
Citation: Anees, M.M.; Banzhaf, E.;

Wang, J.; Joshi, P.K. Quality Index

Approach for Analysis of Urban

Green Infrastructure in Himalayan

Cities. Land 2023, 12, 279. https://

doi.org/10.3390/land12020279

Academic Editors: Iwona Cieślak,
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Abstract: In fast urbanizing cities, fragmentation of urban green infrastructure (UGI) commonly arises
due to lack of efficient planning to maintain the quantity and improve their quality. As ecological
processes and landscape patterns are closely intertwined, it is a prerequisite to investigate landscape
structure when aiming at better provision of ecosystem services. This study integrates remote sensing,
geographic information system, combination of landscape metrics, and multi-variated statistics to
delineate structural attributes influencing UGI Quality (UGIQ). We exemplify our methodology in
three capital cities of Indian Himalayan states at administrative ward level. The UGIQ is derived
by comparing landscape characters defined by nine metrics denoting area, shape, and aggregation
attributes. By employing principal component analysis (PCA) and multi-collinearity diagnosis, a
set of quality defining metrics are obtained for each city. Further, to gain insightful spatial basis
for improving connectivity, Morphological Spatial Pattern Analysis (MSPA) is used to visualize
and classify patches into seven morphological classes. Landscape characterization highlights a
pattern of low-quality wards having a limited number and area of UGI patches in urban centers,
and high-quality wards with complex and aggregated patches towards fringes. PCA identifies
the positive influence of area (LPI, AREA_MN) and shape (LSI, FRAC_AM, CONTIG) metrics and
negative influence of patch distance (ENN_MN) and fragmentation (PD) on UGIQ in different
combinations across the cities. Higher shares of morphological core and edge classes are recognized
for overall UGIQ improvement. The results provide quantitative measures to develop integrated
spatial planning strategies.

Keywords: landscape metrics; urban growth; green spaces; morphological spatial pattern analysis
(MSPA); fragmentation; Himalayan cities

1. Introduction

Urban Green Infrastructure (UGI) is recognized to contribute towards sustainable
urban development by improving environmental quality [1] and providing a fair quality
of life in cities [2,3]. These advantages are driven by a wide variety of multifunctional
ecosystem services (ESs) that UGI provides, and its flexible incorporation in urban plan-
ning [4]. UGI is defined as strategically planned networks of green and blue spaces with
focus on multifunctionality and connectivity between and among them to improve the
delivery of a wide variety of ES [5–7]. In terms of land use planning, UGI is evaluated
as spatio-ecological concept which can be utilized to reconnect habitats and plan new
ones to improve the environmental quality of cities [8]. By doing so, the UGI approach
incorporates the importance of ecosystem functions and linkages [9], and provides a scope
to reverse habitat fragmentation [10]. As a planning tool, UGI provides a holistic solution
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for improving ES delivery by building a comprehensive association between ecological and
social viewpoints [11] and thus aids ‘smart conservation’ [8].

The benefits of a planning tool such as UGI are underutilized in developing countries
due to the lack of expertise and resources [12]. Rapid urbanization also adds extensive
pressure on the capability of UGI in providing ES and acts as a strong driver to disrupt
ecological functioning. Urban growth results in both fragmentation and reduction in UGI,
which in turn negatively affects habitat connectivity [11] and the spatial urban structure [13].
This can lead to environmentally degraded spaces in the city [14]. In developing countries,
fast urbanizing cities have limited UGI areas and restricted planning measures that can
strategically improve their ES delivery. In these cities, the distribution of existing UGI is a
combination of naturally remaining tree-clad areas and designed green spaces, without
integrating an ecological and social cohesion perspective. Previous studies on UGI have
largely focused on various aspects such as their distribution in different land uses [15],
impacts of urbanization [16], accessibility and usage [11,17], and visual and amenity bene-
fits [18]. However, beyond the measure of human perceived size and shape, we also need
to consider the landscape characteristics and ecological processes affecting their quality.

An important factor to enhance ES delivery is to improve UGI quality (UGIQ). Due
to the subjective nature and diverse urban development contexts of the UGIQ, it can be
interpreted from different lenses [15] such as social-ecological, ecological, economic, and
cultural services. In the present study, we consider the primary attributes that evaluate
UGIQ from a landscape ecological perspective by focusing on their structural attributes such
as size, shape, distance, relative positioning, and combination of other fractal geometric
measures. Thus, the quality of UGI refers to a network of urban interconnection with
natural settings, semi-natural patches, and green and blue spaces, which provide ESs that
support human well-being and quality of life of its residents, and which are crucial for
sustainable urban growth. Herein, a study of structural attributes plays an important
role in examining changes in spatial patterns and interpreting their reciprocal effect on
ecological functions [19,20]. As an innovative approach to quantify the quality of UGI, we
combine landscape metrics (structural indices) and Morphological Spatial Pattern Analysis
(MSPA) (morphological algorithm) to deepen the understanding of UGI. The structure
of UGI is most effectively quantified with the use of landscape metrics, which delineates
the structure through geometric and spatial properties of different mosaics of patches [21].
This also allows comparisons across different landscapes with the same set of metrics.
However, additional tools such as MSPA are proven to deduce the structural links of UGI
patches at a pixel level and thus provide enhanced classification and visualization required
for implementing UGI planning measures in urban areas. This spatial basis is lacking in
landscape metrics analysis [11,22]. Thus, we use the combined approach to gain advantages
of both, and generate conveniently applicable planning indicators. This paper responds
to the prominent loss of UGI in the Himalayan cities, and the lack of information on their
status, by developing a novel two-step identification tool for prioritizing urban greening
efforts in cities that often lack ecological reasoning. Thus, our study also aims at filling the
significant knowledge gap about Himalayan cities with respect to UGI.

In the present study, we analyze landscape characteristics and morphological patterns
of UGI, which conjointly provide a deeper understanding of their structure. This in
turn highlights the key ecological processes that are more restricted in urban settings.
As a study area, we selected three Himalayan capital cities of India, considering that
(i) they are significantly functioning urban areas in the economic, socio-ecological, and
cultural dimensions with a strong demand for efficient UGI planning and management
strategies, and (ii) they can represent the different status of UGI due to varying topography
and urbanization processes. Based on this, we hypothesize that limited quantity and
restricted patterns of UGI in densely urbanized wards of these cities would lead to a
reduced UGIQ, while expanding urban fringe wards would show differential patterns
influenced by topographically conditioned land use. Along with computing UGIQ at the
ward level, our objectives are: (a) to analyze variations in composition and configuration of
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UGI within each selected city and among them; (b) to assess spatial variations in UGIQ
and their contributing landscape characteristics; and (c) to improve understanding of the
landscape structures to foster urban planning by exploiting morphological patterns of UGI.

2. Materials and Methods
2.1. Study Area

Three main urban centers in the Western Himalayan region of India comprise the study
area: Srinagar, Shimla, and Dehradun (Figure 1). Each of these cities is the most populous
and urbanized in the respective states and is the hub for economic activities tourism, urban
planning, and management, respectively. However, these cities differ in their altitude,
topography, population number and density, and factors that steer urban growth (Table S1).
The three cities are intensely developed urban landscapes, and population dynamics as well
as related land use changes put diverse levels of pressure on UGI. We choose to elaborate
the methodological concept in these diverse urbanized areas to allow further transferability
in rapidly urbanizing cities of developing countries.
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Figure 1. Location of capital cities of states in Indian Himalaya. The inset provides the ward boundary
of these cities.

2.2. Mapping Satellite Images

To carry out a detailed Land Use Land Cover (LULC) classification of the study sites for
the year 2019, we undertake a three-step method (Figure S1): (1) satellite image (Sentinel-2)
processing and extraction of major classes; (2) image fusion and vegetation index-based
extraction; (3) and image classification, post-classification analysis, and accuracy assess-
ment. A detailed description of these steps is provided in Supplementary Section S1. These
mapped (Figure 2) UGI classes (see Table S5 for city-specific classes) are further used to
conduct landscape characterization.
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Figure 2. Distribution of UGI in three cities.

2.3. Landscape Metrics Analysis

Since landscape metrics reflect the spatial heterogeneity and simultaneously imply the
UGIQ, we undertook a site-specific landscape assessment of UGI and selected a set of nine
class-level metrics (see Table S3 for measured attribute and description and Table S6 for
formula and range). This selection is based on (1) the literature [23–25] and (2) compatibility
of metrics to be used independent of the size. The selected metrics are proven to delineate
the landscape characteristics of UGI in terms of composition and configuration by analyzing
their size, shape, and aggregation [24]. These metrics synergistically help in translating
spatial patterns to ecologically relevant processes such as fragmentation, proximity, and
edge effect [26] which have a profound impact on UGIQ. The administrative wards of the
three cities were used as the units for analysis in FRAGSTATS v.4.2.

2.4. Establishing the UGIQ Index
2.4.1. Selection of Metrics and Index Development

To identify the most important landscape metrics that contribute to the variation in
UGIQ, we carried out a multivariate statistical analysis [15]. All the derived metrics values
were standardized using a standard deviation model. SPSS v.27 was used to undertake the
Principal Component Analysis (PCA). The Varimax rotation was employed to convert the
selected metrics into a set of linear uncorrelated components in order to obtain the eigen-
value weights for each metric. All the components with an eigenvalue greater than 1 were
retained. For each ward in each city w, the index UGIQw was obtained by multiplying the
weights (Ei) of each component by the loading values (li) of the corresponding standardized
metrics (mi) (Equation (1)). Only loading values above 0.6 were selected [13,15].

UGIQw =
n

∑
i=1

Ei

n

∑
i=1

(li × mi) (1)

2.4.2. Model Validation Using Collinearity Diagnosis and Final Index
In order to avoid high correlation and redundancy between the metrics and vali-

date the selection of the core set of metrics, we carried out a stepwise regression with
multicollinearity diagnosis. The model includes or removes independent variables at the
respective steps based on their p-value. The selection of the core set of metrics for each
city was based on a generally accepted value of 10 as a variance inflation factor (VIF) [13].
Based on this, metrics with VIF < 10 and valid loading value > 0.6 were selected for each
city. Equation (1) was thus modified:

Srinagar UGIQw = E1 × (l1 × ED + l2 × LSI + l3 × FRAC_AM + l4 × ENNMN)
+E2 × (l5 × PD + l6 × LPI + l7 × AREA_MN)

(2)
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Shimla UGIQw = E1 × (l1 × LPI + l2 × ED + l3 × AREA_MN + l4 × ENNMN)
+E2 × (l5 × FRAC_AM)

(3)

Dehradun UGIQw = E1 × (l1 × LPI + l2 × AREA_MN + l3 × FRACAM) + E2 × (l4 × LSI + l5 × CONTIG_MN) (4)

2.5. Morphological Analysis

The MSPA tool grounds on a morphological image processing at pixel level by apply-
ing mathematical morphology to carry out the spatial pattern analysis [27]. We conducted
our analysis using the GuidosToolbox 2.9 (https://forest.jrc.ec.europa.eu (accessed on 21
September 2022)). On the basis of geometric arrangements and spatial patterns, MSPA was
used to classify UGI into seven predefined mutually exclusive classes: core, edge, perfo-
ration, bridge, loop, branch, and islet (Table 1). To undertake this analysis, the produced
LULC maps were converted into binary images: (1) the foreground includes all classes
enclosing the UGI (Table S5); and (2) the background includes all the other classes. We
performed MSPA at the ward level by batch clipping in ArcGIS 10.7, followed by batch
processing in the MSPA toolbox. For this refined classification, we set three parameters
according to the requirements of the analysis: (1) connectivity, i.e., foreground pixels were
classified using eight-neighbor connectivity; (2) edge width of 1 was selected after testing to
obtain a representative result, which determines the minimum size of core which increases
with width; (3) transition, which allows the inclusion or exclusion of connecting elements
(bridge and loop) to the core area. To retain important transition features near the core, we
included transition pixels into the process.

Table 1. Definition of morphological spatial patterns (source: Wang et al. [11,17]; adapted from Vogt [27]).

MSPA Classes Definitions

Core GI surrounded by all sides (8-connectivity) by GI

Bridge GI that connects two or more disjunctive areas of GI cores

Loop GI that connects an area of GI core to itself

Branch GI that extends from one area of core, but does not connect to another area
of core

Perforation
Transition zone between GI and gray infrastructure areas for the interior
regions of GI and has the shape of a doughnut in which a group of GI types
are shaped by perforations (inner edges)

Edge Transition zone between GI and gray infrastructure (built-up types)

Islet Unconnected class without core

To understand the significance of morphological spatial patterns on UGI quality, MSPA
was applied at both the city level and ward level, i.e., a subset of wards selected according
to high and low UGIQ obtained from the PCA analysis.

3. Results
3.1. Landscape Characteristics—Intracity and Intercity Gradients

Figures 3–5 show the spatial patterns of UGI landscape characteristics at ward level
for the three cities.

https://forest.jrc.ec.europa.eu
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In Srinagar, the aggregation metrics PD showed the highest value among the southern
and northern wards adjacent to the urban center, indicating increased fragmentation
and heterogeneity. These wards also have a significantly smaller UGI area with a low
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AREA_MN and LPI value, correlating with the urbanized areas. While the city center
wards have low PD values, but also a lower AREA_MN value, thus, highlighting the
critical condition, i.e., small and limited UGI in the dense urban areas. Wards with the
largest UGI patches are the ones covering Dal lake with very high AREA_MN and LPI and
lower PD (ward 58 and 59), resulting mainly from the homogenous marshy vegetation. The
majority of other wards with a high UGI cover and low fragmentation have a greater share
of agroforestry (north) and human-maintained UGI such as golf course (northeast) with
significantly low-density settlements. In terms of shape complexity, higher ED, LSI, and
FRAC_AM values in the fringe wards indicate an increased complexity in the shape of UGI
patches. This can be mainly attributed to the irregular shape of agroforestry patches and
fragmented agricultural land, both interspersed with settlements and uncultivated land.
In the urban center, limited availability of UGI (low AREA_MN) and regular shapes with
lower shape complexity are observed due to greater human management in which parks
and roadside vegetation are considered. This is also shown through lower FRAC_AM
values which tend closer to 1 in the case of simpler shapes based on the perimeter–area
relationship across varied patch sizes. CONTIG, which measures the spatial connectedness
of patches depending on their shape, is found to be very high only in wards with higher
connections. Wards with interconnected parks also have a higher value (such as ward 21
and 56), while those with higher LPI have lower values. The aggregation of patches is
one of the most important characteristics to interpret fragmentation. MESH shows large-
size aggregated patches in the north and northwest wards while the majority of built-up
dominated wards have an effective mesh size of <39 ha (including some fringe wards
with agriculture dominance). ENN_MN highlights high variation within cities. Higher
patch isolation is observed in urbanized wards concentrated in and around the urban
center, while most of the fringe wards have a comparatively shorter distance to the nearest
UGI patch.

In Shimla, PD values indicate the highest number of isolated UGI patches in the main
urban centers of the city, i.e., touristic (ward 12 and 13) and commercial wards (ward 16 and
19). Low AREA_MN and LPI values correlate with this pattern and emphasize the presence
of small UGI with a high level of fragmentation among existing patches. The majority of the
other wards have large intact UGI patches (mean patch size > 2.5 ha) resulting from limited
urban expansion in unfavorable topography. In shape complexity, the existence of intact
patches also leads to reduced ED and LSI in such wards with high LPI and AREA_MN
values (ward 4, 5, 8, and 15). These wards with simpler shapes differ from urban center
wards showing similarly low LSI and FRAC_AM values; however, having a higher ED
value. This is due to higher fragmentation and intense human management resulting
in simpler shapes but with more edges [15]. The spatial connectedness shows complex
patterns across the wards. High CONTIG values are observed in some wards along with
low LPI and AREA_MN, indicating the probable effect of topography in maintaining
connections despite urban growth (ward 11, 12, and 14). The low MESH value reaffirms
the lack of aggregated UGI patches in the highly urbanized urban center wards. The
western wards of the city, in general, have a higher MESH (>54 ha) correlated with a lower
fragmentation (low PD). ENN_MN distribution shows very low variations among all the
wards, with most of the UGI patches in close proximity (<30 m).

In Dehradun, PD values are found the highest in isolated wards outside the urban
center and in the southern ward with a sparse built-up space in a once agriculturally
dominated area (ward 35), indicating high fragmentation. The urban center is majorly
devoid of large UGI patches, and thus has a low PD. The northern wards, situated at
the foothills have the least PD with high LPI and AREA_MN. Other wards with similar
features are dominated by institutional green areas (large gardens, parks, and golf courses
under the control of enclosed institutions) (ward 8 and 60) and forests (ward 30 and 51).
The shape complexity of the urban center is observed to be lowest with low ED and LSI
values, corresponding with low area metrics. The highest shape complexity (high ED,
LSI, and FRAC_AM) is found in two sets, (1) northern wards with both natural entities
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(such as river bed, reserved forest, and foothill forest patches) and, (2) southern agriculture-
dominated wards (but low mean patch area of agriculture patches lead to comparatively
lower FRAC_AM owing to perimeter–area relationship). CONTIG values are higher in
southern wards due to the development of new residential colonies, which convert out
agricultural land with complex shapes but higher connectivity among them. Higher MESH
values (>29 ha) with low PD indicate non-fragmented UGI patches are found in the northern
and isolated western wards. Higher ENN_MN values in urban center wards highlight the
farther distance between patches, indicating the least availability to residents.

The comparison of the three cities provides interesting insights into their landscape
characteristics. As larger cities, Srinagar and Dehradun have similar UGI characteristics
to some extent, but the former distributes better. Shimla is smaller, less urbanized, and
holds a less fragmented proportion of UGI. The area metrics highlight that Srinagar and
Dehradun are quite similar in their distribution and size, while Shimla has larger UGI
patches (Figure 6). From low to high, the order of AREA_MN values are: Dehradun
(~0.34 ha) < Srinagar (~0.88 ha) < Shimla (~3.5 ha). Similarly, the average LPI value of
Shimla (57 ha) is significantly higher than in Srinagar (14 ha) and Dehradun (13 ha). Thus,
the majority of the patches are small sized in larger cities. The shape complexity of these
cities (with the dominance of agroforestry, agriculture, and remaining natural UGI patches
in the fringes) differs from Shimla, where there is presence of large patches of UGI (intact
forest area without human interventions). In all cities, the aggregation metrics have clear
trends as this characteristic is directly influenced by the urbanization level. Dehradun has
a higher PD (90/ha) compared with Srinagar (~51/ha), indicating a higher fragmentation.
However, patch distance on average is lower in Dehradun (37 m) compared with Srinagar
(41 m), while Shimla has the shortest distance (25 m) between patches overall.
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3.2. Urban Green Infrastructure Quality

Tables S7–S9 show the multicollinearity statistics of the core set of metrics selected
for Srinagar, Shimla, and Dehradun, respectively. Table 2 shows the principal components
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(PCs) selected for all the cities, with their Eigen values and individual and cumulative
variance explained by the components. The loading values of the selected components for
all the cities are shown in Table 3.

Table 2. PCA with Varimax rotation shows the amount of variance explained by principal components
(PC) with above 1 Eigen value (in bold) for the three cities.

PC Initial Eigenvalues Extraction Sums of Squared
Loadings Rotation Sums of Squared Loadings

Srinagar Total % of
Variance

Cumulative
% Total % of

Variance
Cumulative

% Total % of
Variance

Cumulative
%

1 3.514 50.194 50.194 3.514 50.194 50.194 3.356 47.939 47.939

2 2.150 30.707 80.902 2.150 30.707 80.902 2.307 32.963 80.902

3 0.609 8.706 89.607

4 0.387 5.534 95.141

5 0.186 2.651 97.792

6 0.088 1.260 99.052

7 0.066 0.948 100.00

Shimla

1 3.036 60.725 60.725 3.036 60.725 60.725 3.032 60.632 60.632

2 1.194 23.884 84.609 1.194 23.884 84.609 1.199 23.977 84.609

3 0.455 9.105 93.715

4 0.262 5.230 98.945

5 0.053 1.055 100.00

Dehradun

1 3.036 60.713 60.713 3.036 60.713 60.713 2.553 51.050 51.050

2 1.139 22.781 83.495 1.139 22.781 83.495 1.622 32.444 83.495

3 0.558 11.163 94.657

4 0.206 4.123 98.780

5 0.061 1.220 100.00

In Srinagar, PC1 and PC2 explained 80.90% of the total variation. PC1 (ED, LSI,
FRAC_AM and ENN_MN) explained 50.19% of the data variance. Except for ENN_MN, all
of them play positive roles and represent important factors for the shape complexity and
patch distance. PC2 (PD, LPI and AREA_MN) explains 30.70% of the remaining variation.
Both the area metrics influence UGIQ positively while PD has a negative influence and
describes the effect of increased fragmentation in lowering quality.

In Shimla, PC1 and PC2 explained 84.60% of the variation. PC1 (accounting for 60.72%
of variance) is represented by the positive influence of LPI, AREA_MN and the negative
influence of ENN_MN and ED on UGIQ. This describes the role of large intact UGI in
Shimla that dominates the city, having comparatively lower shape complexity and patch
distance. PC2 (accounting for 23.88% of variance) is represented by the positive effect
of FRAC_AM, describing the role of the perimeter–area ratio-based complexity of the
patch shapes.
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Table 3. Loading factors of selected components (in bold) for each city.

Rotated Component Matrix a

Component

1 2

Srinagar

PD 0.394 −0.771

LPI 0.366 0.882

ED 0.951 −0.067

LSI 0.850 −0.104

AREA_MN 0.118 0.857

FRAC_AM 0.820 0.397

ENN_MN −0.868 −0.164

Shimla

LPI 0.917 0.285

ED −0.878 0.331

AREA_MN 0.889 −0.093

FRAC_AM 0.035 0.976

ENN_MN −0.793 −0.215

Dehradun

LPI 0.965 0.079

LSI 0.326 0.815

AREA_MN 0.945 0.135

FRAC_AM 0.788 0.416

CONTIG_MN 0.033 0.872
a Rotation converged in two iterations.

In Dehradun, PC1 and PC2 explained 83.49% of the variation. PC1 (accounting
for 60.71% of variance) is represented by the positive influence of LPI, AREA_MN, and
FRAC_AM. This describes the important role of large UGI with higher shape complexity
in UGIQ of the city. PC2 (accounting for 22.78% of variance) is represented by the posi-
tive effect of LSI and CONTIG which indicates the further role of shape and connectivity
originating from the shape of the patches.

Figures 7 and 8 show the distribution of UGIQ across the cities. In each city, the
variation in UGIQ categories (Table 4) is dependent on the derived valid metrics and based
on the dominant landscape characteristics. In all cities, high UGIQ wards are concentrated
in the fringe wards with different levels of agroforestry, forest patches (mostly in Shimla),
and agriculture. Medium- and low-quality wards are concentrated in the urban core and
adjoining areas which are rapidly urbanizing.
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Table 4. UGIQ variation in categories across cities.

UGIQ Value UGIQ Category Dominant LULC of the Wards

Srinagar Shimla Dehradun

−30.35 to −7.26 −15.23 to −4.89 −12.37 to −2.22 Low

Centre wards with high urbanization
level leading to fragmented and
smaller UGIQ patches. Require
immediate large-scale intervention to
improve the status of quality.

−7.25 to 5.13 −4.88 to 6.88 −2.21 to 8.34 Medium

Wards with expanding built-up area,
generally interspersed with remaining
agricultural land (in case of Srinagar
and Dehradun). Require efforts to
conserve remaining patches and
maintain a sustainable balance of
green and grey infrastructure.

5.14 to 27.20 6.89 to 19.58 8.35 to 30.80 High

Wards with large intact UGI patches
such as wetland, agroforestry, and
forest patches. Require efforts to
maintain status quo and reduce
human intervention in the future.

3.3. Morphological Spatial Pattern Analysis (MSPA)
3.3.1. City-Level Analysis

The spatial variation in the identified structural classes in each city along with their
percentage distribution is shown in Figure 9. The dominance of the core class is observed
in all the cities. However, in comparison to the larger two cities, Shimla shows a higher
core class coverage (75.07%). This can be attributed to the presence of intact reserved and
protected forest areas in this city. However, perforation class, which exists within UGI
core is also higher (7.71%) in Shimla, mostly in proximity to the central part of the city.
Due to the presence of large wetlands and agricultural land within the city, Srinagar has a
comparatively higher (64.46%) core class UGI compared with Dehradun (48.01%). Next
to the core class, the most contributing is the edge class in all the cities. Dehradun has the
highest edge class percentage (27.43%) attributed to the mix of sparse built-up growth in
agriculture-dominated land in the south, which offers higher interaction with GI. However,
this does not ensure higher interaction in the future considering predicted agricultural land
loss [28]. In Srinagar, islet class is prominently seen in the southern fringe, mostly in areas
interspersed with sparse built-up land. While in the case of Dehradun, this class is found
throughout the city and indicates high fragmentation.
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3.3.2. Ward-Level Analysis

To gain finer spatial information on the distribution of UGI in the three cities through
MSPA, five wards were selected each for low and high quality. Figures 10 and 11 show
the percentage distribution and spatial variation in the seven classes, respectively. In all
the cities, low UGIQ wards are predictably dominated by built-up land. In these wards,
UGI forms <5% and <4% of the total ward area in Srinagar and Dehradun, respectively;
however in the case of Shimla, it is between 20 and 46%. Thus, even low UGIQ wards
in Shimla hold a better UGI in terms of absolute land cover. Regarding the classes of the
available UGI area, most of the wards in Srinagar and Dehradun are characterized by a
very poor core class coverage and are dominated by either islet (out of the selected 5 wards,
2 wards in Srinagar and 3 wards in Dehradun have 100% islet class cover) or edge class.
This indicates the fragmentation into smaller patches and increased transition between
vegetated and non-vegetated areas. However, in the case of Shimla, a significant percentage
of UGI is composed of the core and edge classes (average 31%). This is followed by the
branch class (average 17%). The bridge and loop classes are very limited in all the cities,
while the perforation class is absent in all cities due to the low coverage of the core class.
The spatial basis provided by Figure 10 allows for strategic intervention on the ground
depending on the nearest class type, for example, increasing connectivity between core and
branch class or increasing area of the islet class in these low-quality wards.
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In high UGIQ wards, the percentage of areas covered by UGI varies greatly (ranging
between 49–93% in Srinagar, 52–67% in Dehradun, and 79–92% in Shimla). The results
in Figure 10 show that the high percentage of core areas (Shimla > Srinagar > Dehradun)
substantially contribute to their respective UGIQ. What is important is the predominance
of core followed by edge class, which is a good evidence of high quality UGI, as the
combination of these two classes ensures higher interaction with large natural patches. The
perforation class is higher in the case of Srinagar and Shimla followed by the branch. In
Dehradun, the branch class has a higher contribution followed by equal contributions of
the islet and bridge classes. Loop is the least contributing class in all cities.

4. Discussion

In an urban area, the prevailing land use is mostly the result of human activities which
consequently play an important role in shaping the urban structure and development. By
doing so, they influence the resulting spatial patterns of UGI. Similar to natural processes,
the dynamics of human activities shape the secondary landscape structure resulting the
urban landscape to be composed of mosaic patterns of natural and anthropogenic elements,
yet constrained by the primary landscape structure (naturally prevailing conditions such
as topology, soil, vegetation composition, etc.) [29].

4.1. UGI and Management Strategies

In the highly urbanized cities of Srinagar and Dehradun, the landscape patterns follow
the general urbanization trend of dense urban center and radiating outward urban growth.
This essentially leads to a parallel trend of smaller, simpler, and fragmented UGI patches
in the center, and larger, complex, and aggregated patches towards the fringes. This is
a clear indication that larger cities did not accommodate UGI in their urban planning
of the central wards and are far from fulfilling the ecological quality. Similar trends are
also reported in other Asian cities such as Hong Kong, where highly compact areas of
the city observed high PD and low AREA_MN and LPI values [15]. Fast growing cities
such as Singapore have also reported likely spatial patterns with smaller, fragmented, and
complex-shaped green spaces with increasing urbanization [30]. Liu et al., [31] carried
out an empirical evaluation of 16 cities around the world to understand the relationship
between habitat fragmentation and landscape metrics. Correlating the changes in metrics
such as PD, AREA_MN, ED, LSI, and ENN_MN, our results also point toward the observed
habitat loss in urbanizing landscapes.

Srinagar, the largest city in the study area, has a high degree of fragmentation due
to a number of isolated parks across the city [32]. This demands well-planned measures
to increase the connectivity of these existing parks. This benefits residents and improves
ecological connectivity for biodiversity and ES provisions simultaneously [33]. In the fringe,
considerable agricultural land (combined with agroforestry) adds to sufficient UGI area and
shape complexity. As the increased complexity is due to human-managed UGI categories,
this also indicates towards an interspersed built-up area that in future has potential to
reduce UGI. Thus, new policies should carefully restrict built-up growth that may lead to
discontinuity in UGI. The presence of wetland and associated marshy vegetation plays
an important role in low fragmentation levels and enhanced UGIQ across a large area
adjacent to the center. Dehradun, situated on the foothills, has a combination of highly
urbanized, agriculturally dominated, and institutional areas. Considering their landscape
characteristics, different urban management strategies would be required to improve their
UGIQ. Urban center wards have critically low levels of UGI and planting on available
lands such as roadsides and public open spaces are recommended, but this is in general
considered a difficult option in low-income neighborhoods [4]. The wards with expanding
built-up areas on agricultural land (in south) do not have provisions for UGI other than
currently surrounded agricultural patches. Future growth is expected to overtake such
land [28] and thus lead to critically low UGI. Thus, large-scale planning that considers
future growth is necessary and urgent to conserve the quality of UGI. Being a smaller
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city situated in a terrain with considerable challenges for urban expansion, Shimla has a
different urbanization pattern and shows better UGI patch characteristics. Urban growth
here is not continuous and thus only concentrated on the major tourism and commercial
centers of the city. UGI patches need current levels of protection in the future to maintain
the status quo. Thus, in all the cities, to realize the full potential of the UGI concept, it
is beneficial to focus on improving connectivity, maintaining larger core areas [17] and
allowing growth in natural shapes that provide protection [34].

4.2. Landscape Characteristics and Its Ecological Effects

Ecological stability of UGI and the urban ES provided for human well-being are highly
dependent on the composition and configuration of the UGI [35]. The physical structures
of the UGI patches are known to influence ecological processes, which in turn, shape the
landscape structure by influencing the primary productivity, flow of energy, nutrient and
material cycling, biodiversity distribution, etc. [36]. In terms of biodiversity distribution
and habitat quality, the shape, size, and connectivity of patches play differential roles
for a wide variety of organisms [21]. In this study, fragmentation and the smaller size
of patches stand out as an easily identified consequences of urban growth and sprawl.
Area metrics are known to contribute to the survivability of species and larger size helps
maintain higher species richness and relative abundance [37]. Furthermore, large-size
patches also offer morphological cores [11] which provide higher resilience to external
disturbances [16]. The limited patch size of UGI, especially in the urban center also exposes
species to a contrasting urban environment [26]. The edge and shape of the patches have
important ecological significance as they have implications on the interaction of species
with the outside “matrix” according to the patch matrix corridor model on which landscape
metrics are based. Increased complexity and edges of patches allow better stability in
the interiors for some species; however, such fragmented patches can also increase the
spread of invasive species and predation [38]. Proximity and connectedness of patches
to a natural area can help in improving biodiversity [39] and its recreational value [18].
Lower ENN_MN values in wards closer to the urban fringe is beneficial. A key concept
that summarizes most of the above ecological effects is fragmentation. In the studied
larger cities, fragmentation is severe and indicates poor habitat quality [25] and resulting
ES. Priorities in landscape planning should be provided to wards with very high PD and
ENN_MN values. The present study proposes and relies on the land metrics wherein
landscape mosaic is the primary paradigm of landscape analysis. However, newer research
recommends landscape configurational entropy (commonly known as Boltzmann entropy)
to analyze the entropy of landscape gradients [40–42]. Similarly, the entropy weights
method (EWM) is commonly used in decision making including the assessment of the
sustainability of cities [43]. Such information-weighting methods in decision making need
a higher degree of care for reporting and correct calculations in such studies [44].

4.3. Role of Morphological Analysis

MSPA enhances our understanding of UGI in intuitive structural classes. While
landscape metrics are more quantifiable in nature, MSPA provides a spatial basis for
understanding the role of connectivity (Figure 10). It is proven to be efficient in assessing
the connectivity of UGI which is one of the most recognized UGI planning principles [6,7]. A
detailed analysis of each ward can highlight areas that should be prioritized for connectivity
by local authorities. Morphological patterns can also help in optimizing scarce land
availability and facilitate UGI uses such as roadside plantations, parks, and water to
improve the connectivity of UGI.

In the present study, the lack of core class in low UGIQ wards highlights the de-
prived state of urban center wards. The presence of UGI core class has a significant effect
on reducing the occurrence of the urban heat island phenomenon [45] and improving
biodiversity [46]. This class contributes to all types of ES provisions, both in urban and agri-
culturally dominated areas [27]. Compared with a single value of AREA_MN for a ward,
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MSPA classes are spatially identifiable as demonstrated in the Section 3.3, thus providing
the spatially explicit information for increasing the protection status of any existing core
patches. The highest priority should be provided to convert islet classes into core regions by
increasing their area, followed by increasing the connectivity between core classes through
bridge class. This class also provides simultaneous benefits to residents who are at a further
distance from the UGI core [11] toward a fair quality of life.

5. Conclusions

This study analyzed the landscape characteristics and morphological attributes of UGI
in three Himalayan cities and highlighted the important role played by their structural
features. In each city, being mountainous urban landscapes, a combination of (1) land use
planning measures (mostly in the urban center), (2) human-caused landscape heterogeneity
of UGI patches resulting from unplanned urbanization (mostly in the urban fringe), and
(3) topographic characteristics are observed to influence the UGI attributes. Although these
three factors are shared across the cities, specific differences in the urbanization level and
topography have resulted in varied UGI characteristics and thus highlight the need for
strategic intervention in each city.

By conducting a landscape characterization analysis at the ward level, a clear dis-
tinction can be seen in the structural features of UGI in urban centers and fringe wards,
highlighting the role of urbanization, implemented land use policy, and topography. This
is in tune with our stated hypothesis. We were able to identify a combination of structural
components unique to each city that influence the quality of UGI. In larger cities, better
UGIQ are observed in fringes with higher complexity of patches that are interspersed with
built-up areas, whereas in the case of Shimla, this is observed in areas with intact patches
of forest with the least population pressure. As a significant result, we identified three
categories of UGIQ classes, which require site-specific planning approaches in Himalayan
cities. In addition, a morphological analysis provides a spatial base for identifying weaker
structural features of any selected landscape and thus contributes to efficient urban plan-
ning. This study is expected to generate an ecological viewpoint on urban planning in
developing countries, where the UGI concept is not yet absorbed. Future studies should de-
lineate an understanding of the structure–function relationship of UGI to better understand
interlinkages between ecological processes and landscape patterns.
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1995; McGarigal, 2015. Table S7 Stepwise regression with multicollinearity test for Srinagar. UGIQ is
the dependent variable. Table S8 Stepwise regression with multicollinearity test for Shimla. UGIQ is
the dependent variable. Table S9 Stepwise regression with multicollinearity test for Dehradun. UGIQ
is the dependent variable.
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