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Abstract: The article considers a mathematical model of the hydrolithospheric process taking into
account the skin effect. A methodology for using the results of groundwater inflow testing to
determine the parameters of approximating models that take into account skin effects is presented.
In addition, the problems of modeling hydrodynamic processes taking into account random factors
are considered. A statistical analysis of well monitoring data was carried out and an algorithm
for studying processes was developed. Using the obtained approximating models, a procedure for
solving the problem of selecting the optimal number of production wells has been developed. Based
on the results of the groundwater inflow testing, the prospects for the development and use of new
aquifers can be determined.

Keywords: hydrolithospheric processes; approximating models; skin effect; mathematical models;
optimization of the number of wells

1. Introduction

Currently, billions of people directly depend on groundwater resources. At a time
when anthropogenic factors exert a significant influence on the environmental aspect of this
crucial resource, the issue of the ecological safety of mineral and groundwater is becoming
a common challenge for humanity as a whole. When examining the extraction of mineral
water on a global scale, several key problems can be identified at present, arising in the
development of deposits [1–3].

The first problem, which is at the same time the most important and can also entail
very serious consequences, is insufficient study of the area in which the deposit will be
developed [4,5]. Mineral water extraction requires a thorough study of the area before
development, as well as consideration of many aspects related to the mining conditions of
specific deposits. It is also crucial to fully study the area in which mining will be carried out,
at all its ecological levels, since the development of a mineral water deposit is a complex
process that can affect all natural and environmental aspects of the surrounding area [6–8].

Before starting the development of a mineral water deposit, it is essential to consider
all the physical and geological aspects of the deposit itself, its distance from populated areas,
the intensity of production, the physical and geological characteristics of the surrounding
soils, as well as all the environmental conditions of the area [9–11]. Additionally, it is critical
to draw up a plan for the development of the deposit, and not to neglect the recommended
conditions for the technological process of developing a mineral water deposit.

Often, neglecting to properly study the area and aspects of mining can lead to dire
consequences for the ecology of the surrounding area, as well as for people living in
surrounding settlements. For example, insufficient study of aspects of production can
lead to multiple violations in field development technology, leading to insufficient or too
intensive production, and the consequences of this can include violations of the ecological
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balance of the production region, geological disasters, mudflows, landslides, depletion
of the region’s aquifer, and many others [12–14]. Also, among the global problems, we
must highlight the environmental problem of the anthropogenic impact on the quality of
underground mineral waters.

In the 19th and 20th centuries, due to globalization and industrial revolutions, the
active growth of settlements, factories, and enterprises began. The main substances that
these objects release, particularly into the soil, are, for example, petroleum products, zinc or
copper compounds, mercury, phenols, and so on—all of these are the main substances that
pollute underground water sources. Consequently, the main reason for the decline in water
quality and the deterioration of its physical and chemical composition has come to be hu-
man activity, that is, our environmentally damaging behavior and environmental pollution.

In general, the state of water resources directly depends on the state of the ecological
environment of the region, its biosphere and chemical processes, and hydrogeological
conditions. Today, humans’ influence on groundwater continues to increase. Our massive
development has an active influence on the upper layers of soil, and it is there that the main
potable water reserves are located. In addition, they are most susceptible to pollution due to
the relatively low distance to the upper soil layer and low filtration. This contributes to the
very slow self-purification of such waters. Furthermore, it transpires that after underground
waters, pollution travels no further, meaning aquifers become a kind of final reservoir for
pollution. It can also be noted that due to the same mass development and anthropogenic
influence, the load on the reservoir increases greatly, which leads to the migration of water
into deeper or neighboring layers, while continuing to be polluted [15–18].

In discussing mineral water deposits, it is essential to take into account their spatial
dimensions. This necessitates conceptualizing the management subject as a system charac-
terized by distributed parameters. Moreover, when examining this system, the impact of
random factors on hydrogeological processes should not be overlooked.

Comprehensive details on the construction of mathematical models for hydrologi-
cal processes are extensively presented in the studies by E.A. Lomakin, I.K. Gavich, P.K.
Konosavsky, and V.V. Antonov, among others [18–20]. These researchers have signifi-
cantly advanced the development of methodologies for creating two-dimensional models.
However, their methodologies are not directly applicable to developing three-dimensional
models of spatially distributed objects. The analysis of distributed systems, particularly
in the frequency domain, was explored in [21–23]. Recent research in control systems
with distributed parameters, particularly the works of Director JSC “Narzan” and A.V.
Malkov, have been pivotal in refining theoretical approaches to controlling hydrogeologi-
cal entities [2,24,25]. In the realm of stochastic systems, meanwhile, there are numerous
contributions to date [26–28]. However, these studies, whether focusing on concentrated or
distributed systems in the control field, do not delve into the analysis of random processes.

Therefore, the primary objectives of this study were enhancing the economic efficiency
of mineral water extraction while minimizing environmental threats. With those in mind,
we set out to analyze hydrogeological processes under random influences, find methods and
algorithms for management, and identify laws for optimal functioning of the technological
process [29–31].

To achieve the above objectives, the study of hydrodynamic processes in aquifers and
the construction of mathematical models for the rational use of water resources is a priority,
and the specific direction we took with this study was to investigate the control system of
hydrolithospheric processes, aimed at preserving the quality and reserves of the mineral water
in the deposit by controlling the piezometric level in the exploited aquifer. To that end, it
was necessary to conduct a detailed analysis of the hydrogeological object, examining the
inherent random processes that affect the hydrodynamic parameters during the exploitation
of the deposit [32–35]. With that purpose, systematic analytical modeling of the technical and
physical elements of the research object at different management levels was required, followed
by the development of a mathematical model that accounts for random disturbances [2,36,37].
The object of study was an exploited site in the Caucasian Mineral Waters region.
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2. Materials and Methods

Observational data from monitoring wells indicate the consistency of oscillations in
pressure. These fluctuations might stem from various sources, including disruptions in
the technological process due to equipment malfunction, or changes in aquifer flow rates
influenced by weather and human activities. The human factor is significant; for instance,
ongoing urban development over the past two decades in the extraction area under study
has impacted soil settlement and altered impermeable layer structures. Moreover, in areas
lacking centralized sewage systems, septic tank pollutants seep into the groundwater,
exacerbated by rainfall. While such issues might not significantly impact the mineral
water quality under high aquifer pressure, unregulated water extraction causes pressure
drops, leading to the infiltration of impurities into the exploited layers and aggravating
environmental conditions [38–41].

Sometimes, when influenced by a range of factors, the observed pressure variations
can only be interpreted as uncertain and random processes. These should be factored
into the development of mathematical models for hydrolithospheric extraction processes.
Additionally, seismic activities, with their unpredictable or random impacts on the deposit,
are also worth considering. The hypothesized random factors are thought to affect water
flow speeds in the aquifer and the rate of pressure decrease. When analyzing pressure
trends in monitoring wells, it can be inferred that the model’s limitations include taking
these random fluctuations to have a stationary nature [42–44]. In this study, a statistical
analysis of piezometric level data from the monitoring wells in the specific deposit area
was conducted to verify this hypothesis [45–48].

2.1. Statistical Analysis

Often, examining the graphical representation of a process is adequate to identify
non-stationarity [18–25] in a series. However, to provide statistically robust evidence
of stationarity, specific techniques are necessary. Here, methods like constructing the
process’s correlogram and segmenting it into sequential observation groups were chosen
for comparative analysis [49–51].

Our analysis of the piezometric level data series from the deposit’s monitoring well,
employing the first method and using a correlogram, is depicted in Figure 1. The fact that
the first-order autocorrelation coefficient is the highest suggests the presence of a trend in
the time series.
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Figure 1. Correlogram showing the correlation coefficients between the original series of observations
and the series shifted by time steps (from 1 to 7) [51].

The correlation decreases steadily with increasing lag, pointing to the series’ stationarity,
indicating that its probabilistic characteristics remain constant over time. To validate these
findings, we examined the data using a secondary method for determining stationarity [2,52–54].
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The results of previous studies were summarized and systematized in the form of an
algorithm that can be used when analyzing monitoring data from sensors at observation
wells of a hydrogeological object in order to assess the stationarity of processes. The analysis
technique is divided into several stages, some of which can be repeated until the desired
results are obtained:

(1) Monitoring the dynamics of the piezometric level in observation wells. Obtaining
time series from sensors;

(2) Estimating the stationarity of a series using a correlogram:

(2.1) Calculating the correlation coefficient for the original series versus series with
a lag (1st, 2nd, 3rd order, etc.);

(2.2) Constructing a histogram using autocorrelation. Obtaining a correlogram;
(2.3) Then, performing correlogram analysis: if the correlogram fades and tends to

zero, then we accept the hypothesis that the series is stationary; otherwise, the
hypothesis of stationarity is not accepted;

(3) Estimating the stationarity of a series by using the method of sequential grouping:

(3.1) Dividing a series into successive groups with an equal number of observations;
(3.2) Calculating the means and variances of the resulting groups;
(3.3) Comparing the means using Student’s t-test: if tcalc < ttable, then the hypothesis

of stationarity is accepted; if tcalc > ttable, then the stationarity hypothesis is
not accepted;

(4) Removing trends:

(4.1) Taking the differences in two consecutive values of the time series ∆;
(4.1) The resulting series of residues is also analyzed using the t-test: if tcalc < ttable,

then the stationarity hypothesis is accepted; if tcalc > ttable, then the hypothe-
sis of stationarity is not accepted—it is necessary to repeat point 4.1 (taking
differences in the next order until the series comes to a stationary form).

This technique may be used to model random impacts on a hydrogeological object.

2.2. Mathematical Models of Aquifers

Based on the findings of our studies of the hydrogeological object, a mathematical
model of the deposit was compiled, as shown in Figure 2. Extraction of hydromineral raw
materials is carried out using one production well. To monitor the state of hydrolithospheric
processes, two monitoring wells were installed.
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The groundwater inflow testing carried out showed that a skin effect occurs around
the production wells (the fine fraction of the rock is carried out along with the extracted
raw materials). The hydraulic radius of the well with a negative skin effect increases, and
with a positive one, it decreases. Figure 3 shows the formation of the hydraulic radius of
the well (“well”) and depression funnel.
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Taking into account the formation of the hydraulic radius of the well and funnel, the
mathematical model of hydrodynamic processes should be written in Cartesian and radial
coordinates [55–58].

A description of the process in groundwater is as follows:

∂h1(r, z,τ)
∂τ = k1

∂2h1(r, z,τ)
∂r2 +

k1,
r · ∂h1(r, z,τ)

∂r + k1,z
∂2h1(r, z,τ)

∂z1
2 ;

0 < r < R; 0 < z < Lz1 .
(1)

A description of the process in the aquifer is as follows:

∂H2k(τ)/∂τ = 1/µ·(−Q + ∆Vk)/(π·r2
0),

∆Vk = 2π·r0·
Lz2∫

Lz1

(k2r·(H2(r0, z, τ)− H2k))·dz,

0 < r < r0; Lz1 < z < Lz2 ;

(2)

∂H2(r,z,τ)
∂τ = 1

η2
(k2

∂2H2(r,z,τ)
∂r2 +

k2,
r · ∂H2(r,z,τ)

∂r + k2,z
∂2H2(r,z,τ)

∂z2
2 ),

r0 < r < R; Lz1 < z < Lz2 .
(3)

Boundary conditions are described in the form of Darcy conditions. The boundary
between the groundwater layer and the exploited aquifer is as follows:

h1(r, Lz1 , τ) = h1(r, Lz1 , τ) + b1·(H2k(r, 0, τ)− h1(r, Lz1 , τ))·∂τ,
H2k(r, 0, τ) = H2k(r, 0, τ)− b1·(H2k(r, 0, τ)− h1(r, Lz1 , τ))·∂τ,

0 < r < r0;
(4)

H2,k(r0, z,τ) = H2k(r0, z, τ) + k2z·(H2(r0, z, τ)− H2k(r0, z, τ))·∂τ,
H2(r0, z, τ) = H2(r0, z, τ)− k2z·(H2(r0, z, τ)− H2k(r0, z, τ))·∂τ,

∂H2k(0, z, τ)/∂r = 0,
0 < z < Lz2 ;

(5)

∂H2k(r, Lz2 , τ)/∂z = 0, 0 < r < r0; (6)

h1(r, Lz1 , τ) = h1(r, Lz1 , τ) + b1·(H2(r, 0, τ)− h1(r, Lz1 , τ))·∂τ,
H2(r, 0, τ) = H2(r, 0, τ)− b1·(H2(r, 0, τ)− h1(r, Lz1 , τ))·∂τ,

r0 < r < R;
(7)
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∂H2(r, Lz2 , τ)/∂z = 0, r0 < r < R; (8)

h1(R, z, τ) = h1,0; 0 < z < Lz1 , H2(R, z, τ) = H2,0; 0 < z < Lz2 . (9)

Here, b1—flow coefficient 1/day; h1—pressure in the groundwater, m; H2, H2k—pressure
in the exploited aquifer, m; k1, k1,z—parameters of groundwater conductivity level along
coordinate axes, m2/day; k2, k2,z—filtration parameters of the exploited formation along
the coordinate axes, m/day; k2,r—flow parameter on the side surface of the well, m/day;
η2—elastic capacity of the aquifer, 1/m; µ—water loss coefficient, 1/m; r—radial coordinate,
m (radius of the cylindrical coordinate system); z—Cartesian coordinate, m (height of the
cylindrical coordinate system); Lz1, Lz2, R—values of the height of the layers and the radius
of the depression funnel, m; τ—simulation time; h1,0, H2,0—initial pressure levels in the
aquifers, m; and Q—flow rate, m3/day.

The developed mathematical model (1–9) cannot be solved by means of analytical
methods. The studies given in [1] show that for a given flow rate of a production well, with
an increase in the well radius r0 (Figure 2), the influence of flow rate on the level of the
aquifer decreases.

The mathematical model was verified using field experiments at the mineral wa-
ter deposit. When simulating the discrete model, it was found that with a flow rate
Q = 100 m3/day (in Equation (2)), the decrease in water level at the location of the produc-
tion well will be 2.55 m. Then, during the field experiments for 10 days with an average flow
rate Q = 100 m3/day on the real deposit, the decrease in water level was 2.57 m. The model
values and natural values of the water level decrease were close, which indicated the
adequacy of the use of the mathematical model.

2.3. Problems of Modeling the Hydrolithospheric Processes under Consideration

The mathematical models discussed above do not have an analytical solution. In prac-
tice, discrete analogues of the equations under consideration are used to obtain numerical
solutions. In this case, the following tasks are solved:

1. Assessing the possibility of using the deposit under consideration in practical activities
(determining the optimal location and number of production wells, maximum flow
rates, etc.);

2. Designing closed-loop control systems for production wells;
3. Forecasting the development of hydrolithospheric processes in the near and long term.

Real hydrolithospheric processes certainly differ from the processes described by
mathematical models. When describing mathematical models, it is assuming the following:

1. Physical parameters do not depend on spatial coordinates. In reality, the parameters
for different points in the spatial domain will differ;

2. The geometric parameters of the areas in which the processes under consideration
occur change according to nonlinear laws (for example, the thickness of aquitards non-
linearly depends on spatial coordinates; therefore, the flow coefficients for different
points will differ);

3. The geometric dimensions of the “wells” formed around production wells change
during the operation of the wells.

In practice, solving problems of studying hydrolithospheric processes requires finite-
dimensional approximation methods. These approximation methods should be used very
carefully when studying systems with distributed parameters, because discretization of par-
tial differential equations significantly [2] changes the properties of the model (a discontinuity
in phase spaces occurs). That is, by developing a discrete model instead of a mathematical
one, we produce a completely new object that differs in properties from the originally speci-
fied one. Research shows that when the discretization step size along Cartesian and radial
coordinates changes, the characteristics of the discrete model also change.

In order to adjust the parameters of the developed field model, the results of ground-
water inflow testing are used. When carrying out groundwater inflow testing, the physical
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parameters of the hydrolithospheric process can be calculated [3], and the dynamic and
static characteristics of the process can be determined.

Solutions to practical problems using only the results of the groundwater inflow
testing need to be considered, along with the determination of the parameters of the link
that approximates the statics and dynamics of the process under consideration.

The research results given above show that in order to determine the parameters of
distributed approximating links [4], it is preferable to use the results of phase analysis carried
out at the deposit under study. If such results are absent, then verified discrete models should
be used that describe the hydrolithospheric processes of the aquifer in question.

Through groundwater inflow testing, for the deposit under consideration, it was found
that at a production well flow rate of 100 m3/day [2,49,59], the value of the production well
influence coefficient K1 = 0.0257. Furthermore, the values of the coefficients of influence of
the production well on the control wells are as follows: when the control well is removed
from the production well at a distance L1 = Lx = 50 m, K2 = 0.00413; when the control well
is removed from the production well at a distance L2 = Ly = 60 m, K3 = 0.00237.

To determine the dynamic characteristics of the process under consideration, a har-
monic input action of the following form was applied to the input [60–64]:

Q(τ) = Q + 0.3·Q·sin(ω·τ), ω = 0.0005 1/s,
Q = 100 m3/day (or Q = 100/(3600·24) m3/s).

(10)

A graph of level changes in a production well (at the point where the sensor was
installed at a depth of 75 m), with a harmonic input effect and over a time interval when
the output function was close to a quasi-stationary mode, is shown in Figure 4. The value
of the phase shift in this case indicates that at a high flow rate, the water level in the aquifer
falls, and at a low flow rate, the water level in the reservoir increases [65–68]. Through
calculations, the phase shift of the output signal relative to the input influence was obtained:

∆φ = −2π·0.738/3.625 = −1.279. (11)
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We experimented with a technique for determining the parameters of links that
approximate the static and dynamic characteristics of the objects under consideration.
In this case, we assumed that the filtering coefficients for spatial coordinates {x,y} were
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different. The structure of the link that approximates the static and dynamic parameters of
the object was written in the following form:

Wa =
K
β
· exp

(
−β·(x 2 + (kn·y)2)

0.5)
;β = (s/a + D)

1
2 . (12)

Here, K, Kn, D, a—determined coefficients; s—Laplace operator; and x, y—spatial
coordinates.

As is known, around the production well, as a result of the skin effect, a “well” is
formed. A mathematical description of the processes involved is shown in (2). Let us
assume that its radius is r0 (Figure 2). Relation (12) is written in cylindrical coordinates:

r > r0 → Wa = K
β · exp(−β·r),

r = ((x − X0)
2 + K2

n·(y − Y0)
2)

0.5
;

β = (s/a + D)
1
2 .

(13)

Taking into account the “well”, (13) can be written:

r > r0 → Wa = K
β · exp(−β·r),

r = ((x − X0)
2 + K2

n·(y − Y0)
2)

0.5
;

r ≤ r0 → Wa = K
β · exp(−β·r0);

β = (s/a + D)
1
2 .

(14)

The method for determining the static parameters of the approximating link (12)
(a = jω = 0) takes the following stages.

When equating the static gains of the approximating link (14) to the values of K1
and K2, and assuming that L1 − r0 ≈ L1 (Figure 2) and L2 − r0 ≈ L2, we obtain a system
of equations: 

K1 = K
β · exp(−β·r0),

K2 = K
β · exp(−β·L1),

K3 = K
β · exp(−β·Kn·L2),β = (D)

1
2 .

(15)

When substituting in the calculated values K1 = 0.0257, K2 = 0.00413, r0 = 0.2 m,
L1 = Lx = 50 m, L2 = Ly = 60 m, and K3 = 0.00237, the following is produced:

0.0257 = K
β · exp(−β·0.2),

0.00413 = K
β · exp(−β·50),

0.00237 = K
β · exp(−β·Kn·60),β = (D)

1
2 .

(16)

When solving the resulting system, the following result will be obtained: D = 0.001449,
K = 0.0010549, and Kn = 1.07647.

The mathematical model of the object, reflecting the static interaction, is written as
follows:

r > r0 → Wa = 0.0010549
β · exp(−β·r),

r = ((x − X0)
2 + (1.07647)2·(y − Y0)

2)
0.5

;
r ≤ r0 → Wa = 0.0010549

β · exp(−β·r0);

β = (0.001449)
1
2 .

(17)

During groundwater inflow testing, the dynamic characteristics of the control object
were also studied. Since the sensor was located in the well area, the relationship for
determining the phase of the approximating link could be written as follows:

∆Φ1 = −Im(β)·r0 − arctan(Im(β)/Re(β)),β = (jω/a + D)
1
2 . (18)
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By substituting in the original data D = 0.001449, K = 0.0010549, ω = 0.0005, and
∆φ1 = −1.279, and solving equation (18) numerically, we obtained a = 0.00004103. Since
the dynamic characteristics (Figure 3) were measured inside the “well”, the dynamics and
statics of the process under consideration can be described by the following equations:

r > r0 → Wa = 0.0010549
β · exp(−β1·r),

r = ((x − X0)
2 + (1.07647)2·(y − Y0)

2)
0.5

;

β1 = (0.001449)
1
2 .

r ≤ r0 → Wa = 0.0010549
β · exp(−β·r0);

β = (s/0.00004103 + 0.001449)
1
2 .

(19)

2.4. Determining the Optimal Number of Wells

When developing a deposit, the prospects for the volume of hydromineral raw mate-
rials produced are determined. The possibility of constructing a “cluster” of production
wells is considered. The area in which to locate the wells in question is determined based
on landscape conditions.

A popular region for the extraction of hydromineral raw materials is the Caucasian
Mineral Waters region, which has a mountainous landscape. Taking this as the setting, let
the production well be positioned in the gorge shown in Figure 5.
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2.5. Statement of the Problem of Optimizing the Number of Wells in a Selected Area

For the deposit under consideration, we sought to determine the number of production
wells (n) that provides the maximum income (MI) over ten years of operation. In doing
so, we assumed that the extraction of hydromineral raw materials was carried out within
3650 days; r0,i = 0.2 m (radii of the “wells”); N—the cost of 1 m3 of hydromineral raw
materials was 500/1,000,000 million RUB; Cp—the cost of developing and maintaining one
well for 10 years was 30 million RUB; the subsoil use tax was 7.5%; and Pz—the fixed costs
over 10 years amounted to 100 million RUB. At the same time, the value of level decreases
(∆Hi) in the zones where production wells were located was 10 m. The static transmission
coefficient was described by relation (17).

The number of parameters that are taken into account when calculating profit can
be expanded in accordance with the legislative framework. Increasing the number of
parameters will lead to adjustments of the calculating formula.

3. Results

The procedure for solving the problem is divided into the following stages.
The influence of the j-th production well on the decrease in the level in the µ-th

production well is described by the following ratio:

∆Hµ =
Kµ·Qµ

β
· exp

(
−β·(r0,µ

)
) +

n

∑
j=1,j ̸=µ

Kj·Qj

β
· exp

(
−β·(rµ,j

)
),β = (D) (20)
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where ∆Hµ—level decrease in the considered µ-th well (µ = 1, . . ., n); r0,j—given radius;
rµ,j is the distance from the µ-th to the j-th interacting wells (if the coordinates of producing
wells change in x and y, then the calculation of rµ,j is carried out using (14)); n—number of
wells; Qµ—flow rate of µ-th well; and Qj—flow rate of the j-th well.

By taking

Cµ =
Kµ

β
· exp

(
−β·(r0,µ

)
), Cµ,j =

Kj

β
· exp

(
−β·(rµ,j

)
, β = (D)

1
2 , (21)

and transforming it, we obtain a matrix equation for determining the flow rates of produc-
tion wells. 

Q1
Q2
· · ·
Qn

 =


C1, C1,2, · · · , C1,n
C2,1, C2, · · · , C2,n

· · ·
Cn,1, Cn,2, · · · , Cn


−1

·


∆H1
∆H2
· · ·
∆Hn

 (22)

The total water flow rate (Q) can be determined from the ratio:

Q =
n

∑
µ=1

Qµ. (23)

The profit over ten years of field operation is determined by the following equation:

MI = (Q·N − Q·N·0.075)·3650 − Cp·n − Pz. (24)

A program was developed to calculate the maximum income when the number of
production wells was changed. Based on the calculation results, we plotted the graphs
shown in Figure 6.
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The optimal number of production wells was found to be six. With six wells, the
maximum income over 10 years of field operation will be 1635.838 million RUB and the
total daily flow rate will be 1075.654 m3 of mineral water. So, based on the results obtained,
there is no need to construct more wells.
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4. Discussion

Excessive extraction of water results in a decline in the quality of the extracted mineral
water and alters the chemical composition of the product. The expansion of a depression
funnel can cause disturbances in the structure of the aquifer system and the disappear-
ance of mineral springs. This scenario is applicable to all water sources situated in the
Caucasian Mineral Waters region. Consequently, there is a potential risk of environmental
deterioration of mineral water deposits.

Employing mathematical modeling allows for efficient control of the mineral water
extraction process. Through the analysis of random factors, it becomes feasible to anticipate
a decline in the piezometric level within aquifers. Furthermore, the optimization of the
number of production wells can be achieved by developing mathematical models for
hydrogeological entities.

Upon commencing production in the field, a limited number of wells is typically
installed. With a surge in consumer demand for the supplied products (hydro-mineral raw
materials), the number of wells can be increased. However, the construction of wells is
very expensive. Furthermore, each well requires constant maintenance, which leads to a
significant increase in labor and financial costs. To ensure it is worthwhile, a technique is
used to determine the optimal number of wells, which allows the production company to
maintain high profitability [1,2,65].

The maximum number of wells (for the aforementioned case) to be outfitted in segment
Lx (Figure 6) should be capped at six. As has been shown, with a further increase in the
number of wells, the profit does not increase, but even decreases. This suggests that there
is no need to build even more wells. This optimal well count ensures not only high profits
but also adherence to production standards since it allows for the preservation of mineral
water quality and prevents the destruction of aquifers.

Techniques that have been applied to develop specific design solutions have a certain
value to science. Furthermore, they can be used in engineering practice for studying
hydrolithospheric processes in other fields. For instance, this technique for determining the
optimal number of wells can be used not only for models with the skin effect but also for
other distributed models [65–68]. Similarly, the outcomes derived from computer modeling
methods [29,69,70] can find practical applications in related domains [71,72], particularly
in distributed systems with hydrodynamic processes.

5. Conclusions

In this study, we have explored methods for investigating hydrogeological entities and
methods for researching distributed control systems using the results of test filtration works.
The existing technological process for extracting mineral water from deposits has also been
analyzed. Among the main tasks accomplished within the study are the following:

1. Statistical processing of operating mode data for the deposit revealed the stationarity
of hydrolithospheric processes, enabling the modeling of stationary random influences.
These influences may lead to a decrease in the piezometric level below the permissible
norm, disruption of the structure of the hydrogeological entity, and a loss of the
mineral water source.

2. Through the results of groundwater inflow testing, the prospects for developing and
utilizing new deposits were determined. Additionally, possibilities for upgrading the
existing mineral water deposits were identified through the selection of the optimal
number of extraction wells.

In the future, we plan to develop a control system using the resulting model. The syn-
thesis of controllers will make it possible to automatic control the process of mineral water
extraction in real-time, further increasing environmental safety in the region.
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