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Abstract: The Lorenz curve is used to describe the relationship between the cumulative proportion of
household income and the number of households of an economy. The extent to which the Lorenz
curve deviates from the line of equality (i.e., y = x) is quantified by the Gini coefficient. Prior models
are based on the simulated and empirical data of income distributions. In biology, the Lorenz curves
of cell or organ size distributions tend to have similar shapes. When the Lorenz curve is rotated
by 135 degrees counterclockwise and shifted to the right by a distance of

√
2, a three-parameter

performance equation (PE), and its generalized version with five parameters (GPE), accurately
describe this rotated and right-shifted curve. However, in prior studies, PE and GPE were not
compared with the other Lorenz equations, and little is known about whether the skewness of the
distribution could influence the validity of these equations. To address these two issues, simulation
data from the beta distributions with different skewness values and six empirical datasets of plant
(organ) size distributions were used to compare PE and GPE with three other Lorenz equations in
describing the rotated and right-shifted plant (organ) size distributions. The root-mean-square error
and Akaike information criterion were used to assess the validity of the two performance equations
and the three other Lorenz equations. PE and GPE were both validated in describing the rotated
and right-shifted simulation and empirical data of plant (organ) distributions. Nevertheless, GPE
worked better than PE and the three other Lorenz equations from the perspectives of the goodness
of fit, and the trade-off between the goodness of fit and the model structural complexity. Analyses
indicate that GPE provides a powerful tool for quantifying size distributions across a broad spectrum
of organic entities and can be used in a variety of ecological and evolutionary applications. Even for
the simulation data from hypothetical extreme skewed distribution curves, GPE still worked well.

Keywords: line of absolute equality; inverted U-shaped curves; nonlinear regression; parameter
estimation; size distribution

1. Introduction

One of the hallmarks of biology is variations in the size, shape, and mass of individuals
belonging to the same hierarchical level of organization (e.g., cells and organs), which affect
a broad range of physiological, ecological, and evolutionary phenomena. Consequently,
the accurate quantification of size, shape, or mass frequency distributions is critical to
understanding such phenomena. Here, we draw from economic theory and show that
a particular approach has broad applicability to understanding and quantifying organic
size distributions.

Specifically, the Gini coefficient is widely used in economics to measure the inequality
of household incomes. It is based on the Lorenz curve (LC), which is a graphical represen-
tation of the cumulative proportion (or percentage) of household income plotted against
the cumulative proportion (or percentage) of the number of households in the economy [1].
The Gini coefficient is equal to the area formed by the LC and the line of absolute equality
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(i.e., y = x) divided by one half of the area of the unit square. Botanists have used the
Gini coefficient to quantify the variation in tree and seed size [2,3], but few studies have
checked the validity of the LC in describing the size distributions of other organic structures.
Likewise, economists have tested the LC’s validity, however, mainly focusing on income
distributions [4–6]. Therefore, there is a pressing need to explore and refine the applicability
of the LC and Gini index in both biology and economics.

In an effort to improve the accuracy of the LC−Gini index approach using plants as
test organisms, we note that the rotated LC of leaf area distribution on a plant resembles a
thermal performance curve (Figure 1a,b), which can be generated by a nonlinear equation
proposed by [7]:

y = c
(

1 − e−K1(x−x1)
)(

1 − eK2(x−x2)
)

, (1)

where y represents the jumping distance of the green frog (Rana clamitans Latreille) at body
temperature x, and c, K1, K2, x1 and x2 are parameters to be estimated. K1 and K2 influence
the instantaneous rates of change on the left and right parts of the performance curve,
respectively; x1 and x2 represent the minimum and maximum threshold temperatures,
i.e., the lower and upper intersections between the performance curve and the x-axis. In
this equation, the thermal performance is hypothesized to terminate below x1 and above
x2, i.e., y = 0 when x ≤ x1 and x ≥ x2. Equation (1), henceforth denoted as PE, generates
symmetrical and asymmetrical inverted U-shaped curves.
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Figure 1. An illustration of the original Lorenz curve (a) and its rotated and right-shifted version
(b) using data for the individual leaf dry mass distribution of a bamboo (Shibataea chinensis Nakai)
culm. The Gini coefficient equals two times the shaded area. Panel (a) shows the cumulative
proportion of the individual leaf dry mass on the culm plotted against the cumulative proportion of
the number of leaves on the culm. The red curve in panel (b) was obtained by rotating the Lorenz
curve (red curve) in panel (a) by 135◦ counterclockwise and shifting it to the right by a distance of

√
2.

To increase the flexibility of data fitting, two additional parameters, α and β, can be
introduced to Equation (1) [8]:

y = c
(

1 − e−K1(x−x1)
)α(

1 − eK2(x−x2)
)β

. (2)

Equation (2) is referred to as the generalized performance equation (GPE) hereinafter.
Note that the two pairs of parentheses on the right-side of Equation (1) are transformed
by using two power functions with powers α and β in Equation (2). According to the
definition of the LC (Figure 1a), the numerical range of the cumulative proportion of the
number (i.e., the x-axis) and that of the cumulative proportion of the size (i.e., the y-axis)
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are both between 0 and 1. Thus, the length of the diagonal of the unit square is
√

2, and
the rotation and right-shift do not influence its numerical value. In this way, x1 and x2 in
Equations (1) and (2) are actually known constants (i.e., 0 and

√
2, respectively). GPE was

found to be better than PE in describing the leaf area distribution at an individual plant
level [8].

However, there are still two critical questions that are not answered by prior studies
related to the use of PE and GPE: (i) Does the skewness of biological size distributions
influence the validity of the two performance equations and other Lorenz equations?
(ii) Are the two performance equations better than other Lorenz equations in nonlinear
regression? To address these two important questions, we used simulation data from beta
distributions with different skewness values, and six empirical datasets of plant organ size
distributions, including stomatal area (i.e., the area of the profile formed by two guard
cells), leaf dry mass, tepal projection area, fruit volume, seedhead length, and the diameter
(at breast height) distribution of a temperate forest (provided in the online Supplementary
Tables S1–S6), to test the validity of PE and GPE and three other Lorenz equations, and to
compare the two performance equations with the three other Lorenz equations. The data of
the cumulative proportion of plant organ size vs. the cumulative proportion of the number
of organs per plant (or per quadrat) were rotated by 135 degrees counterclockwise and
shifted to the right by a distance of

√
2 to meet the requirements for fitting these equations.

2. Materials and Methods
2.1. The Three Other Lorenz Equations

Three other Lorenz equations were used to make comparisons with PE and GPE,
which are found to be able to describe many size distributions of abiotic and biotic areas [9]:

(i) The Sarabia equation (henceforth denoted as SarabiaE; see [10]):

yL = (1 − λ+ η)xL + λxa1+1
L − η

[
1 − (1 − xL)

a2+1
]
, (3)

where xL and yL represent the cumulative proportion of the number, and the cumulative
proportion of income or size, respectively; and λ, η, a1, and a2 are constants to be estimated,
where a1 ≥ 0, a2 + 1 ≥ 0, ηa2 + λ ≤ 1, λ ≥ 0, and ηa2 ≥ 0.

(ii) The Sarabia-Castillo-Slottje equation (henceforth denoted as SCSE; see [11]):

yL = xγL [1 − (1 − xL)
α1 ]

β1 , (4)

where xL and yL represent the cumulative proportion of the number, and the cumulative
proportion of income or size, respectively; and α1, β1, and γ are constants to be estimated,
where 0 < α1 ≤ 1, β1 ≥ 1, and γ ≥ 0.

(iii) The Sitthiyot-Holasut Equation (henceforth denoted as SHE; see [9]):

yL = (1 − ρ)

[(
2

P + 1

)(
xL − δ

1 − δ

)]
+ ρ

[
(1 −ω)

(
xL − δ

1 − δ

)P
+ω

{
1 −

[
1 −

(
xL − δ

1 − δ

)]1/P
}]

, (5)

when xL > δ; and yL = 0, when xL ≤ δ. Here, xL and yL represent the cumulative proportion
of the number, and the cumulative proportion of income or size, respectively; and δ, ρ, ω,
and P are constants to be estimated, where 0 ≤ δ < 1, 0 ≤ ρ ≤ 1, 0 ≤ ω ≤ 1, and P ≥ 1.

We rotated and right-shifted these three Lorenz equations to make the abscissa values
range between 0 and

√
2.
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2.2. The Simulation Data from Beta Distributions

To examine the generality of our approach, we tested the validity of the two per-
formance equations and the three other Lorenz equations for 120 random numbers, i.e.,
realizations, simulated from beta distributions with different skewness values [12]:

f (z) =
Γ(a + b)

Γ(a)·Γ(b) za−1(1 − z)b−1, (6)

where f is the density function of a random variable z. The skewness (Sk) of the beta
distribution is given by the formula

Sk =
2(b − a)

√
a + b + 1

(a + b + 2)
√

ab
. (7)

We set different combinations of the two parameters, a and b, both ranging between
0.5 and 10, which generated a range of skewness from −2.3 to 2.3 (Figure 2). However,
fixing one parameter’s value and varying the other parameter’s value from 0.5 to 10 did
not render skewness values to span the range between −2.3 and 2.3. Thus, we used the
circular formula a2 + b2 = 102 to get b when a varies from 0.5 to 10 in 300 equidistant values.
We then obtained 300 different skewness values, and simulated 120 random numbers
as the hypothetical size values from each of the beta distributions corresponding to the
300 skewness values (shown by the blue arc in Figure 2). Based on prior experience, it
is likely that a range of skewness from −2.3 to 2.3 spans the skewness of many actual
biological size distributions. Here, we present four examples from the 300 skewness values:
(i) extremely left-skewed, (ii) moderately left-skewed, (iii) moderately right-skewed, and
(iv) extremely right-skewed, by setting (i) a = 10 and b = 0.5, (ii) a = 10 and b = 2, (iii) a = 2
and b = 10, and (iv) a = 0.5 and b = 10 (Figure 3).
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of the beta density function. The purple curves are the density curves with different combinations of
parameters a and b. (a) a = 10 and b = 0.5. (b) a = 10 and b = 2. (c) a = 0.5 and b = 10. (d) a = 2 and
b = 10.

In practice, the Weibull function is frequently used to describe biological size distribu-
tions [13]. However, it is somewhat difficult to generate the same or approximate numerical
range of random variables from different degrees of skewed curves using the Weibull
function. Additionally, the effect of the skewness on the validity of the two performance
equations in data fitting manifests a negligible difference from beta functions. Thus, we did
not use the Weibull function and other distribution functions, such as the gamma function
and the log-normal function [14], to generate the simulation data of biological size.

2.3. Data of Plant (Organ) Size Distributions

Six empirical datasets of plant (organ) size distributions were used to test the generality
of the two performance equations, and the goodness of fit was used to examine the validity
of the equations.

(i) Dataset 1: Data of 73 stomata in a 662 µm × 444 µm micrograph of Magnolia denudata
Desr. The stomatal length (L) and width (W) were directly measured using ImageJ software
(version 1.54g; https://imagej.nih.gov/ij/index.html (accessed on 1 March 2024)), and
stomatal area (i.e., the area profile formed by two guard cells) was estimated as 0.811 × LW.
The site and sampling information are provided in [15], and the validity of the estimation
method on the stomatal area is provided in [16].

(ii) Dataset 2: Data of 23 leaves of a bamboo (Shibataea chinensis Nakai) culm. Envelopes
containing laminas were placed into a ventilated oven (XMTD–8222; Jinghong Experimental
Equipment Co., Ltd., Shanghai, China) at 80 ◦C for at least 72 h to determine the dry mass
of each leaf lamina using an electronic balance (ME204/02, Mettler Toledo Company,
Greifensee, Switzerland, with a measurement accuracy of 0.0001 g). The site and sampling
information can be found in [8].

https://imagej.nih.gov/ij/index.html
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(iii) Dataset 3: Data of nine tepals of a Magnolia × soulangeana Soul.-Bod. flower. Each
tepal was scanned at 600-dpi resolution with a photo scanner (V550, Epson Indonesia,
Batam, Indonesia). Adobe Photoshop 2021 (version 22.4.2; Adobe Systems Incorporated,
San Jose, CA, USA) was used to obtain black and white images of tepal profiles that were
saved as .bmp image at a 600-dpi resolution. The protocols proposed by prior studies [17,18]
based on Matlab (version ≥ 2009a; MathWorks, Natick, MA, USA) were used to obtain the
planar coordinates of the tepal boundary by calculating the pixel values of each image. The
projection area of each tepal was calculated using the “bilat” function of the “biogeom”
package (version 1.4.3) [19] based on R (version 4.3.3) [20]. Details of the data acquisition
methods can be found in [21].

(iv) Dataset 4: Volume data of 35 fruits of an individual Cucumis melo L. var. agrestis
Naud. plant. Volume is the volume of each fruit using a graduated cylinder with a 3 cm
diameter. The site and sampling information can be found in [22].

(v) Dataset 5: Length data of 144 seedheads of Setaria viridis (L.) P. Beauv. in a
1 m × 1 m quadrat. The study area is located in a field of Baima Experiment Station of
Nanjing Forestry University (31◦37′55′′ N, 119◦07′42′′ E) in September 2015. The seedheads
of S. viridis in the 15 m × 15 m study area were measured, and the study area was divided
into 125 quadrats of 1 m × 1 m. One quadrat was randomly selected in the present study.

(vi) Dataset 6: Breast height diameter data of 81 trees with DBH ≥ 1 cm in a
50 m × 50 m quadrat of a temperate forest in Beijing Songshan National Nature Reserve,
China (40◦30′ 50′′ N, 115◦49′ 12′′ E), censused in August 2014. The site and forest census
information can be found in [23].

2.4. Data Fitting and Model Assessment

Hypothetical simulations and empirically determined data of plant (organ) size dis-
tributions were first rotated by 135 degrees counterclockwise and shifted to the right by a
distance of

√
2 to meet the requirements for fitting the two performance equations, i.e., PE

and GPE. The three other Lorenz equations were rotated and right-shifted to fit the rotated
and right-shifted data. The parameters of each equation were then estimated using the
Nelder-Mead optimization algorithm [24] to minimize the residual sum of squares (RSS)
between the observed and predicted y values.

The “fitLorenz” function in the “biogeom” package (version 1.4.3) [19] based on the
statistical software R (version 4.3.3) [20] was used to fit the size distributions, and the
root-mean-square error (RMSE) was used to measure the goodness of fit for each of the
five equations. The Akaike information criterion (AIC) was also used to compare the five
equations, which is usually recommended in nonlinear regression, because it provides
a rigorous reflection of the tradeoff between the goodness of fit and model structural
complexity compared to the adjusted coefficient of determination [25].

3. Results

The results from simulations of the hypothetical size using beta distributions with
skewness values ranging between −2.3 and 2.3 validated the two performance equations.
GPE was found to be the best among the five equations, and PE was better than SCSE and
SHE apart from being less effective than GPE and SarabiaE, from both the perspective of the
goodness of fit and the perspective of the tradeoff between the goodness of fit and model
structural complexity (Figure 4). Figure 5 provides an example of fitting simulations from
the beta distribution with Sk = −0.81 using the five equations. Figure 6 shows the results
of fitting the data from the four types of representative skewness cases corresponding to
Figure 3.

Analyses indicated that the rotated and right-shifted observations of the six empirical
datasets were well fitted by GPE (Figure 7). For each dataset, GPE had the lowest RMSE
and AIC values compared to the other four equations, i.e., GPE was superior to the others
from the perspective of the goodness of fit, and the tradeoff between the goodness of fit
and model structural complexity. PE ranked the third best model following the second
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best, SarabiaE (Table 1). Therefore, the introduction of parameters α and β in Equation (2)
increased the goodness of fit but not at the cost of increasing the model’s complexity,
although for a small sample size, GPE tended to overfit the rotated and right-shifted
observations, producing a slightly concave part approaching the (0, 0) point (Figure 7c).
Relative to the estimated GPE, the estimated PE always exhibited inverted U-shaped curves.
Overall, for the six investigated datasets, the two performance equations and SarabiaE are
more valid than SCSE and SHE.
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Figure 4. Boxplots of the root-mean-square errors (a), and Akaike information criteria (b), compared
between any two of the five equations (i.e., PE, GPE, SarabiaE, SCSE, and SHE) for the 300 simulated
datasets from the beta distributions with skewness values ranging from −2.3 to 2.3. Significant
differences between any two equations using the paired t-test at the 0.05 significance level are marked
in different letters. The vertical solid line in each box represents the median; the whiskers extend to
the most extreme data point, which is no more than 1.5 times the interquartile range from the box.
The gray open circles show one dimensional scatter plots of the given data.
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Figure 5. The rotated and right-shifted Lorenz curves (blue, red, and green lines) and simulations
(closed circles) from the beta distribution with Sk = −0.81 (presented as an example of the simulated
300 skewness values) using the five equations. Panel (a) shows the results of fitting the two perfor-
mance equations, i.e., PE and GPE; panels (b–d) show the results of fitting the three rotated and
right-shifted Lorenz equations, i.e., SarabiaE, SCSE, and SHE. AIC1 to AIC5 are the Akaike informa-
tion criteria of the estimated PE, GPE, SarabiaE, SCSE, and SHE, respectively; RMSE1 to RMSE5 are
the root-mean-square errors of the estimated PE, GPE, SarabiaE, SCSE, and SHE, respectively; and
n is the sample size of each dataset.
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Figure 6. The rotated and right-shifted Lorenz curves (blue and red lines) and the data (closed circles)
for the four simulated datasets fitted by the two performance equations. PE is the three-parameter
performance equation (i.e., Equation (1)) obtained by fixing the two intersections with the x-axis to
0 and

√
2; GPE is the five-parameter performance equation (i.e., Equation (2)). AIC1 and AIC2 are the

Akaike information criteria of the estimated PE and GPE, respectively; RMSE1 and RMSE2 are the
root-mean-square errors of the estimated PE and GPE, respectively; and n is the sample size of each
dataset, which are realizations from the beta distributions with different combinations of parameters
a and b. (a) a = 10 and b = 0.5. (b) a = 10 and b = 2. (c) a = 0.5 and b = 10. (d) a = 2 and b = 10.
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Figure 7. The rotated and right-shifted Lorenz curves (blue and red lines) and data (closed circles)
for the six empirical datasets fitted by the two performance equations. PE is the three-parameter
performance equation (i.e., Equation (1)) obtained by fixing the two intersections with the x-axis to
0 and

√
2; GPE is the five-parameter performance equation (i.e., Equation (2)). AIC1 and AIC2 are

the Akaike information criteria of the estimated PE and GPE, respectively; RMSE1 and RMSE2 are
the root-mean-square errors of the estimated PE and GPE, respectively; and n is the sample size of
each dataset. (a) Stomatal area (i.e., the area of the profile formed by two guard cells) distribution in
a 662 µm × 444 µm micrograph of Magnolia denudata. (b) Leaf dry mass distribution of a bamboo
(Shibataea chinensis) culm. (c) Tepal area distribution of a Magnolia × soulangeana flower. (d) Fruit
volume distribution of an individual Cucumis melo var. agrestis vine. (e) Seedhead length distribution
in a 1 m × 1 m quadrat of Setaria viridis. (f) Breast height diameter distribution in a 50 m × 50 m
quadrat of a temperate forest.
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Table 1. Results of fitting the five equations to the six empirical datasets.

Species Indicator PE GPE SarabiaE SCSE SHE

Magnolia denudata
(n = 73)

RMSE 0.000495 0.000208 0.000339 0.001084 0.001065
AIC −896.07 −1018.87 −949.32 −781.64 −782.21

Shibataea chinensis
(n = 23)

RMSE 0.001009 0.000854 0.002536 0.002536 0.002410
AIC −244.09 −247.73 −199.67 −201.67 −202.02

Magnolia × soulangeana
(n = 9)

RMSE 0.001066 0.000614 0.001031 0.002510 0.002529
AIC −89.64 −95.58 −88.26 −74.24 −72.10

Cucumis melo var. agrestis
(n = 35)

RMSE 0.001629 0.000654 0.000769 0.000778 0.001190
AIC −342.05 −401.99 −392.59 −393.76 −362.02

Setaria viridis
(n = 144)

RMSE 0.000480 0.000456 0.000972 0.001157 0.001694
AIC −1784.25 −1795.15 −1579.08 −1530.83 −1418.96

Temperate trees
(n = 81)

RMSE 0.000664 0.000347 0.000446 0.003821 0.003667
AIC −947.58 −1048.44 −1010.12 −664.02 −668.68

4. Discussion

The results based on 300 simulated datasets with significantly different degrees of
skewness and six empirical datasets of plant (organ) size distributions validate the general
approach used in this study and the predictions of the performance equation (PE) and its
generalized version (GPE). GPE performed the best, SarabiaE worked the second best, and
PE worked the third best; all three were better than the remaining two Lorenz equations,
i.e., SCSE and SHE. PE and GPE were tested using 120 random numbers manifesting
extremely left-skewed, moderately left-skewed, moderately right-skewed, and extremely
right-skewed beta distributions. Both equations fitted the rotated and right-shifted LCs
for each simulation. We also tested two super-extreme skewed cases based on a beta
distribution function [12] by setting (i) a = 10 and b = 0.1 (representing a super-extreme
left-skewed distribution curve with Sk = −5.45), and (ii) a = 0.1 and b = 10 (representing a
super-extreme right-skewed distribution curve with Sk = 5.45), which significantly exceeded
empirically observed biological size distributions. PE and GPE effectively fitted the rotated
and right-shifted LCs of the simulated super-extreme left-skewed distribution curve, which
were significantly better than the three other Lorenz equations (not shown due to space
limitations). However, the two equations did not fit the simulations of the super-extreme
right-skewed distribution curve well; they were significantly worse than SCSE (Figure 8).
This latter case simulates a distribution in which most organs are small and approximately
equal in size but with several very large organs, which is not generally seen in most
biological systems. For this case, the rotated data exhibited an approximate isosceles
triangle, which PE and GPE did fit, whereas SCSE and SHE exhibited a better goodness
of fit than the two performance equations. Fortunately, a super-extreme right-skewed
distribution is rarely observed in real biological size distributions. In contrast, an extreme
left-skewed size distribution is not uncommon, e.g., most fruits are large and equal in size
but several small stunted fruits exist. Such cases can be effectively described by PE and
GPE. Thus, the two performance equations and SarabiaE are applicable for the majority of
abiotic and biotic samples, e.g., the distributions of bird egg size in a nest, of fish size in a
school, and the energy aftershock releases within a seismic belt in a period. In 300 simulated
datasets, 120 random numbers were used as hypothetical biological size values for each
dataset. We also checked whether the number of random numbers could influence the
results of model comparisons by setting 60, 120, 180, 240, 300, and 360 random numbers,
respectively, for each of 300 beta distributions with significantly different skewness values.
We found that the numbers of random variables did not influence the results, i.e., GPE
ranked the best, SarabiaE ranked the second best, PE ranked the third best, and all three
were better than the remaining two Lorenz equations (i.e., SCSE and SHE) in the range of
skewness between −2.3 and 2.3 based on the comparisons of RMSEs and AICs (the same
as those shown in Figure 4).
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Figure 8. The rotated and right-shifted Lorenz curves (blue, red, and green lines) and simulations
(closed circles) from the beta distribution with a = 0.1 and b = 10 (representing a super-extreme
right-skewed distribution curve) using each of the five equations. Panel (a) shows the results of
fitting the two performance equations, i.e., PE and GPE; panels (b–d) show the results of fitting the
three rotated and right-shifted Lorenz equations, i.e., SarabiaE, SCSE, and SHE. AIC1 to AIC5 are
the Akaike information criteria of the estimated PE, GPE, SarabiaE, SCSE, and SHE, respectively;
RMSE1 to RMSE5 are the root-mean-square errors of the estimated PE, GPE, SarabiaE, SCSE, and
SHE, respectively; and n is the sample size of each dataset.

5. Conclusions

Rotated Lorenz curves for biological size distributions are well described by PE and
GPE, although GPE provides a better fit and tradeoff between the goodness of fit and
the model structural complexity of the six empirical datasets. Both equations also fit
simulations with significantly different degrees of skewness (based on beta distribution
functions). Therefore, simulated and empirically determined size frequency distributions
provide robust evidence that the two performance equations and the Sarabia equation apply
broadly to many biotic and abiotic datasets. In conclusion, this approach provides a general
protocol for describing size frequency distributions, which is essential to understanding
many important ecological and evolutionary phenomena.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/sym16050565/s1, Table S1: Data of 73 stomata in a
662 µm × 444 µm micrograph of Magnolia denudata; Table S2: Data of 23 leaves of a bamboo (Shibataea
chinensis) culm; Table S3: Data of nine tepals of a Magnolia × soulangeana flower; Table S4: Volume
data of 35 fruits of an individual Cucumis melo var. agrestis plant; Table S5: Length data of 144 seed-

https://www.mdpi.com/article/10.3390/sym16050565/s1
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heads of Setaria viridis in a 1 m × 1 m quadrat; Table S6: Breast height diameter data of 81 trees with
DBH ≥ 1 cm in a 50 m × 50 m quadrat of a temperate forest.
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