SSI and SGI reflect drought
only from the individual perspectives of vegetation conditions, soil moisture, streamflow
and groundwater level, respectively. However, because of the complexity of drought occur-
rence in space and time, it is difficult to utilize a single index to monitor drought [38,39].
Integrated drought indices have been developed to overcome the limitations of individual
drought indices and can accurately reflect the impact on agriculture [40]. Hao and Agha
Kouchak [41] proposed a non-parametric multivariate drought multi-index to monitor the
US drought, finding that the non-parametric multivariate drought multi-index performed
better at drought detection than the individual indices. Peña-Gallardo et al. [42] noted
that the positive correlation between a multi-scalar drought index and wheat yield was
higher than that of an individual drought index. Shen et al. [43] analyzed agricultural
drought monitoring across Inner Mongolia based on an integrated drought index and
showed that the integrated drought index performed better than VCI, SMCI and SPEI3
(3-month SPEI). Rhee et al. [44] reported that the scaled drought condition index performed
better than the existing individual indices. Ali et al. [45] proposed a novel multi-scalar
drought index, which performed better than the SPEI. Zhang et al. [46] reported that the
multi-sensor integrated drought index achieved a better correlation with wheat yield loss
than the individual indices. Therefore, this study uses the integrated drought indices to
monitor drought.

Xinjiang is located in northwest China, and it is a typical arid or semi-arid region.
The region is mostly supplied by snow and ice melt, together with precipitation, and
is thus very sensitive to climate-change-induced drought disasters [47]. A large area of
cultivated land and grassland in Xinjiang is affected by drought every year. Meanwhile,
agricultural drought has caused large economic losses. Consequently, drought monitoring
and agricultural drought mitigation is crucial in Xinjiang. However, previous studies
covering this region have mostly focused on meteorological drought and hydrological
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drought. For example, Zhang et al. [48] used SPI to analyze Xinjiang drought and found
that the Xinjiang had a wetting tendency during 1961–2008. Wang et al. [49] reported
continuous drought from 1960 to 1986, while the main wet conditions from 1987 to 2010
were in the arid area of northwestern China. Yao et al. [50] used SPEI to analyze multi-scale
droughts in Xinjiang from 1961 to 2015, finding a wetting trend during 1961–1997 and
a drying trend from 1998 to 2015. Li et al. [51] examined changes in drought and high
temperature extremes in northwest China with SPEI, reporting increasing trends in both
measures across most parts of northwest China. Meteorological and hydrological drought
indices show lags and do not fully represent the true drought situation [52–54]; furthermore,
they do not fully reflect the impacts on agriculture [40].

However, to date, there have been few studies of agricultural drought in the arid Xin-
jiang region of China. Therefore, this study uses the integrated drought index (IDCI) [43,55],
which considers precipitation, evapotranspiration, soil moisture and vegetation status, to
examine agricultural drought in Xinjiang.

The aim of this study is to assess whether the IDCI (as an integrated drought index) is
suitable for monitoring regional agricultural drought, based on the case-study of a typical
arid and semi-arid region (Xinjiang in China). This study could assist with the risk assess-
ment of agricultural drought under climate change and help with agricultural drought
relief in other areas of China. The main objectives are to (1) evaluate whether IDCI can
be applied to agricultural drought monitoring in Xinjiang; (2) analyze the spatiotemporal
distribution of drought in the study region; and (3) evaluate the impact of drought on crops.

2. Study Area and Data
2.1. Study Area

Xinjiang (China) is located at 73◦20′–96◦25′ E, 34◦15′–49◦10′ N, in the center of Eurasia,
and has a temperate continental climate. The total area of Xinjiang is 1.66 × 106 km2.
The region is bounded by the Altai Mountains in the north, and the Kunlun Mountains,
Altai Mountains and Tianshan Mountains in the South. The Tianshan Mountains lie in the
center of the region, dividing Xinjiang into two parts: the Tarim Basin (‘South Xinjiang’)
and the Junggar Basin (‘North Xinjiang’), with the Hami and Turpan basins considered
as ‘East Xinjiang’ (Figure 1) [56,57]. Due to its particular geographical location, the region
mainly relies on humid air masses from the Atlantic Ocean to bring precipitation. During
2000–2018, the annual mean precipitation in Xinjiang was about 142.7 mm, and the annual
mean temperature was about 8.9 ◦C. The seasonal and diurnal temperature variations are
large, and the region is characterized by abundant sunshine as well as strong evaporation.
The mean drought-affected area was approximately 3.98 × 105 ha during 2000–2015.

2.2. Data

Daily meteorological station data from 2000 to 2018, including precipitation, max-
imum temperature, minimum temperature, 2 m wind speed, sunshine duration and
monthly soil moisture data during 2000–2018 (we chose this period to match the tim-
ing of MODIS data) were collected from the National Climate Center (NCC) of the China
Meteorological Administration (CMA) (http://data.cma.cn/ (accessed on 1 January 2020)).
Daily meteorological station data and soil moisture data were quality controlled before
publication. For this study, the Terra MODIS (Moderate Resolution Imaging Spectrora-
diometer) monthly synthesis NDVI (normalized difference vegetation index) data product
with a spatial resolution of 1 km × 1 km (MOD13A3) from 2000 to 2018 for Xinjiang
Province were downloaded from the National Aeronautics and Space Administration
(https://ladsweb.modaps.eosdis.nasa.gov/ (accessed on 1 January 2020)). The GLDAS
(Global Land Data Assimilation System) soil moisture data with a spatial resolution of
0.25◦ × 0.25◦ were provided by Goddard Earth Sciences Data and Information Services
Center (GES DISC) (https://disc.gsfc.nasa.gov/ (accessed on 1 January 2020)). Crop yield
data were downloaded from the China Statistical Yearbooks Database (http://tongji.cnki.
net/kns55/index.aspx (accessed on 1 January 2020)). Drought-affected area data were

http://data.cma.cn/
https://ladsweb.modaps.eosdis.nasa.gov/
https://disc.gsfc.nasa.gov/
http://tongji.cnki.net/kns55/index.aspx
http://tongji.cnki.net/kns55/index.aspx
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provided by the China National Bureau of Statistics (http://data.stats.gov.cn/ (accessed
on 1 January 2020)). There are 42 weather stations and 5 soil moisture stations in Xinjiang
(Figure 1). The daily precipitation and temperature data were used to compute the SPEI3,
the NDVI data were used to compute the VCI, the GLDAS soil moisture data were used to
compute the SMCI and the crop yield data were used to compute the SCYI.
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Figure 1. Study area and the location of 42 weather stations and 5 soil moisture stations in Xinjiang
(elevations are in meters).

3. Methods

In this study, the integrated drought condition index calculation process is as follows
(Figure 2). As Figure 2 shows, the downloaded MOD13A3 is spliced by MRT, the NDVI
of the corresponding position of the meteorological stations is extracted and the VCI is
calculated. The GLDAS soil moisture at the corresponding location of the meteorological
station is extracted and the SMCI is calculated. We used the meteorological data calculating
the potential evapotranspiration, then the SPEI was calculated based on precipitation and
potential evapotranspiration. We applied the principal component analysis to calculate the
integrated drought condition index.

3.1. Integrated Drought Condition Index (IDCI)

In this study, we use principal components analysis (PCA) [55,58] to integrate infor-
mation from the SPEI3, VCI and SMCI [43] and the corresponding coefficients (a, b and c)
(Table 1) at different stations for different time periods. Specifically,

IDCI = ai × SMCI + bi × VCI + ci × SPEI3 (1)

http://data.stats.gov.cn/
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Table 1. The coefficients of SMCI (a), VCI (b) and SPEI3 (c) computed by principal components analysis.

Station ID a b c Station ID a b c

1 0.529 0.333 0.139 23 0.586 0.297 0.118
2 0.542 0.331 0.127 24 0.593 0.338 0.069
3 0.517 0.334 0.149 25 0.577 0.330 0.092
4 0.527 0.330 0.144 26 0.578 0.331 0.091
5 0.554 0.329 0.117 27 0.549 0.337 0.114
6 0.463 0.317 0.220 28 0.417 0.349 0.234
7 0.436 0.341 0.223 29 0.435 0.317 0.249
8 0.415 0.345 0.240 30 0.571 0.292 0.137
9 0.470 0.334 0.196 31 0.595 0.333 0.072
10 0.455 0.333 0.212 32 0.559 0.333 0.108
11 0.464 0.323 0.213 33 0.590 0.326 0.085
12 0.547 0.328 0.126 34 0.512 0.323 0.165
13 0.491 0.335 0.174 35 0.482 0.356 0.162
14 0.487 0.333 0.180 36 0.475 0.333 0.191
15 0.489 0.333 0.178 37 0.433 0.322 0.245
16 0.503 0.336 0.161 38 0.486 0.334 0.180
17 0.505 0.336 0.159 39 0.537 0.313 0.150
18 0.490 0.334 0.177 40 0.491 0.345 0.164
19 0.508 0.326 0.166 41 0.520 0.335 0.145
20 0.458 0.285 0.257 42 0.377 0.334 0.290
21 0.456 0.344 0.201
22 0.501 0.299 0.200

Note: IDCI is classified according to the standard SPI classification, as shown in Table 2.

Table 2. The classification of drought with IDCI.

Drought Events IDCI Occurrence Frequency

No drought IDCI > 0 70%
Mild drought −0.364 < IDCI ≤ 0 15%

Moderate drought −0.568 < IDCI ≤ −0.364 10%
Severe drought −0.658 < IDCI ≤ −0.568 5%

Extremely severe drought IDCI ≤ −0.658 2%

VCI is calculated by NDVI as follows [44]:

VCI =
NDVIi − NDVImin

NDVImax − NDVImin
(2)
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where NDVIi is the monthly NDVI at meteorological station number i, while NDVImin
and NDVImax are the absolute minimum and maximum values of NDVI at station i during
2000–2018.

SMCI is calculated as follows [59]:

SMCI =
SMmax − SMi,j,y

SMmax − SMmin
(3)

where SMi,j,y is the reanalysis soil moisture at pixel i in the jth month of the yth year;
SMmax and SMmin are the absolute maximum and minimum values of SMCI at pixel i from
2000 to 2018.

The SPEI is a new drought index established by Vicente-Serrano et al. [27,60] on
the basis of the SPI and considering the influence of evapotranspiration. The SPEI is a
normal standardized index based on the cumulative probability of the difference between
precipitation and potential evapotranspiration. First, the potential evapotranspiration is
calculated by the Penman–Monteith method [61], then the difference between monthly
precipitation and evapotranspiration is calculated and the accumulation sequence of water
profit and loss at different time scales is established. Since there may be negative values
in the original data series, a log-logistic probability distribution with three parameters
is used to standardize the cumulative probability density, and the SPEI value is finally
calculated. First, potential evapotranspiration (PET) is calculated according to the FAO
Penman–Monteith method [61]:

ET0 =
0.408∆(Rn − G) + γ 900

Tmean+273 µ2(es − ea)

∆ + γ(1 + 0.34µ2)
(4)

where ET0 is the potential evapotranspiration (mm/d), ∆ is the slope of saturated water
pressure curve (kPa/◦C), γ is the psychometric constant (kPa/◦C), µ2 is the wind speed at
2 m height (m/s), Rn is the surface net radiation (MJ/m2·d), G is the soil heat flux (MJ/m2·d)
(which changes very little on diurnal time scales and can be ignored), Tmean is the mean
daily temperature (◦C), es is the average saturated vapor pressure (kPa) and ea is the actual
vapor pressure (kPa).

The difference between annual monthly precipitation and evapotranspiration, Di, can
be calculated as follows:

Di = Pi − ETi (5)

where Pi is the monthly precipitation (mm) and ETi is the monthly evapotranspiration
(mm). The log-logistic probability distribution of three parameters is used to normalize the
Di data series:

F(x) = [1 + (
α

x − γ
)

β
]
−1

(6)

The parameters (α, γ and β) are calculated as follows:

α =
(ω0 − 2ω1)β

Γ(1 + 1/β)Γ(1 − 1/β)
(7)

β =
2ω1 − ω0

6ω1 − ω0 − 6ω2
(8)

γ = ω0 − αΓ(1 + 1/β)Γ(1 − 1/β) (9)

where Γ is the factorial function, and ω0, ω1, ω2 are the probability weighted moments of
the data sequence Di.

ωs =
1
N

N

∑
i=1

(1 − Fi)
sDi (10)
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Fi =
i − 0.35

N
(11)

where N is the number of months counted for participation. Finally, the cumulative
probability density is standardized:

P = 1 − F(x) (12)

When the cumulative probability p ≤ 0.5:

ω =
√
−2 ln(P) (13)

The SPEI index corresponding to each value is calculated as follows [27]:

SPEI = ω − c0 + c1ω + c2ω2

1 + d1ω + d2ω2 + d3ω3 (14)

where c0 = 2.515517, c1 =0.802854, c2 = 0.010328, d1= 1.432788, d2 = 0.189269, d3 = 0.001308.
Because this method is based on the assumption that the accumulated water deficit in

a given month follows the log-logistic distribution, then to verify whether the accumulated
water deficit in Xinjiang conforms to the log logistic distribution, the K-S (Kolmogorov–
Smirnov) test was carried out here on the accumulated water deficit sequence and log-
logistic distribution at the three-month scale. The results of this test show that the probabil-
ity p = 0.167 of the K-S test is greater than the significance level α = 0.05 at the three-month
scale, indicating that the samples of accumulated water deficit follow a log-logistic distribu-
tion. Therefore, the SPEI index based on this distribution has an appropriate mathematical
and statistical theoretical basis in Xinjiang drought characterization.

3.2. Scaled Crop Yield Index (SCYI)

We used the SCYI to evaluate the monitoring performance of IDCI and analyzed the
yields of wheat, maize, cotton, beet, vegetables and melon. The area of these six main crops
accounted for the vast majority of the total crop area in Xinjiang Province. The SCYI is
calculated as follows [43]:

SCYIi,j =
CYi,j − min(CYi)

max(CYi)− min(CY i)
(15)

where CYi,j refers to the yield of the ith type of crop during the jth year; SCYIi,j refers to
the SCYI of the ith type of crop during the jth year.

3.3. Calculation of Drought Frequency

Drought frequency can also reflect the spatial and temporal distribution of drought [43].
In this study, we calculated the frequencies of droughts with severe and extremely severe
drought intensities based on the IDCI, from 2000 to 2018:

Px,y =
Mn,x,y + Ms,x,y

M
× 100% (16)

where Px,y is the total frequency of droughts with severe and extremely severe drought
intensities at station x during month y in 2000–2018; Mn,x,y, Ms,x,y are the occurrence times
of droughts with severe and extremely severe intensities during 2000 to 2018, respectively;
M is the occurrence times of all drought events considered in this study during 2000–2018.

3.4. Rotated Empirical Orthogonal Function (REOF)

One limitation of the empirical orthogonal function (EOF) is that the separated spatial
distribution structure cannot clearly represent the characteristics of different geographical
regions. When the EOF is extended, the range of the selected region is different, and the
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spatial distribution of the eigenvector is also different, which hinders physical interpreta-
tion [49,62]. However, these limitations can be improved by using the REOF. The spatial
mode obtained by the REOF is the load vector of the rotation factor, and each vectoriza-
tion table contains the distribution structure of the spatial correlation. After the rotation
operation, high loadings are concentrated in a small area, and loads in the remaining large
areas are close to 0. If the symbols of each component of a vector are the same, then the
vector represents a spatial distribution structure with the high load area at the center and
the climate variable changes in that region are the same. If the component sign of a vector
in one area is positive, but negative in another area, and if the high load is concentrated in
the positive area or negative area, then the distribution structure represents a trend that
is opposite and whose center lies in the area where the high load is located. Through the
spatial distribution structure, not only can the regional structure of the climate variable field
be analyzed, but also the region and the type of the climate variable field can be divided by
the high load region of each vector. The corresponding calculation is as follows:

Z(x, y, t) = ∑ PC(t)× EOF(x, y) (17)

where Z(x, y, t) is the spatiotemporal field, PC is the principal component time series and
EOF is the principal loading pattern [62]. In this study, maximum variance was used as
the orthogonal rotation process to obtain the total variance contribution and cumulative
variance contribution.

4. Results and Discussion
4.1. Agricultural Drought Monitoring Performance of the IDCI
4.1.1. Correlations between the IDCI and Soil Moisture Observations

Soil moisture directly affects the growth and production of crops, and it can be used
as the main factor to measure agricultural drought conditions [31,63]. To check whether
the IDCI can monitor agricultural drought, five stations with high-quality soil moisture
observations were selected to analyze the relationship between the IDCI and the observed
soil moisture content under different soil depths (Figure 3). The results showed a significant
correlation between the observed soil moisture content and IDCI in Xinjiang (see Figure 3);
this correlation was significant at the 0.05 level at Station 51,268 and at the 0.01 level at all
other stations. In addition, we can see from Figure 4 that the correlation coefficient between
the observed soil moisture and the IDCI is higher than that of SPEI-3, VCI and SMCI at
both the station scale and soil depth scale. This indicates that the performance of the IDCI
in monitoring soil moisture is better than the single drought index (e.g., SPEI-3, VCI, SMCI),
and the IDCI can accurately represent agricultural drought from the perspective of soil
moisture change. Similar results have been found in previous studies. For example, Dai
et al. [64] reported that the PDSI in most areas of China showed a significant correlation
with soil moisture at a depth of 1 m. Mika et al. [65] showed that the correlation between
soil moisture and the PDSI in the Great Hungarian Plain from November to April was
higher than that in May to October. Shen et al. [43] also found a correlation between the
IDCI and soil moisture content. These results demonstrate that the IDCI is an accurate and
reliable index for drought monitoring in Xinjiang.

4.1.2. Correlations between Drought Index and SCYI

We selected six major crops (wheat, maize, cotton, beet, vegetables and fruits), which
together constitute 80% of the total crop yield in Xinjiang. The area used for these six crops
accounted for 75.25% of the cultivated land in 2000, 76.46% in 2010 and 79.77% in 2015.
Consequently, we can use the yield of these six crops to evaluate the performance of the
IDCI in monitoring agricultural drought. The correlation coefficient between the wheat
SCYI and IDCI (0.560) was greater than that of SPEI3 (0.076), SMCI (−0.530) and VCI (0.497)
(Figure 5). The IDCI performed better than other indices in evaluating the effect of drought
on wheat yield in Xinjiang. The SCYI of maize was less affected by agricultural drought,
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since maize has a strong drought resistance [66]. The correlation coefficient between the
maize SCYI and IDCI reached 0.604, higher than the other drought indexes such as SPEI3
(−0.023), SMCI (−0.279) and VCI (0.308). The correlation coefficient between the cotton
SCYI and IDCI was 0.547, which was greater than that for VCI (0.338), SPEI3 (−0.227)
and SMCI (−0.186). Cotton has a strong drought tolerance. The SCYIs of beet, vegetables
and fruits were also correlated with the IDCI; their respective correlation coefficients
reached 0.524, 0.550 and 0.530, which were higher than those of the other indices. In
summary, the IDCI performed well in monitoring drought variations, consistent with
previous studies [43].
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4.2. Spatiotemporal Changes in IDCI
4.2.1. Temporal Changes in IDCI

It can be seen from Figure 6 that the percentage of stations not experiencing drought
increased in spring, summer and autumn, but decreased in winter. The percentage of
stations without drought was the least in summer. The percentage of mild drought stations
decreased in summer and autumn, and increased in spring and winter. The percentage of
moderate drought stations increased in all seasons, and it was greatest in summer. The
percentage of severe drought stations decreased in spring and autumn, and increased in
summer and winter. The percentage of extreme drought stations increased in spring and
summer, decreased in autumn and winter and was greatest in summer. The percentage
of stations without drought was greater than the percentage of stations with drought on
an annual basis. The proportions of stations with severe drought and extremely severe
drought in spring, summer and autumn was greatest in 2008, accounting for 33.3%, 43.7%
and 33.3%, respectively, while that in winter was the most in 2004, accounting for 21.4%.

The IDCI increased insignificantly in 2000–2018, indicating that drought decreased
from 2000 to 2018 (Figure 7a). Note that the IDCI gradually decreased (increasing drought)
during 2000–2008, but gradually increased (decreasing drought) during 2009–2018 (Figure 7a).
Precipitation and temperature showed similar trends during 2000–2018: precipitation in-
significantly increased at a rate of 1.266 mm/a (Figure 8a); temperature insignificantly
increased at a rate of 0.016 mm/a (Figure 8b). This is consistent with Li et al. (2012) [67],
who found that increasing precipitation caused an obvious trend towards increasing hu-
midity in the northwest region. As can be seen from Figure 9a–c, under increasing drought,
the corresponding station temperatures were increasing and precipitation was decreas-
ing; the opposite trends were observed under decreasing drought. Specifically, the IDCI
and temperature followed the same trend, while the IDCI and precipitation followed
opposing trends.
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Droughts in spring, summer, autumn and winter showed decreasing trends dur-
ing 2000–2018, with increasing trends from 2000 to 2008 and decreasing trends during
2009–2018 (Figure 7b–e). Therefore, 2008 was the change point, and was marked by an
extreme drought in the summer of 2008. Some studies have reported a drying trend
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in China on the basis of the SPI/SPEI [28,68,69]. Other studies have noted increasing
drought in central China, while the northwest of China has become wetter, according to
the PDSI [49,70,71]. Our results are in support of the latter, in contrast to the former, for the
reasons described in the introduction.

4.2.2. Spatial and Temporal Distributions of the IDCI Based on REOF Analysis

Before applying REOF, the IDCI datasets were dimensionally reduced by EOF analysis.
The first 10 EOF modes were used as inputs in the REOF, which captured about 68% of
the total variance. Considering the REOF and the variance described by each rotated
component, we chose the five main REOFs in Xinjiang. These five REOFs demonstrate
around 65.6% of the total variance in the 10 EOFs (Figure 10). REOF-1 highlights northern
Xinjiang and explains 20.2% of the total variance (Figure 10). The second component,
REOF-2, represents southern Xinjiang and explains 12.6% of the total variance. REOF-3
highlights northern Xinjiang (10.4% of the total variance); REOF-4 highlights the Tianshan
Mountains (9.6% of the total variance); and REOF-5 highlights eastern Xinjiang (9.5% of the
total variance).
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REOF-1 was positive in northern Xinjiang, where RPC-1 increased in 2000–2008, indi-
cating dry conditions during this period. REOF-2 was negative in southern Xinjiang, and
the decreasing RPC-2 before 2008 indicated dry conditions from 2000 to 2008. REOF-3 was
positive in northern Xinjiang, and the increasing RPC-3 before 2008 indicated dry condi-
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tions during 2000–2008. REOF-4 (Tianshan Mountains) was positive, with the gradually
increasing RPC-4 indicating a gradual trend towards dry conditions before 2008. Combined
with the positive value in REOF-5 in eastern Xinjiang, the increased RPC-5 before 2008
indicated dry conditions during 2000–2008; while after 2008, RPC-1 (RPC-3) showed a
decreasing trend, indicating a trend towards a wetter climate in northern Xinjiang. In
southern Xinjiang (REOF-2), the decreasing RPC-2 showed wet conditions in this period.
The increasing RPC-4 indicated wetter conditions in the Tianshan Mountains after 2008.
RPC-5 showed a decreasing trend indicating wetter conditions in eastern Xinjiang after 2008.
These results are consistent with previous studies. For example, Wang et al. (2017) [49]
divided northwest China into three areas based on SPEI-3 and found that Xinjiang expe-
rienced wet conditions from 1987 to 2010. Yang et al. [62] divided northwest China into
six regions using SC-PDSI and reported that Xinjiang became wetter from 1948 to 2012.
Zhang et al. [48] divided Xinjiang into three parts based on SPI and found that Xinjiang was
becoming wet, particularly in northern Xinjiang. Zhai et al. [70] divided China into 10 areas,
and showed that northeast China and central China had become dry while northwest China
became wetter during 1961–2005.

4.2.3. Spatial and Temporal Distribution of Severe and Extremely Severe Drought Frequency

Figure 9 shows that 2008 was the turning point between increasing and decreasing
drought, motivating analysis of the severe and extremely severe drought frequency based
on the IDCI before and after 2008. Before 2008, the number of stations with severe and
extremely severe droughts in summer was greater than that in spring, autumn and winter
(Figure 11). In spring, the proportions of stations with severe and extreme drought were
12–16%, 4–8% and 12–20% in northern Xinjiang, southern Xinjiang and eastern Xinjiang,
respectively. In summer, 71.4% and 42% of the total number of stations in northern and
southern Xinjiang, respectively, experienced drought 8–20% of the time. In autumn, most
stations experienced drought 0–4% of the time, with fewer stations reaching 4–8% and
fewer still at 8–12%. In winter, most stations (71.4%) experienced drought 0–4% of the time.
Drought affected 0–8% of the whole year; spring, summer, autumn and winter droughts
were all more frequent in northern Xinjiang than in southern and eastern Xinjiang.
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After 2008, drought in summer was more frequent than in autumn, spring or winter
(Figure 12). In spring, drought was more frequent in northern Xinjiang than in southern
Xinjiang (0–4%) or eastern Xinjiang. In summer, drought was more frequent in eastern
Xinjiang than in southern Xinjiang or northern Xinjiang. Autumn drought was more
frequent after 2008 than before 2008, but there was little change in the winter drought
occurrence. All stations in Xinjiang experienced drought for 0–4% of the year, and droughts
became less frequent after 2008.Water 2024, 16, x FOR PEER REVIEW  18  of  24 
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4.3. Effects of Drought on Crop Yields

In general, drought is more destructive during the cropping season [72]. The drought-
affected area decreased by 0.045 hectares/year during 2000–2015, increased by 0.053
hectares/year during 2000–2008 and decreased by 0.014 hectares/year during 2009–2015.
The drought-affected area was greatest in 2008, consistent with this year having a notably
severe drought [73]. In 2008, the yields of beet, wheat and vegetables were most affected by
the drought (Figure 13).

Many studies have used a multi-time-scale meteorological drought index to evaluate
the relationship between drought and yield. Due to the different crop types and study sites,
the time scale and month of the drought index and its relationship with varying yields will
also be different, hindering the accurate assessment of the impact of agricultural drought
on crops [74]. The purpose of applying the agricultural drought index (IDCI) to Xinjiang is
to better describe the relationship between drought and crop yield in Xinjiang. The wheat,
maize, fruits and vegetables were selected on the basis of data availability. We used Pearson
correlation analysis to analyze the correlation between crop yield and the IDCI (Figure 14).
There was no significant correlation between crop (wheat, maize, vegetables, fruits) yield
and the IDCI at most stations. Five stations showed a significant correlation between wheat
yield and the IDCI, among which the correlation coefficients at four stations were 0.8–1.0,
and the correlation coefficient at one station was 0.6–0.8 (Figure 14a). Stations with a strong
correlation were mainly distributed in northern Xinjiang, especially in Aletai and Tacheng,
and in Tomsk. There was only one station with a significant correlation (between maize
yield and IDCI; p < 0.05): this was located in the Altay area. Eight stations in Xinjiang
showed a significant correlation between vegetable yield and the IDCI, of which six were
significant at the 0.05 level and two were significant at the 0.01 level. Stations with a strong
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correlation and very strong correlation were distributed in the Altay area. In total, 11.9% of
stations in Xinjiang showed significant correlation between fruit yield and the IDCI. Similar
results have been reported in previous studies. For example, Peña-Gallardo et al. [42]
reported a significant (p < 0.05) positive correlation between a multi-scalar drought index
and wheat yield but a weaker, insignificant correlation between a uni-scalar drought index
and wheat yield. Huang et al. [75] showed that the winter wheat yield was more strongly
correlated with the temperature vegetation dryness index (TVDI) than with the vegetation
health index (VHI).
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5. Conclusions

Here, the climate drought index (SPEI3), vegetation cover index (VCI) and soil mois-
ture condition index (SMCI) were combined to calculate the integrated drought index
(IDCI). Significant correlation between the IDCI and soil moisture was found in different
regional groups of CMA meteorological stations within Xinjiang, China. The trend in the
IDCI was consistent with that of temperature, and contrary to that of precipitation. The
following conclusions can be drawn.

(1) The correlation coefficients between the IDCI and the yields of six crops were higher
than those of the other drought indices (SPEI3, VCI, SMCI). The correlation coefficient
between cotton yield and the IDCI reached 0.547, while correlation coefficients of the IDCI
with wheat, maize, beet, vegetable and fruit yields were 0.56, 0.604, 0.524, 0.550 and 0.530,
respectively. These results demonstrate that the IDCI can be used to monitor agricultural
drought in Xinjiang, and that the IDCI performed better than other individual drought
indices (SPEI3, VCI, SMCI).

(2) From 2000 to 2018, the proportion of stations suffering drought decreased in spring,
summer, autumn and annually, but increased in winter. Drought showed an increasing
trend before 2008 and a weakening trend after 2008. Severe drought and extreme droughts
were more frequent in summer than in spring, autumn or winter. Severe and extreme
droughts in Xinjiang became less frequent after 2008. The spatial and temporal distributions
of the IDCI revealed by REOF analysis showed that droughts in northern Xinjiang, southern
Xinjiang, eastern Xinjiang, and the Tianshan Mountains were becoming more frequent
before 2008, and less frequent after 2008.

(3) The drought-affected area decreased by 0.045 hectares/year during 2000–2015. The
yields of beet, wheat and vegetables were most strongly affected by drought in 2008. There
was no significant correlation between crop yield and the IDCI at most stations. Stations
showing strong correlations between the yields of wheat, corn, vegetables and the IDCI
were mainly located in northern Xinjiang, while stations with a strong correlation between
the yield of fruits and IDCI were mostly located in southern Xinjiang.

Although the climate became wetter in Xinjiang during the study period, short-term
precipitation does not imply a fundamental change, due to the region’s particular geo-
graphical location and climatic conditions. Climate changes also need to be verified more
rigorously with a longer time series. The distribution of meteorological stations and soil
water stations used in this study is very irregular, with fewer stations in the Tarim Basin and
Junggar Basin. Further research should include more stations and a longer data time series.
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