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Abstract: Following the experimental discovery of several nearly symmetric protein cages, we define
the concept of homogeneous symmetric congruent equivalent near-miss polyhedral cages made out
of P-gons. We use group theory to parameterize the possible configurations and we minimize the
irregularity of the P-gons numerically to construct all such polyhedral cages for P = 6 to P = 20 with
deformation of up to 10%.
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1. Introduction

Recently, an artificial protein structure, referred to as TRAP-cage, was engineered from
TRAP [1–4]. (TRAP is an acronym for “trp RNA-binding” attenuation protein. It is an
11 subunit RNA-binding protein that regulates expression of genes involved in tryptophan
metabolism (trp) in Bacillus subtilis).

The structure was made out of 24 nearly regular hendecagons (11 edge polygon)
each having 5 neighbors with which to share an edge. The remaining 6 edges per face
define the boundary of 38 holes; 32 of them are triangles, 3 faces contributing 1 edge each,
while the remaining 6 are in between 4 hendecagons, each contributing 2 of their edges to
them. More recently, similar nearly regular structures made out of the same protein were
identified [5,6].

The geometrical structure modeling the cage proteins described above is called a
polyhedral cage, or p-cage for short [7]. A p-cage corresponding to the TRAP-cage with
regular polyhedra is mathematically impossible; it can only be realized approximately, if
the edge lengths and angles of the polygonal faces are slightly deformed. Such an object
will be called a near-miss p-cage.

Engineering polyhedral nano-structures is not new and not restricted to proteins.
For example, experimental techniques called DNA origami have been created by bio-
engineers [8–10]. Such DNA structures differ mostly from protein cages in that they
are mostly hollow as the DNA strands span the edges of the polyhedra that are created.
Nevertheless, the regular or nearly-regular geometries we identify in our paper could be
useful for a range of nano-structures including DNA origami.

The concept of chemical cage is also not new and they are observed or made in a
number of contexts [11–15]. Polyhedral structures in chemistry are also common [11,16–18].

In the present paper, we apply graph theory to describe the connectivity of p-cages, at
a level where whole molecules forming the faces of the cage can be modeled with planar
polygons. We note that graph theory also plays an important role at the atomic level, in
molecules [19–27] and also in nano-structures [28–35].

The aim of this paper is to identify these new geometries as new mathematical objects,
but we also aim to help bio-nano engineers to identify the type of protein assemblies likely
to form nano cages, such as the ones identified in [1–4].

A first study of p-cages was recently performed [7] by creating p-cages where all the
faces are equivalent from a connectivity point of view. This resulted in a large number
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of p-cages with a deformation below 10% and most of them, though not all, appeared to
have faces with identical deformations. This suggests that one should consider p-cages
where the faces are all equivalent modulo a congruent automorphism. The aim of this
paper is to build such p-cages. In [7] it was shown that the connectivity between the faces
of all equivalent p-cages can be constructed from the planar graphs of regular solids. All
such p-cages were then constructed using polygonal faces ranging from hexagons up to
polygons with 17 edges.

In this paper we build homogeneous symmetric congruent equivalent near-miss p-
cages with deformation up to 10%, but unlike in [7] we impose a symmetry on the p-cages
to ensure congruence between the faces. Aside from obtaining p-cages which are, in some
sense, more symmetric, imposing the symmetry leads to a more efficient method to build
the p-cages as there are fewer variables to adjust to optimise the p-cage near-symmetry. As
the number of variables is much smaller than in the case of [7] we are able to consider all
p-cages made out of faces ranging from hexagons up to polygons with 20 edges.

The paper is organised as follows. We start with a few formal definitions and then
recall how the planar graphs of the regular solids are linked to the connectivity between the
faces of equivalent p-cages. For each regular solid, we identify all the transitive subgroups
of their symmetry group which we then use to determine which hole shapes are compatible
with the equivalence of the faces.

For each regular solid, we use their symmetry group to derive a parametrization of the
face vertices compatible with the equivalence and we use computer programs to identify
the least deformed p-cages for each possible configuration. We finish by describing the
obtained p-cages and presenting the images of some of the least deformed ones.

2. Symmetric Polyhedral Cages

Following [7] we define a polyhedral cage as an assembly of planar polygons, referred
to as faces, separated by holes which are not required to be either planar or regular (see
Figure 1). The edges of the polygonal faces are adjacent to either another face or a hole
and will be referred to in what follows as shared-edges and hole-edges, respectively. In
other words, every edge must either belong to two faces or belong to a single face as well
as a hole. For any two adjacent edges at least one of them must be adjacent to a hole. Each
face must also have at least three neighbors implying that the p-cage faces must have a
minimum of six edges.

Arco_18_2_3_4_5
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Figure 1. (a): schematic construction of the hole polyhedra of a p-cage. The number of hole-edges of
the top left face is given for each hole to which the face contributes (the hole-edges for that face are
orange on the figure). (b): the corresponding planar graph with the number of hole-edges around
each vertex.
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A homogeneous p-cage is one where all the faces are polygons with the same number
of edges. As we shall only consider homogeneous p-cages in this paper, this qualifier will
be omitted from now on.

A symmetric p-cage is defined as one for which for each pair of faces there is a
congruent automorphism (a proper rotation) of the p-cage that maps one face onto the
other. This implies that all the faces are identical.

The hull of a p-cage is defined as the polyhedron formed by the intersection of all the
planes containing the faces [7]. A p-cage is said to be convex if its hull is convex. In what
follows we will only consider convex p-cages.

The p-cages studied in [7] differ in that the faces are related by non congruent auto-
morphisms, the equivalence between faces being only at the graph level or, in other words,
the symmetry is at the connectivity level only and the faces can be different.

If the faces of the symmetric p-cages are regular polygons, the p-cage is said to be
regular, but if the faces are not regular, the p-cage is described as near-miss. The deformation
of near-miss p-cages can be so small that it is not noticeable to the naked eye, but it can also
be very large. We shall define a measure of the amount of deformation below and restrict
ourselves to deformations below 10%.

In what follows, we shall use N to denote the number of faces of the p-cage and P to
denote the number of edges of the faces. Each hole will be made out of Qh edges where we
include a hole index h as a p-cage can have different types of holes.

3. Symmetric P-Cage Construction

As described in [7], if one joins the center of the face of the p-cage that shares one edge,
one obtains a polyhedron, the face of which is not necessarily planar, but the resulting
graph is a planar graph [36] (see Figure 1). We call it the hole-polyhedron because, by
construction, its faces correspond to the holes of the p-cage. The vertices correspond to the
faces of the p-cage and the edges to the links between the p-cage faces. This is effectively
the dual of the p-cage and it encapsulates its connectivity.

Equivalence between the face of the p-cage is translated onto the hole-polyhedron as
an equivalence between the vertices. Graphs for which all the vertices are equivalent are
called Cayley graphs [37] and Maschke proved [38] that the only planar Cayley graphs are
the graphs of the regular solids, i.e., the prism, antiprism, Platonic solids, and Archimedean
solids. To construct a cage, one must choose P, the number of edges of a polygon as
well as one of the Cayley graphs. A polygon is then placed on each vertex of the graph
and linked to the adjacent faces according to the edges of the graph. One then has some
flexibility to distribute the hole-edges in different ways between the corners around each
vertex. For example, if one places an octagon on a trivalent vertex, such as on a tetrahedron
(Figure 2), there are three shared edges and five hole-edges which must be distributed
between the three adjacent faces of the Cayley graph. This can be done as 1,1,3 or 1,2,2,
plus permutations, but this must also be done for each face of the p-cage so that the faces of
the p-cage are all equivalent.

Formally, given a Cayley graph where each vertex has d neighbors and P-gonal
faces, the numbers, qi (i = 1 . . . d), of hole-edges on each corner around a vertex must
satisfy ∑d

i=1 qi = P− d. Equivalence between the faces of the p-cage, which translates into
equivalence between the vertices of the hole-polyhedron graph, implies that the sequence
qi must be identical for all vertices up to a cyclic rotation which is also determined by the
equivalence. As we shall see, for some p-cages, the invariance imposes that some pairs of
qi must be identical. Also, like in [7], we do not consider p-cages with qi > P/2, as such
p-cages would not look like closed structures.

Before we proceed with the construction, it is useful to describe how we label the p-cages.
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Figure 2. (a,b), the two Possible distributions, modulo a 2π/3 rotation around the vertex, of the
hole-edges when placing an octagon on a trivalent vertex such as a tetrahedron.

3.1. P-Cage Labeling

To label the p-cages, we follow the same notation as in [7] with a couple of differences.
Each label is made of three parts: ‘SYM_Pp_qi’ where ‘SYM’ is a label identifying the
hole-polyhedron from which the p-cage is built as shown in Table 1. ‘p’ is the number
of edges for the p-cage faces and ‘qi’ the values for the labels a, b, c, d, and e shown on
Figures 3–5. As an example, Pte_P9_2_1_3 is the p-cage made out of nonagons built from
the tetrahedron with a = 2, b = 1, and c = 3. Notice that as in [7] we have excluded the
truncated cuboctahedron and the truncated icosidodecahedron because the equivalence
between vertices requires a reflection which we do now allow here.

Table 1. Symbols for convex uniform solids.

Solid SYM Solid SYM

Triangular Prism tp Tetrahedron Pte
Square Prism (cube) sp Octahedron Poc
Pentagonal Prism pp Dodecahedron Pdo
Hexagonal Prism hp Icosahedron Pic
Heptagonal Prism 7p Truncated Cube Atc
Octagonal Prism 8p Truncated Tetrahedron Att
Nonagonal Prism 9p Truncated Octahedron Ato
Decagonal Prism 10p Truncated Dodecahedron Atd
Triangular Antiprism ta Truncated Icosahedron Ati
Square Antiprism sa Snub Cube Asc
Pentagonal Antiprism pa Snub Dodecahedron Asd
Hexagonal Antiprism ha Cuboctahedron Aco
Heptagonal Antiprism 7a Rhombicuboctahedron Arco
Octagonal Antiprism 8a Rhombicosidodecahedron Arcd
Nonagonal Antiprism 9a Icosidodecahedron Aid
Decagonal Antiprism 10a

The difference compared to [7] is that we have decided to use the label sp instead
of Pcu for the cube. Moreover, the p-cages labeled Poc1 in [7] are identical to the trian-
gular antiprism and we have kept the symbol Poc2 for the octahedron specific p-cages to
avoid confusion.
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Figure 3. Distribution of the hole-edges on the (a) prism and (b) antiprism. n corresponds to the
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Figure 4. Distribution of the hole-edges on the Platonic solids: (a) the tetrahedron, (b) the cube
(the square prism), (c) the octahedron (as a triangular antiprism (d)) but also a specific distribution),
(e) the dodecahedron, and (f) the icosahedron.

3.2. Nonequivalent Hole-Edge Distribution

The distribution of hole-edges on the hole-polyhedron was done graphically in [7] for
each regular solid but it can also be done using group theory. We consider one vertex of the
Cayley graphs and label each face corner around a vertex with a qi. We then consider each
transitive subgroup of the symmetry group of the Cayley graph, as a permutation group
of the vertices, and we apply these subgroups to map the initial vertex, together with the
labels qi, onto all the other vertices. If a qi is mapped onto a qj for i 6= j, then it implies that
qi = qj. Such label clashes impose some constraints on the values of the qi. We then obtain
one mapping of the hole-edges for each transitive subgroup. The detailed construction is
described in the Supplementary Materials and the result is summarized in the Figures 3–5
where, for compatibility with [7], the qi have been labeled a, b, c, d, e.
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Figure 5. Distribution of the hole-edges on the Archimedean solids. (a) the truncated cube, (b) the
truncated dodecahedron, (c) the rhombicosidodecahedron, (d) the truncated icosahedron, (e) the
snub dodecahedron, (f) the cubocatahedron, (g) the icosidodecahedron, (h) the snub cube, (i) the
truncated cube, (j) the rhombicuboctahedron, and (k) the truncated octahedron.

Because the planar graphs we are considering are those of regular solids, their symme-
try groups are well known and fall into two classes [36,39,40]:

1. The dihedral groups Dn generated by a rotation with an angle 2π/n around an axis,
and one by an angle π around an axis orthogonal to the first one. This is the full
symmetry of the prism and antiprism.

2. The tetrahedral, octahedral, and icosahedral symmetry groups, of the Platonic and
Archimedean polyhedra.
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A brute force method for finding subgroups of finite groups, while in principle a
finite algorithm, is too slow for practical purposes. Luckily, faster algorithms and tables
for maximal subgroups are known, and have been implemented in the computer algebra
software GAP; see [41] (and references therein). In what follows, we use the lists of
subgroups obtained using GAP. For the tetrahedron, we have also obtained the list of
subgroups by listing them in the order of their number of elements, taking into account
that this must be a divisor of the order of the full group [39,40]. The process is sped up
by finding first the Sylow-subgroups [39]. Alternatively, information on subgroups of
finite groups is contained in [42]. As stated above, we did not consider the truncated
cuboctahedron and the truncated icosidodecahedron because their symmetry group is not
transitive.

The results are summarized in Tables 2 and 3. More details are provided in the
Supplementary Materials.

From Table 2, we see that the prisms, the anti-prisms, the tetrahedron, the cube, and
the icosahedron have one transitive subgroup which does not lead to any constraints on the
labeling of the hole-edges. This implies that there is a single labeling without constraints
between the qi, as illustrated in Figures 3 and 4. The octahedron, which is a triangular
anti-prism, has two transitive subgroups. The first one is S3 = D3, which can be applied in
four different ways and which is the symmetry of the triangular anti-prism as expected.
The second transitive subgroup is specific to the extra symmetry of the octahedron and
it imposes the constraint q1 = q3 and q2 = q4 as illustrated in Figure 4 (where c = a and
d = b). The dodecahedron does not have any transitive subgroups and the full group
symmetry imposes that the qi are all identical.

From Table 3, we see that the only Archimedean solid which has a transitive subgroup
is the cuboctahedron but it does not lead to any constraints between the qi. The other
solids do not have any transitive subgroups and their symmetries do not induce constraints
between the qi except for the icosidodecahedron where q1 = q3 and q2 = q4.

Now that we have derived all the possible connectivities between the faces of the
p-cages we can construct p-cages and minimize their deformation.

Table 2. Symmetry groups and their transitive subgroups for p-cages with Platonic hole-polyhedra.

Hole-Polyhedron Symmetry
(Group) Order Transitive

(Subgroups) Order Label Clashes

prism Dn 2n — —

anti-prism Dn 2n — —

tetrahedron A4 12 C2 × C2 4 —
A4 12 all

cube S4 24 D8 16 —
S4 24 all

octahedron S4 24 4 S3 ≡ 4 D3 6 —
A4 12 two pairs
S4 24 all

dodecahedron A5 60 — all

icosahedron A5 60 A4 12 —
A5 60 all



Symmetry 2023, 15, 717 8 of 28

Table 3. Symmetry groups and their transitive subgroups for p-cages with Archimedean hole-
polyhedra. G denotes the full symmetry group of the hole-polyhedron and H the transitive
subgroup considered.

Hole Polyhedron Symmetry Type G |G| H ⊆ G |H| Label cl’s.

truncated tetrahedron tetrahedron A4 12 —

truncated cube cube S4 24 —

truncated octahedron octahedron S4 24 —

truncated dodecahedron dodecahedron A5 60 —

truncated icosahedron icosahedron A5 60 —

cuboctahedron cube S4 24 A4 12 —
S4 24 two pairs

rhombicuboctahedron cube S4 24

snub cube cube S4 24

icosidodecahedron dodecahedron A5 60 two-pairs

rhombicosidodecahedron dodecahedron A5 60

snub dodecahedron dodecahedron A5 60

4. Near-Miss Convex Symmetric P-Cages

For a p-cage to be regular, all the faces, all the edges, and all the angles of the polygonal
faces must be identical. For a P-gon, this means that all the edges must have the same
length L and the same angle π(1− 2/P). Near-miss p-cages are p-cages where the faces
are not regular polygons, but close to being regular. Irregular faces will have edge lengths
and angles slightly different from the values of a regular one.

To evaluate the level of regularity of the p-cage we first determine the distance di
between vertices i and i + 1 as well as the angle αi between the segments (i − 1, i) and
(i, i + 1). The function we must minimize is then:

E =
1
P ∑

i

cl

(
di − L

L

)2
+ ca

(
αi − π(1− 2

P )

π(1− 2
P )

)2
+ cc Econv (1)

where cl , ca, and cc are three weight factors. Econv, given explicitly by (3), is 0 unless
the polygon defined by the ni is concave. It is used in the simulated annealing to enforce
convexity of the faces by taking a large value of cc. We divide the sum by P to approximately
set the same energy scale for each P. This makes the parametrization of the optimizing
algorithm easier.

To characterize the face, with normal vector m f , we define ni as its vertices, ordered
anticlockwise. Then, to measure the angle αi and edge length di, we define vi = ni − ni−1,
evaluate vi × vi+1 and

if (vi × vi+1) ·m f ≥ 0 : αi = π − acos(
(vi · vi+1)

|vi||vi+1|
), di = |vi|

if (vi × vi+1) ·m f < 0 : αi = π + acos(
(vi · vi+1)

|vi||vi+1|
), di = |vi|. (2)

Note that αi in (2) corresponds to the angle inside the face which is larger than π
if the face is not convex. If m f is the vector normal to the face and if the ni are running
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anticlockwise when seeing the face in the direction of n f , then, using the Heaviside function
H(x):

Econv =
1
P ∑

i

[
H
(
(vi × vi+1) ·m f

)]
. (3)

We then define the length and angle deformations as follows:

• Length : ∆l = maxi(| di−L
L |)

• Angle : ∆a = maxi(|
αi−π(1− 2

P )

π(1− 2
P )
|

In most cases near-miss p-cages can be deformed smoothly, changing the edge lengths
as well as the angles and as a result both ∆l and ∆a. Identifying near-miss p-cages for a
given connectivity (fixed hole-polyhedra, P and qi) consists in finding the geometry which
minimizes ∆l and ∆a. This can be done by minimizing the function (1) over the coordinates
of the vertices. As in [7], we do this using a simulated annealing algorithm, for a range of
values of cl and ca satisfying the constraint cl + ca = 2. After removing from the obtained
p-cages those with crossing faces, we have selected the configuration with the smallest
deformation, i.e., those for which the maximum value of ∆l and ∆a is the smallest.

The regular convex p-cages (∆l = ∆a = 0) were derived analytically in [7].

5. Optimization of the P-Cage Coordinates

To build the symmetric p-cage, we consider one face, which we refer to as the reference
face, as well as the plane that it spans. The normal vector to that plane can have a range of
orientations, and we apply the symmetry of the underlying solid to that plane to generate
the planes spanned by the adjacent faces. We then determine the lines of intersection
between these neighbor faces and place the shared vertices onto these lines. Notice that as
the p-cage faces have holes, the actual symmetry of the p-cages allows for some additional
deformation as will be described below. The vertices which are not shared can then be
placed on the reference face plane. One can then determine the most general analytic
expression for the coordinates of the vertices of the reference face for each of the hole-
polyhedra graphs. These expressions depends on a number of parameters which can then
be optimized to obtain the p-cage minimizing the deformation energy (1). We did this
for 200 values of the weight parameters cl and ca such that they satisfy the constraint
cl + ca = 2. Once the coordinates of the reference face have been obtained, one can obtain
the coordinates of the full p-cage vertices by applying the symmetry group of the p-cage.

One of the problems we will have to solve is to find the intersection between two
planes defined by:

P1(t1, t2) = V + t1v1 + t2v2, P2(s1, s2) = W + s1w1 + s2w2, (4)

where the t1, t2, s1, s2 are parameters, V and W are arbitrary vectors, and where the plane
basis vectors v1 and v2 can be assumed to be orthonormal, and similarly for w1 and w2.

First we define the normal vectors, p and q, to the planes as well as the vector u
parallel to the plane intersection:

p = v1 × v2, q = w1 ×w2, u = q× p. (5)

Next, we have to find a specific point on the intersecting line and we choose the one
that is perpendicular to u:

U = V + t1v1 + t2v2 = W + s1w1 + s2w2 (6)
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and multiplying (6) by u leads to a relation between t1 and t2 as well as s1 and s2. Then
multiplying (6) by q one obtains an expression for t1 which when inserted back into
(6) gives:

U = V +
(q · (W − V))(u · v2) + (u · V)(q · v2)

(q · v1)(u · v2)− (u · v1)(q · v2)

(
v1 −

(u · v1)

(u · v2)
v2

)
− (u · V)

(u · v2)
v2. (7)

We are now ready to construct each family of p-cages one by one by considering their
specific symmetries.

5.1. P-Cages

We now consider each generating regular solid in turn and generate the planes making
the p-cage using the specific symmetry of the solid and determine the line of intersection
where the shared segment lies. Note that the length of V in (4) is arbitrary as it will be
adjusted to set the scale of the p-cage so that the edge lengths are as close as possible to the
target length (chosen arbitrarily to be 1). For many p-cages, there will also be one or two
angles corresponding to deformations of the dual of the generating regular solid.

Some of the coordinates of the vertices on the shared segments will be of the form:

ni = U + tiu (8)

where U and u are specific to each segments. The remaining shared vertices will be of
the form:

ni = R nj (9)

where R is a rotation symmetry. The details will vary according to the generating regu-
lar solid.

The coordinates of the vertices which are not part of a shared edge will be of the form:

αi = V + tαi v1 + sαi v2, i = 1 . . . qα − 1 (10)

where qα stands for a, b, c, d, or e, as appropriate. Once this is done, the actual position
of the vertices will be determined by minimizing (1), the optimizing variables being the
length of V , some angles describing the relative orientation between some of the faces as
well as the position of all the vertices on the face plane.

5.2. Tent

We shall see that a common substructure of the dual of the generating regular solid is
a pyramid. When the faces of the p-cage are placed on a pyramid, they each have three
shared segments, two with the adjacent faces of the pyramid and one at the base. We call
such a structure a tent. The shared segment at the base does not need to be centered and, as
we shall see, does not need to be parallel to the base either. This is because two adjacent
pyramids can sometimes be rotated around their main symmetry axis. As we shall see, for
the Archimedean based p-cages, the tents will not have a common symmetry axis.

The origin of the coordinate system for the reference face is chosen as the center of
the base of the pyramid (Figure 6). The x axis runs parallel to the edge of the base of the
pyramid while the y axis is parallel to the pyramid base and perpendicular to the x axis.
The inclination angle of the pyramid face is θ.

The edges joining n1 and n2 as well as n3 and n4 on Figure 6 are shared edges. So is
the edge joining n5 and n6. The vertices that are not shared must also belong to the plane
of the face.

If the base of the pyramid is an N-gon, n1 and n4 are related by a 2π/N rotation
around the vertical symmetry axis, z, of the pyramid. So are n2 and n3. n5 and n6 will be
related to each other by a rotation which depends on how adjacent tents are placed with
respect to each other.
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In what follows, we shall use the notation Rv(θ) to denote a θ rotation around the
vector v. We also use Tv to denote a reflection with respect to the v axis. If v is x, y, or z it
then corresponds to a rotation, or a reflection, around the corresponding axis.

1

1

1
1

b

b

n
5

n

4

n

n n

6n c

c

2

2

2

3

a

θ

z

x

y

(a) (b)

Figure 6. (a) Parametrization of a tent. The edges joining n1 to n2, n3 to n4, and n5 to n6, are shared
edges. The edges adjacent to ai, bi, and ci are hole-edges. θ is the inclination of the face with respect
to the pyramid base. (b) Coordinate frame.

5.3. Specific Cases

In what follows, r f and ro refer respectively to the inner and outer radius of the face
of a regular solid, while ri refers to the inner radius of the regular solid (the radius of the
smallest sphere containing it).

Prism P-Cages

The dual of a prism consists of two identical pyramids joined at their base. The faces
of the pyramids can have any angle with the base. For a pyramid with an N-gon base,
the symmetries are rotations of γ = 2π/N around the main axis z of the pyramid. (See
Figure 6). To map the two pyramids into each other we must perform a π rotation around
the y axis joining the center of the base and the center of one of the base edge. Alternatively
we can perform a π rotation around the z axis followed by a π rotation around the x axis.

Because the faces of a p-cage do not cover the full face of the pyramid, we can also
rotate the pyramids around the z axis by an angle ψ. So to map the two tents together,
we must perform a π + ψ rotation around the z axis followed by a π rotation around the
x axis.

To describe the plane of the reference face we define:

V = S(0,− sin(θ), cos(θ)), v1 = ([1, 0, 0]), v2 =
V × v1

|V × v1|
, (11)

where S is a scaling parameter. As a result, the adjacent face belonging to the same pyramid
is given by:

W = Rz(
2π

N
)V , w1 = Rz(

2π

N
) v1, w2 = Rz(

2π

N
) v2

(12)

and using the corresponding U and u, (7):

n1 = U − t1 u, n2 = U + t2 u, n3 = Rz(
−2π

N
) n2, n4 = Rz(

−2π

N
) n1. (13)

For the vertices at the base of the tent:

W = Rx(π)Rz(π + ψ)V , w1 = Rx(π)Rz(π + ψ) v1, w2 = Rx(π)Rz(π + ψ) v2 (14)

and using the corresponding U and u:

n5 = U − t5 u, n6 = Rx(π)Rz n5. (15)
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The optimizing variables are S, θ, ψ, t1, t2, t5, Equations (11), (13), (14), and (15), as
well as the coordinates, in the face plane, of the non shared vertices.

5.4. Regular Flat Prisms P-Cages

A degenerate case of p-cages corresponds to flat p-cages, i.e., θ = 0. This implies that
the n1 − n2 and n3 − n4 lines intersect each other at the center of the prism base. The angle
between these two lines is π − 2(qa + 1)π/P and this must equal 2π/N. In other words,
for a given polygon P and prism base N:

qa =
(N − 2)P

2N
− 1. (16)

The list of regular flat prisms is given in Table 4.

Table 4. List of regular flat prism p-cages. See the Supplementary Materials for the full list of
non-planar p-cages.

N 3 4 4 5 6 6 6 6 6 8 10 10

P 12 8 16 20 6 9 12 15 18 16 19 20
qa 1 1 3 5 1 2 3 4 5 5 3 7
qb 4 2 5 6 1 2 3 4 5 4 2 5
qc 4 2 5 6 1 2 3 4 5 4 2 5

6. Antiprisms

The dual of an antiprism can be seen as two pyramids joined at the base and rotated
by an angle π/N relative to each other, resulting in each face having four neighbors: two
on the sides and two at the base.

The parametrization is similar to that of the prism p-cage and the vertices n1 to n4 are
also given by (13).

For the first pair of shared vertices at the base:

R = Rx(π)Rz(π(1 +
1
N
) + ψ), W = RV , w1 = R v1, w2 = R v2 (17)

and using the corresponding U and u:

n5 = U − t5 u, n6 = Rx(π)Rz n5. (18)

For the second pair of shared vertices:

R = Rx(π)Rz(π(1− 1
N
) + ψ), W = RV , w1 = R v1, w2 = R v2 (19)

and using the corresponding U and u:

n7 = U − t7 u, n8 = Rx(π)Rz n7. (20)

The optimizing variables are S, θ, ψ, t1, t2, t5, t7, Equations (11), (13), (17), (18), and
(20), as well as the coordinates, in the face plane, of the non shared vertices.

7. Platonic Solids
7.1. Tetrahedron

The generating regular solid of the tetrahedron p-cage is a tetrahedron. As a result,
the face of the p-cage must be placed on the faces of the dual tetrahedron but it does not
need to be regular and can be elongated in such a way that the line joining the center of
two pairs of opposite edges is stretched.
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The coordinates of the four vertices of the tetrahedron (Figure 7) are:

e1 = (1, 1,−a), e4 = (−1,−1,−a), e3 = (1,−1, a), e4 = (−1, 1, a). (21)

where a is a stretching parameter. We choose the first face as spanned by e1, e2, e3 and the
center of that face is V0 = (e1 + e2 + e3)/3. We then take:

v1 =

(
1√
2

,
1√
2

, 0
)

, v2 = e3 − (e1 + e2)/2. (22)

Noticing that V is not orthogonal to v2, we must take as the displacement vector for
the face plane:

V = S (v1 × v1) ((v1 × v1) · V0), (23)

where S is a scaling parameter. Defining:

R1 = Rv1(π)Rz(π/2), R2 = Rv1(π)Rz(−π/2), R3 = Rz(π) (24)

the vector describing the adjacent faces are:

W i = RiV , wi
1 = Riv1, wi

2 = Riv2 (25)

and the corresponding U i and ui:

n2i−1 = U i + t2i−1ui, n2i = R−1
i n2i−1, i = 1, 2, 3. (26)

n
5

n4
n

1n

1e

z

y

x

4e

2e

3e

6n

n2
3

Figure 7. Tetrahedron inside a cube.

The optimizing variables are S, a, t1, t3, t5, Equations (21), (23), and (26), as well as the
coordinates, in the face plane, of the non shared vertices.

7.2. Octahedron

The dual of the octahedron is the cube, so the face of the octahedron derived p-cages
will be inscribed on the faces of a cube.

The cube can be stretched in one direction so that two of the faces remain square but
the other four become identical rectangles, the symmetry is that of a square antiprism,
referred to as Poc1 in [7].

When the cube is not stretched, the symmetry is larger and the shared vertices ab are
facing shared vertices ba. This is referred to as Poc2, as in [7].

There are two ways to map the vertices on the face of the cube. The first possibility is
to pinch the cube, making the faces diamond shape, but for the edges to meet correctly they
must be centered on the edges of the diamond. This is nothing but the triangular antiprism
with a = c and b = d.
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In the second one, the squares are not deformed and the shared edges are not centered
on the edges of the squares. To preserve the symmetry of the hole distribution, the cube
must remain undeformed. To describe the plane of the reference face we define:

V = (0, 0, S) v1 = (1, 0, 0), v2 = (0, 1, 0) (27)

and the symmetries are ±π/2 rotations around the x and the y axis:

R1 = Ry(π/2), R2 = Rx(π/2). (28)

Next, the adjacent faces are described by the vectors:

W i = RiV , wi
1 = Riv1, wi

2 = Riv2, i = 1, 2 (29)

together with the corresponding Ui and ui.

n1 = U1 + t1u1, n2 = U1 + t2u1, n3 = U2 − t2u2,

n4 = U2 − t1u2, n4+i = Rz(π)ni, i = 1, 4. (30)

The optimizing variables are S, t1, t2, Equations (27) and (30), as well as the coordinates,
in the face plane, of the non shared vertices.

7.3. Cube

The p-cages derived from the cube are the same as those derived from the square
prism.

7.4. Dodecahedron

The p-cages derived from the dodecahedron must have identical holes, so the symme-
try is very constrained. The faces must be placed on an icosahedron.

As the inner radius of an icosahedron of edge length 1 is ri = φ2
g/
√

12 where
φg = (1 +

√
5)/2, and with ro = 1/(2 sin(2 π/3) we take:

V = ri(0, 0, S) v1 = (1, 0, 0), v2 = (0, 1, 0). (31)

where S is a scaling factor. We place the three vertices at:

f1 = V + (0, S ro, 0), fi+1 = Rz(i
2π

3
) f1 i = 1, 2. (32)

The midpoint between the first and last vertex is:

a =
f1 + f3

2
(33)

and the adjacent faces are described by the vectors:

W = R f1(
2π

5
)V , w1 = R f1(

2π

5
)v1, w2 = R f1(

2π

5
)v2. (34)

and the line intersecting the reference face is described by the corresponding U and u. From
this we obtain:

n1 = U + tu, n2 = Ra(π), n1,

n2i+1 = Rz(
2π i

3
), n1, n2i+2 = Rz(

2π i
3

), n2, i = 1, 2. (35)

The optimizing variables are S, t, Equations (31) and (35), as well as the coordinates,
in the face plane, of the non shared vertices.
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7.5. Icosahedron

The p-cages derived from the icosahedron consist in placing the faces on a dodecahe-
dron. As the inner radius of a dodecahedron of edge length 1 is ri = φ2

g/(2
√

3− φg), and
ro = 1/(2 sin(π/5)), we take:

V = ri(0, 0, S) , v1 = (1, 0, 0), v2 = (0, 1, 0). (36)

where S is a scaling factor. We place the five vertices of the dodecahedron at:

f1 = V + (0, S ro, 0), fi+1 = Rz(i
2π

5
) f1, i = 1, 2, 3, 4. (37)

Next, the adjacent faces are described by the vectors:

W i = R fi (
2π

3
)V , wi

1 = R fi (
2π

3
)v1, wi

2 = R fi (
2π

3
)v2, i = 1, .., 5. (38)

together with the corresponding U i and ui. Defining Tx as a reflection around the x axis,
(Figure 8):

n1 = U1 + t1u1, n2 = U1 + t2u1, n3 = Tx n2, n4 = Tx n1,

n5 = U3 + t5u3, n6 = U3 + t6u1, n7 = Rz(
4π

2
) Tx Rt

z(
4π

2
) n2,

n8 = Rz(
4π

2
) Tx Rt

z(
4π

2
) n1, n9 = U5 + t9u5, n10 = R( f4+ f5)

(π) n9. (39)

The optimizing variables are S, t1, t2, t5, t6, t9, Equations (36) and (39), as well as the
coordinates, in the face plane, of the non shared vertices.
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n10

f5

f4f3

f2

f

Figure 8. Face of an icosahedron p-cage.

8. Archimedean Solids
8.1. Truncated Platonic Solids

The p-cages generated from a truncated Platonic solid can be obtained by placing
a tent on the faces of the dual solid, referred to as the underlying solid. For example,
p-cages are obtained from the truncated cube by placing a triangular tent on the faces of an
octahedron (Figure 9).

• Truncated tetrahedron: triangular tent on the faces of a tetrahedron.
• Truncated cube: triangular tent on the faces of an octahedron.
• Truncated octahedron: square tent on the faces of a cube.
• Truncated dodecahedron: triangular tent on the faces of a icosahedron.
• Truncated icosahedron: pentagonal tent on the faces of a dodecahedron.
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Figure 9. Triangular tents placed on the faces of an octahedron for the p-cage constructed from the
truncated cube.

The side vertices, n1 − n4 are obtained exactly like for the prism (Figure 6). The
bottom vertices, n5 and n6 are obtained by finding the intersection between the plane
of the first face and the plane obtained by a π rotation of that face around the vector
V0 = (r f sin(ψ),−r f cos(ψ), ri) where r f and ri are properties, listed in Table 5, of the
Platonic solid on which the p-cage faces are placed.

The vertices n5 and n6 are then placed symmetrically around the point of intersection
between the line span by V0 and the intersection between the planes of the two faces.

The normal to the faces is V given by (11) and for the cage to be convex the angle between
V and the normal to the Platonic solid face on which the tent is built, θ = arccos((V · êx)),
must be smaller than π− φd where φd is the dihedral angle of the underlying Platonic solid.

Table 5. Inner radius, ri, inner face radius, r f , and dihedral angle of Platonic solid of edge length 1.
φg = (1 +

√
5)/2.

Solid ri r f φd

Tetrahedron 1/
√

24 1/(2 tan(π
3 )) 2 arctan(1/

√
2)

Cube 1/2 1/2 π/2
Octahedron 1/

√
6 1/(2 tan(π

3 )) 2 arctan(
√

2)
Dodecahedron φ2

g/(2
√

3− φg) 1/(2 tan(π
5 )) 2 arctan(φg)

Icosahedron φ2
g/
√

12 1/(2 tan(π
3 )) 2 arctan(φ2

g)

8.2. Cuboctahedron

The dual of the cuboctahedron is a rhombic dodecahedron which is made out of
twelve identical rhombi. This can also be thought of as four triangular pyramids placed
on the faces of a tetrahedron. The faces of the pyramids are located near the corner of the
triangles so as to be adjacent to two faces of two other pyramids. This can be done in two
different ways, around the triple ‘a’ vertex or around the the triple ‘c’ one. In both cases,
the quadrivalent holes are mapped on the edges of the tetrahedron (Figure 10).

We take the following coordinates for the tetrahedron,
f1 = (1/2, 1/2

√
3, 1/2

√
6), f2 = (−1/2, 1/2

√
3, 1/2

√
6), f3 = (0,−1/

√
3, 1/2

√
6), and

f4 = (0, 0,−
√

3/8), which correspond to an upside down pyramid.
We choose the following vectors:

V = S(0,− sin(θ), cos(θ)), v1 = (1, 0, 0), v2 =
V × v1

|V × v1|
, (40)
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where S is a scaling parameter, to describe the plane of the reference face. The adjacent face
belonging to the same pyramid is then given by :

W1 = Rz(
2π

3
)V , w1

1 = Rz(
2π

3
) v1, w1

2 = Rz(
2π

3
) v2 (41)

and using the corresponding U and u:

n1
1 = U + t1 u, n2 = U + t2 u, n1

3 = Rz(
−2π

3
) n2 n1

4 = Rz(
−2π

3
) n1. (42)

For the remaining four vertices, we must consider the axis f3 as an axis of symmetry
which can also be rotated by an angle ψ around the z axis: g3 = Rz(ψ) f3. Then the adjacent
face containing n7 and n8 is spanned by the vectors:

W2 = Rg3(
2π

3
)V , w2

1 = Rg3(
2π

3
) v1, w2

2 = Rg3(
2π

3
) v2 (43)

and using the corresponding U and u:

n2
7 = U + t7 u n8 = U + t8 u

n2
5 = Rg3(

−2π

3
) n8 n2

6 = Rg3(
−2π

3
) n7. (44)

The optimizing variables are S, t1, t2, t7, and t8, Equations (40), (42), and (44), as well
as the coordinates, in the face plane, of the non shared vertices.

The rhombic dodecahedron has twelve quadrilateral faces. These faces have two
vertices with three neighbors and two with four. One can split the quadrivalent vertices in
two by inserting an extra edge and do so to obtain the graph of the dodecahedron. This
means that the regular p-cages obtained by tiling the faces of the dodecahedron such that
the added edge matches a shared edge of the p-cage face corresponds to a degenerate
symmetric p-cage derived from the cubocatehedron. More explicitly, Aco_P10_1_1_1_3,
Aco_P15_2_2_2_5, and Aco_P20_3_3_3_7 are degenerate cases of Pic_P10_1_1_1_1_1,
Pic_P15_2_2_2_2_2, and Pic_P20_3_3_3_3_3, respectively .

1f2f

a a
a

b

b

bb

cc
c

d

d

dd
1n

2n3n
4n

5n
6n 7n

8n

3f

(a) (b)

Figure 10. (a) Parametrization of the cuboctahedron p-cage face. (b) Distribution of hole-edges.

8.3. Icosidodecahedron

The dual of the icosidodecahedron is a rhombic tricontahedron which is made out of
30 identical rhombi. The p-cage is obtained by inscribing a P-gon inside that rhombus face
(Figure 11).
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Figure 11. (a) Parametrization of the icosidodecahedron p-cage face. (b) Distribution of hole-edges.

The line n1 − n2 is obtained by determining the intersection of the plane containing
the master face and the one obtained after a 2π/3 rotation about the axis f1. Then, n3 and
n4 are obtained by performing a reflection around the f1− f3 axis of n2 and n1, respectively.
The vertices n5, n6, n7, and n8 are obtained by performing a reflection around the f2 − f4
axis of n4, n3, n2, and n1, respectively.

The coordinates of the rhombic tricontahedron are given by:(
±φ2

g, ±φ2
g, ±φ2

g

)
8 vertices (45)(

±φ3
g, ±φg, 0

)
+cycl. : 12 vertices (46)(

±φ2
g, ±φ3

g, 0
)

+cycl. : 12 vertices (47)

The first 20 vertices are trivalent while the last 12 are pentavalent.
Up to a scaling factor, we can take f1 = (φ2

g, 0, φ3
d), f2 = (0, φg, φ3

d), f3 = (−φ2
g, 0, φ3

d),
and f4 = (0,−φg, φ3

d). The center of the master face is then V f = ( f1 + f3)/2 = (0, 0, φ3
g).

We take:

V = S V f , v1 = (1, 0, 0), v2 = (0, 1, 0) (48)

and

W i = R fi (
2π

3
)V , wi

1 = R fi (
2π

3
)v1, wi

2 = R fi (
2π

3
)v2, i = 1, 3, (49)

together with the corresponding U1, u1, U3, and u3.
Then:

n1 = U1 + t1u1, n2 = U1 + t2u1, n3 = Tx n2, n4 = Tx n1,

n5 = Ty n4, n6 = Ty n3, n7 = Ty n2, n8 = Ty n1. (50)

The optimizing variables are S, t1, t2, Equations (48) and (50), as well as the coordinates,
in the face plane, of the non shared vertices.
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8.4. Rhombicuboctahedron

The dual of the rhombicuboctahedron is the deltoidal icositetrahedron. It is made out
of twenty-four kite faces. Three of the vertices of the faces are quadrivalent while the fourth
one is trivalent. Up to an overall scale, they are at the following positions:

(±1, 0, 0), +cycl. : 8 quadrivalent vertices (51)(
0, ± 1√

2
, ± 1√

2

)
, +cycl. : 12 quadrivalent vertices (52)(

±
√

8 + 1
7

, ±
√

8 + 1
7

, ±
√

8 + 1
7

)
8 trivalent vertices. (53)

The deltoidal icositetrahedron can be projected onto a cube so that each kite becomes
one of four squares on the face of the cube. As a result, building the cage consists in placing
a square tent on each face of a cube so that the bottom of the faces are joined with the two
faces merging at the corners of the cube. The tent can be twisted.

We place the corner of the cube at the coordinates (0,±1,±1/
√

2) and (±1, 0,±1/
√

2)
and pick f1 = (0,−1, 1/

√
2). We take v1 and v2 as the orthonormal coordinate vectors for

the reference face and V as the center of the face:

v1 = (cos(ψ),− sin(ψ) sin(θ), sin(ψ) cos(θ)) ,

v2 = (0, cos(θ), sin(θ)) ,

V = S cos(ψ)(sin(θ) + cos(θ))(v1 × v2). (54)

Then:

W1 = R f1(
2π

3
)V , w1

1 = R f1(
2π

3
)v1, w1

2 = R f1(
2π

3
)v2

W3 = Rz(
π

2
)V , w3

1 = Rz(
π

2
)v1, w3

2 = Rz(
π

2
)v2 (55)

together with the corresponding U1, u1, U3, and u3.
The line n1 − n2 corresponds to the intersection of the master plane and its 2π/3

rotation around the f1 axis. Then n3 and n4 are obtained respectively by rotating n2 and n1
by −2π/3 around the f1 axis.

The line n5− n6 corresponds to the intersection of the master plane and its π/2 rotation
around the z axis. Then n7 and n8 are obtained by respectively rotating n6 and n5 by −π/2
around the z axis.

n1 = U1 + t1u1, n2 = U1 + t2u1, n3 = R f1(
2π

3
) n2, n4 = R f1(

2π

3
) n1,

n5 = U3 + t5u3, n6 = U3 + t6u3, n7 = Rz(
−π

2
) n6, n8 = Rz(

−π

2
) n5. (56)

To ensure that the cage is convex, we must also impose that the triangular tents are
not concave. This implies the following condition: (n× f1) · v1 > 0.

The optimizing variables are S, ψ, t1, t2, t5, t6, Equations (54) and (56), as well as the
coordinates, in the face plane, of the non shared vertices (Figure 12).
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Figure 12. (a) Parametrization of the rhombicuboctahedron p-cage face. (b) Distribution of hole-edges.

8.5. Rhombicosidodecahedron

The dual of the rhombicosidodecahedron is the deltoidal hexecontahedron. It is made
out of sixty kite faces. Three of the vertices are pentavalent while the fourth one is trivalent.
The p-cage built from the rhombicosidodecahedron can be obtained by placing tents on the
faces of a dodecahedron (Figure 13).

1
b 2f

3f

4f

1f

a
a a

1

1

c

b

b

b

b

b

b

1a

5n

7n

8n

1n

2n 3n

4n

v

v
1
d

c
c c c c

cc
c
c
c c

c
c
cc

6n

c2

a2

d2

2

d3

d
d

d
d

d
d

(a) (b)

Figure 13. (a) Parametrization of the rhombicosidodecahedron p-cage face. (b) Distribution of
hole-edges.

If a is the length of each edges, the inner radius of a dodecahedron is ri =

a/2
√

5/2 + 11
√

5/10, while the outer radius of each face is rh = a/(2 sin(π/5)). Then the
angle ξd between the center of the face and one of the vertices is such that:

tan(ξd) =
rh
ri

=

(
sin(

π

5
)

√
5
2
+

11
10

√
5

)−1

. (57)

To describe the plane of the reference face we take V = (0, 0, 1) and define:

f1 = (0, tan(ξd), 1). (58)

Then the orthonormal coordinate vectors for the master face v1, v2 are, once again,
given by (54).

V = S cos(ψ)(cos(θ)− sin(θ)) tan(ξd)(v1 × v2). (59)
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Then:

W1 = R f1(
2π

3
)V , w1

1 = R f1(
2π

3
)v1, w1

2 = R f1(
2π

3
)v2

W3 = Rz(
2π

5
)V , w3

1 = Rz(
2π

5
)v1, w3

2 = Rz(
2π

5
)v2 (60)

together with the corresponding U1, u1, U3, and u3.
The line n1 − n2 corresponds to the intersection of the master plane and its 2π/3

rotation around the f1 axis. Then n3 and n4 are obtained by respectively rotating n2 and n1
by −2π/3 around the f1 axis.

The line n5 − n6 corresponds to the intersection of the master plane and its 2π/5
rotation around the z axis. Then n7 and n8 are obtained by respectively rotating n6 and n5
by −2π/5 around the z axis.

n1 = U1 + t1u1, n2 = U1 + t2u1, n3 = R f1(
2π

3
) n2, n4 = R f1(

2π

3
) n1,

n5 = U3 + t5u3, n6 = U3 + t6u3, n7 = Rz(
−2π

5
) n6, n8 = Rz(

−2π

5
) n5. (61)

To ensure that the cage is convex, we must also impose that the triangular tents are
not concave. This implies the following conditions: (n× f1) · v1 > 0.

The optimizing variables are S, θ, ψ, t1, t2, t5, t6, Equations (59) and (61), as well as the
coordinates, in the face plane, of the non shared vertices.

8.6. Snub Cube

The dual of the snub cube is the pentagonal icositetrahedron. It is made out of twenty-
four irregular pentagons. It can be seen as six square base tents made out of irregular
pentagons built around a regular cube. The main axes of these tents are the axes going
through the centers of the faces of the cube. Alternatively, it can be seen as right triangular
base tents, the main axes corresponding to the vertices of the cube (Figure 14).
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Figure 14. (a) Parametrization of the snub cube p-cage face. (b) Distribution of hole-edges.

The vertices n3 and n4 are related respectively to the vertices n2 and n1 by a −2π/4
rotation around f1, where f1 points to the center of a face of a cube. The vertices n7 and
n8 are related respectively to the vertices n6 and n5 by a 2π/3 rotation around f3 where f3
points to a vertex of a cube. If we take f1 = (0, 0, 1) and f3 = (1,−1, 1) then the vertices n9
and n10 are related to each other by a π rotation around g = (1, 0, 1).

We take:

v1 = (1, 0, 0) , v2 = (0, cos(θ), sin(θ)) ,

V = S cos(θ)(v1 × v2) = S cos(θ)(0,− sin(θ), cos(θ)) (62)

We then rotate the vectors f3 and g1 by an angle ψ. For the pentagonal icositetrahedron
θ ≈ 31.75◦ ψ ≈ 61.46◦.
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Using the vector g = (1, 0, 1) we define:

W1 = R f1(
π

2
)V , w1

1 = R f1(
π

2
)v1, w1

2 = R f1(
π

2
)v2

W2 = R f3(
2π

3
)V , w2

1 = R f3(
2π

3
)v1, w2

2 = R f3(
2π

3
)v2

W3 = Rg(
2π

3
)V , w3

1 = Rg(π)v1, w3
2 = Rg(π)v2. (63)

together with the corresponding U i and ui.

n1 = U1 + t1u1, n2 = U1 + t2u1, n3 = R f1(
−π

2
) n2, n4 = R f1(

−π

2
) n1,

n5 = U2 + t5u2, n6 = U2 + t6u2, n7 = R f3(
−2π

3
) n6, n8 = R f3(

−2π

3
) n5,

n9 = U3 + t9u3, n10 = U3 − t9u3. (64)

The optimizing variables are S, θ, ψ, t1, t2, t5, t6, t9, Equations (62) and (64), as well as
the coordinates, in the face plane, of the non shared vertices.

8.7. Snub Dodecahedron

The dual of the snub dodecahedron is the pentagonal hexecontahedron. It is made out
of sixty irregular pentagons. It can be seen as twelve pentagonal base tents made out of
irregular pentagons built around a regular dodecahedron. The main axes of these tents are
the axes going through the centers of the faces or the dodecahedron. Alternatively it can
be seen as twenty triangular base tents, the main axes corresponding to the vertices of the
dodecahedron (Figure 15).
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Figure 15. (a) Parametrization of the snub dodecahedron p-cage face. Base of the dodecahedron. (b)
Distribution of hole-edges. (c) Vectors on the face.

The vertices n3 and n4 are related respectively to the vertices n2 and n1 by a −2π/5
rotation around f1, where f1 points to the center of a face of a dodecahdron. The vertices n7
and n8 are related respectively to the vertices n6 and n5 by 2π/3 rotation around f3 where
f3 points to a vertex of a cube. If we take f1 = (0, 0, 1) and f3 = (0, tan(ξd), 1) then
f̂3 = (sin(2π/5) tan(ξd),− cos(2π/5) tan(ξd), 1) where ξd is given by (57). The vertices
n9 and n10 are related to each other by a π rotation around g where g = ( f3 + f̂3)/2 =
(sin(2π/5) tan(ξd)/2,−(1 + cos(2π/5)) tan(ξd)/2, 1).

We take:

v1 = (1, 0, 0) , v2 = (0, cos(θ), sin(θ)) ,

V = S cos(θ)(v1 × v2) = S cos(θ)(0,− sin(θ), cos(θ)) (65)

Next, we rotate the vectors f3 and g1 by an angle ψ. For the pentagonal icositetrahe-
dron θ ≈ 31.75◦ ψ ≈ 61.46◦.
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Using the vector g = (1, 0, 1) we define:

W1 = R f1(
2π

5
)V , w1

1 = R f1(
2π

5
)v1, w1

2 = R f1(
2π

5
)v2

W2 = R f3(
2π

3
)V , w2

1 = R f3(
2π

3
)v1, w2

2 = R f3(
2π

3
)v2

W3 = Rg(
2π

3
)V , w3

1 = Rg(π)v1, w3
2 = Rg(π)v2. (66)

together with the corresponding U i and ui.

n1 = U1 + t1u1, n2 = U1 + t2u1, n3 = R f1(
−2π

5
) n2, n4 = R f1(

−2π

5
) n1,

n5 = U2 + t5u2, n6 = U2 + t6u2, n7 = R f3(
−2π

3
) n6, n8 = R f3(

−2π

3
) n5,

n9 = U3 + t9u3, n10 = U3 − t9u3. (67)

The optimizing variables are S, θ, ψ, t1, t2, t5, t6, t9, Equations (65) and (67), as well as
the coordinates, in the face plane, of the non shared vertices.

9. Results

We have found 2371 symmetric p-cages (near-miss or regular) for polygonal faces with
6 to 20 edges and a deformation not exceeding 10%. The least iregular p-cages are shown
in Tables 6 and 7. The numbers of p-cages for each regular solid are listed in Table 8. The
full description of all the p-cages with a deformation not exceeding 10% is listed in the
Supplementary Materials. The Supplementary Materials also contains the coordinates of
each p-cage as off files. In [7], p-cages were constructed without assuming the regularity
of the faces, which could then be deformed differently from each others (P was ranging
from 6 to 17 only). This potentially allows for less deformed p-cages than the symmetric
ones. Most of the symmetric p-cages found here are similar to the p-cages found in [7] but
there are a number of exceptions. A full comparison of the p-cages found here and in [7]
is given in the Supplementary Materials. Sometimes the symmetric p-cages are slightly
less deformed than the non-symmetric ones. This is due to the fact that the relaxation
performed in [7] did not always find the least deformed p-cages. There are also examples
where the non-symmetric p-cages are less deformed than the symmetric ones and close
inspection of the faces of the non-symmetric p-cages shows that the faces are not identical,
allowing for less deformed p-cages.

Most of the p-cages generated from the prisms and antiprisms look like two rings
of faces joined together at the base, as shown in Table 6. Because the Platonic solids are
dual of each other, the p-cages generated from them correspond to polygons placed on the
faces of the dual solids of the hole-edge polyhedra. For the tetrahedron, the solid can be
elongated while preserving the symmetry of the p-cage. This is also possible for the cube
and the octahedron, but the corresponding p-cages are the ones built from the square prism
and the square antiprism, respectively .

The p-cages generated from the Archimedean solids are overall more interesting.
Notice that the only p-cages where the faces have five neighbors, the maximum allowed
geometrically, are the p-cages generated from the snub cube and the snub dodecahedron.
Asc_P11_2_1_1_1_1 (Table 7) is the least deformed one, with a deformation below 0.5%.
All the other p-cages with five neighbors have deformations in excess of 2% (there are no
regular p-cages with five neighbors).

Some of the Archimedean p-cages have a mesh-like structure, such as Atd_P17_2_6_6
for example. Others are more tightly packed, even when faces have only three neighbors,
such as Ati_P16_4_2_7 where some of the hole-edges come very close together, but without
touching each other.
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By imposing a subgroup of the Platonic group as a symmetry to the p-cages we have
substantially reduced the number of parameters required to describe the most general
configurations, hence making the optimization process much less CPU intensive. The
resulting p-cages are quite aesthetic and we hope they will be of interest to designers or
architects, especially as they have congruent faces. Imposing the symmetry upfront will
also be important for future work where one can construct p-cages made out of two or
more different types of polygonal faces. One will first have to identify planar graphs made
out of two or more types of nodes and identify the ones for which all the nodes belonging
to the same family are equivalent. Even with only two types of polygons, the number of
possible p-cages will be much larger than what we have described in this paper.

Table 6. Least irregular p-cages built from prisms and antiprisms solid hole polyhedra.

tp_P17_3_5_6
∆l = 0.00120
∆a = 0.00120

sp_P18_5_4_6
∆l = 0.00224
∆a = 0.00224

pp_P18_6_4_5
∆l = 0.00012
∆a = 0.00012

hp_P19_7_4_5
∆l = 0.00038
∆a = 0.00038

7p_P18_7_3_5
∆l = 0.00195
∆a = 0.00195

8p_P20_8_4_5
∆l = 0.00214
∆a = 0.00214

9p_P15_6_2_4
∆l = 0.00145
∆a = 0.00145

10p_P17_7_3_4
∆l = 0.00054
∆a = 0.00054

ta_P19_3_4_4_4
∆l = 0.02502
∆a = 0.02504

sa_P14_4_2_2_2
∆l = 0.00731
∆a = 0.00731

pa_P19_6_3_3_3
∆l = 0.02698
∆a = 0.02701

ha_P16_6_2_2_2
∆l = 0.01074
∆a = 0.01074

7a_P16_6_2_2_2
∆l = 0.0128622
∆a = 0.0128754

8a_P11_4_1_1_1
∆l = 0.00800
∆a = 0.00800

9a_P17_7_2_2_2
∆l = 0.00433
∆a = 0.00433

10a_P17_7_2_2_2
∆l = 0.00385
∆a = 0.00385
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Table 7. Least irregular p-cages built from Platonic and Archimedean solid hole polyhedra.

Pte_P20_5_6_6
∆l = 0.03912
∆a = 0.03912

Poc2_P18_3_4_3_4
∆l = 0

∆a = 0.01563

Pic_P18_2_3_2_3_3
∆l = 0.04420
∆a = 0.04422

Att_P16_2_5_6
∆l = 0.00055
∆a = 0.00055

Atc_P17_2_4_8
∆l = 0.00057
∆a = 0.00060

Ato_P15_3_4_5
∆l = 0.00110
∆a = 0.00110

Atd_P17_2_6_6
∆l = 0.00006
∆a = 0.00020

Ati_P16_4_2_7
∆l = 0.00042
∆a = 0.00042

Aco_P17_2_4_3_4
∆l = 0

∆a = 0.00083

Aid_P18_2_5_2_5
∆l = 0

∆a = 0.00716

Arcd_P16_2_3_4_3
∆l = 0.00653
∆a = 0.00653

Arco_P11_1_2_2_2
∆l = 0.00020
∆a = 0.00109

Asc_P11_2_1_1_1_1
∆l = 0.00499
∆a = 0.00273

Asd_P16_4_2_1_2_2
∆l = 0.03597
∆a = 0.05405

Table 8. Number of p-cages for each hole-edge regular solid. P = 6 to 20. n is the total number of
symmetric p-cages with a deformation smaller or equal to 10%, including regular p-cages. nr is the
total number of regular p-cages (no deformations).

Hole-Edge Solid n nR Hole-Edge Solid n nR

Triangular Prism 140 39 Tetrahedron 18 5
Square Prism 125 28 Cube=Square Prism (125) (28)
Pentagonal Prism 114 25 Octahedron 11 4
Hexagonal Prism 107 21 Dodecahedron 5 5
Heptagonal Prism 101 16 Icosahedron 16 3
Octagonal Prism 92 15 Truncated Tetrahedron 108 9
Nonagonal Prism 86 13 Truncated Cube 103 2
Decagonal Prism 80 13 Truncated Octahedron 122 7

Triangular Antiprism 42 4 Truncated
Dodecahedron 102 1

Square Antiprism 31 0 Truncated Icosahedron 124 1
Pentagonal Antiprism 29 3 Cuboctahedron 193 4
Hexagonal Antiprism 26 0 Rhombicuboctahedron 232 5
Heptagonal Antiprism 24 0 Snub Cube 69 0
Octagonal Antiprism 23 0 Snub Dodecahedron 10 0
Nonagonal Antiprism 21 0 Icosidodecahedron 19 0
Decagonal Antiprism 20 0 Rhombicosidodecahedron 178 1
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Supplementary Materials: The following supporting information is available in https://www.mdpi.
com/article/10.3390/sym15030717/s1: It contains the files sym_pcages_sup_mat.pdf : Derivation
of the possible symmetries of p-cages with Platonic and Archimedean hole-polyhedra; a list of all
symmetric p-cage (P = 6 to 20) and a comparison between general p-cages and the symmetric ones.
off_files.tar.gz : coordinates of all the p-cages as off files.
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