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Abstract: A geometric approach to the integrability and reduction of dynamical systems, both
when dealing with systems of differential equations and in classical physics, is developed from
a modern perspective. The main ingredients of this analysis are infinitesimal symmetries and
tensor fields that are invariant under the given dynamics. A particular emphasis is placed on the
existence of alternative invariant volume forms and the associated Jacobi multiplier theory, and
then the Hojman symmetry theory is developed as a complement to the Noether theorem and
non-Noether constants of motion. We also recall the geometric approach to Sundman infinitesimal
time-reparametrisation for autonomous systems of first-order differential equations and some of
its applications to integrability, and an analysis of how to define Sundman transformations for
autonomous systems of second-order differential equations is proposed, which shows the necessity
of considering alternative tangent bundle structures. A short description of alternative tangent
structures is provided, and an application to integrability, namely, the linearisability of scalar second-
order differential equations under generalised Sundman transformations, is developed.
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1. Introduction: The Meaning of Integrability by Quadratures

Obtaining the solutions of autonomous systems of differential equations appearing in
many physical problems is not an easy task. In geometric terms, they are represented by
vector fields, whose integral curves are the solutions of the system.

In fact, in order to study an autonomous system of first-order differential equations,

dxi

dt
= Xi(x1, . . . , xn), i = 1, . . . , n, (1)

use is made of symmetry and reduction techniques [1]. The main parts of these techniques
are based on the transformation of the given system into a related one. From a local point
of view, sometimes, transformations are seen as coordinate changes (passive point of view).
Or, more explicitly, a diffeomorphism F : M //M of a differentiable manifold changes
each local chart (U, ϕ) into a new one (F(U), ϕ ◦ F−1).

Note that under a transformation of coordinates,

x̄i = φi(x1, . . . , xn) ⇐⇒ xi = ψi(x̄1, . . . , x̄n), i = 1, . . . , n,

the given system becomes

dx̄i

dt
= X̄i(x̄1, . . . , x̄n), i = 1, . . . , n,
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with

X̄i(x̄1, . . . , x̄n) =
∂φi

∂xj X j(ψ((x̄1, . . . , x̄n))),

where, on the right-hand side, each xi in the function X j is replaced by its value in terms
of (x̄1, . . . , x̄n), i.e., xi = ψi(x̄1, . . . , x̄n), and summation on repeated indices is understood.
This shows that the functions Xi transform as the components of a vector field X on an
n-dimensional manifold. The solutions of the system (1) are then integral curves of such a
vector field.

In order to find their solutions, i.e., the flow of the vector fields, as in a generic case,
there is no way of writing them in an explicit way, i.e., using fundamental functions, and
we are happy if, at least, we can express the solutions in terms of quadratures. More
specifically, integrability by quadratures means that one can determine the solutions (i.e.,
the flow of X) by means of a finite number of algebraic operations (including inversion of
functions) and the quadratures of some functions [2].

The characterisation of integrable systems admitting such a type of solution has
received a lot of attention, and the answer is always based on the use of Lie algebras of
vector fields containing the given one [2–4]. In order to study such systems, use is made of
symmetry and reduction techniques. The knowledge of some particular solutions of them
or related systems may be useful. But symmetry and constants of motion emerge from the
existence of compatible geometric structures provided by special tensor fields.

Both concepts, reduction and integrability, appear very often in physics and mathemat-
ics and with very different meanings. For instance, students in physics relate the reduction
process to infinitesimal symmetries or constants of motion, generally in the framework
of Lagrangian or Hamiltonian mechanics, because several reductions in the context of
symplectic geometry are well known. Note, however, that reduction processes can be
developed in a more general framework and need not be related to symmetry properties,
but these only aim to find simpler solvable systems providing at least partial information
on the solution of the original problem. The existence of compatible geometric structures
on M provided by special tensor fields is also very useful.

The problems in which reduction processes are relevant are the following ones:

• Given a problem that is difficult to solve, we can look for related simpler problems
whose solutions provide at least partial information on those of the first one.

• Sometimes, we find geometric structures difficult to handle, for instance, because they
have some kind of degeneracy. We then look for a related structure of the same kind
that is easier to manage, for instance, a nondegenerate one.

• When the original problem admits some geometric structures, then the reduction
procedure tries to preserve such structures.

These are the types of problems we are going to deal with. It is remarked that there
is no systematic way of selecting the related reduced systems, and sometimes, there are
different possibilities. Of course, in order for the method to be efficient, we should have, in
advance, some simple problems for which we know the solutions.

The problem to be analysed here is that of (systems of) first-order differential equations.
The higher-order case can be related to a first-order one.

In principle, one tends to assume that a system with fewer unknown variables or a
lower-order differential equation is simpler than one with more unknown variables or a
higher-order differential equation. The reducibility to a system solvable by quadratures
is the final objective. Sometimes, the problem of reduction is related to the so-called
coordinate separability.

Usually, reduction processes starting from linear systems may produce nonlinear
interacting ones, which, from the physical viewpoint, means that interaction terms can be
provided by reduction [5]. Conversely, given a nonlinear system, is it possible to obtain it
as a reduction from a simpler linear one?
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2. The Reduction of a System of Ordinary Differential Equations

If F : M // N is a differentiable map, the vector field X ∈ X(M) is F-related to the
vector field Y ∈ X(N) if, for each point p ∈ M, F∗p(Xp) = YF(p), i.e., TF ◦ X = Y ◦ F. We
say that X is F-projectable. The following diagram is commutative:

TM TF // TN

M

X

OO

F
// N

Y

OO

Note that this implies that if c : I //M is an integral curve of X, then F ◦ c is an
integral curve of Y (see, e.g., [5]).

The reduction of the dynamics given by the vector field X ∈ X(M) means finding
a manifold N, a differentiable map F : M // N and an F-related vector field Y ∈ X(N).
The integral curves of Y are F-projections of the integral curves of X. Another problem
remains: the reconstruction of the integral curves of X ∈ X(M) from the integral curves of
Y ∈ X(N).

In the reduction process, the cases to be considered are either when i : N //M is
an immersed submanifold of the n-dimensional manifold M or when F : M // N is a
surjective submersion.

(a) In the first case, the reduction implies that X|i(N) must be tangent to i(N), and
therefore, there exists a vector field X̄ on N such that it is i-related to X. Then, the integral
curves of X̄ provide us with the integral curves of X. We can suppose that the (n − k)-
submanifold N is (at least locally) defined by k functions Φ1, . . . , Φk, which should be first
integrals for X because of the assumed tangency condition. Note that only some integral
curves of X will be obtained in this way, and we need a family of such submanifolds
depending on k parameters in order to recover all integral curves of X ∈ X(M).

This procedure is very commonly used in mechanics: under very general conditions,
determining k functionally independent constants of motion reduces the original problem
to another problem involving only (n − k) variables but depending on k parameters.

(b) Finding a manifold N and a surjective submersion F : M // N such that X is a
projectable vector field is not an easy task. The map F defines an equivalence relation on
M, and N is the space of equivalence classes. The starting point may be the equivalence
relation, and then F is the projection map.

Usually, one considers a transformation Lie group G of M that is a symmetry group
for X and the equivalence relation associated with the action of G on M: we denote the
space of orbits by N, assumed to be a differentiable manifold, with the function F being the
natural projection of each element of M on its orbit. The symmetry condition implies that
X is a projectable vector field. In this way, the symmetry condition of X is incorporated
into the reduction process.

In other situations, the equivalence relation is defined by a foliation (involutive distri-
bution), and the equivalence classes are the leaves. The set of leaves is assumed to have
a manifold structure. If the original system has an invariance group, we can consider
invariant foliations in such a way that the leaves are preserved.

The above reduction procedures can be used in an iterative way.
In summary, there are two main techniques in the process of solving the system:

• The determination of first integrals for X: First integrals provide us with foliations
such that the vector field X is tangent to the leaves, and in this way, the problem
reduces to that of a family of lower-dimensional problems, one on each leaf.

• Search for symmetries of the vector field X: The knowledge of infinitesimal groups of
symmetries of the vector field (i.e., of the system of differential equations) suggests
that we use adapted local coordinates, with the system then decoupling into lower-
dimensional subsystems.
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More specifically, the knowledge of r functionally independent (i.e., such that dF1 ∧
· · · ∧ dFr ̸= 0) first integrals, F1, . . . , Fr, allows us to reduce the problem to that of a family
of vector fields X̃c, with c ∈ Rr, defined on the n − r-dimensional submanifolds Mc given
by the level sets of the vector function of rank r, (F1, . . . , Fr) : M //Rr.

Of course, the best situation is when r = n − 1: the leaves are one-dimensional, giving
us the solutions to the problem, up to a reparametrisation.

There is another way to reduce the problem. Given an infinitesimal symmetry (i.e.,
a vector field Y such that [Y, X] = 0) in a neighbourhood of a point where Y is different
from zero, we can choose adapted coordinates, (y1, . . . , yn), for which Y is written as
(Straightening out Theorem, see, e.g., [6])

Y =
∂

∂yn .

Then, the symmetry condition [Y, X] = 0 implies that X has the form

X = f̄ 1(y1, . . . , yn−1)
∂

∂y1 + . . . + f̄ n−1(y1, · · · , yn−1)
∂

∂yn−1 + f̄ n(y1, . . . , yn−1)
∂

∂yn ,

and its integral curves are obtained by solving the system
dyi

dt
= f̄ i(y1, . . . , yn−1) , i = 1, . . . , n − 1,

dyn

dt
= f̄ n(y1, . . . , yn−1).

We have reduced the problem to a subsystem involving only the first n − 1 equations,
and once this has been solved, the last equation is used to obtain the function yn(t) by
means of one quadrature. Note that the new coordinates, y1, . . . , yn−1, are first integrals for
Y, and therefore, we cannot easily find such coordinates in a general case.

Moreover, the information provided by two different symmetry vector fields cannot be
used simultaneously in the general case, because it is not possible to find local coordinates
(y1, . . . , yn) such that

Y1 =
∂

∂yn−1 , Y2 =
∂

∂yn ,

unless [Y1, Y2] = 0.
In terms of adapted coordinates for X, i.e., such that X = ∂/∂yn, the integration is

immediate, the solution being

yk(t) = yk
0, k = 1, . . . , n − 1, yn(t) = yn(0) + t.

This proves that the concept of integrability by quadratures depends on the choice
of initial coordinates. In adapted coordinates, it is always integrable. However, it can be
proved that when X is part of a family of vector fields satisfying appropriate conditions, it
is integrable by quadratures for any choice of initial coordinates (see, e.g., [2,3]).

We also remark that the set XX(M) = {Y ∈ X(M) | [Y, X] = 0} of infinitesimal
symmetries of X ∈ X(M) is an R-linear space, and that the flows of such vector fields
Y ∈ XX(M) preserve the set of integral curves of X.

Both constants of motion and infinitesimal symmetries can be used simultaneously if
some compatibility conditions are satisfied. We can say that a system admitting r < n − 1
functionally independent first integrals for X, F1, . . . , Fr, is integrable when we know that
there are s commuting infinitesimal symmetries Y1, . . . , Ys, with r + s = n, such that

[Ya, Yb] = 0, a, b = 1, . . . , s, and YaFα = 0, ∀a = 1, . . . , s, α = 1, . . . , r.
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The first integrals determine an s-dimensional foliation, and the latter conditions mean
that the restrictions of the s vector fields Ya to the leaves are tangent to such leaves.

Sometimes, we have additional geometric structures that are compatible with the
dynamics. For instance, an interesting example to be studied in Section 4 is that of a sym-
plectic structure ω on a 2n-dimensional manifold M. Such a 2-form relates, by contraction,
vector fields and 1-forms in a one-to-one manner. The vector fields XF associated with
exact 1-forms dF are said to be Hamiltonian vector fields. The compatibility of ω means
that the vector field X is a Hamiltonian vector field X = XH . The regular Poisson bracket
defined by ω (i.e., {F1, F2} = XF2 F1) allows us to express the tangency conditions as

XFb Fa = {Fa, Fb} = 0;

i.e., the first integral functions Fa must be in involution, and the corresponding Hamiltonian
vector fields commute. This leads to the particularly interesting Arnold–Liouville definition
of (Abelian) complete integrability (r = s = n). The vector fields are Xa = XFa and,
for instance, F1 = H.

In summary, the problem of integrability by quadratures depends on determining, by
quadratures, the necessary first integrals and infinitesimal symmetries and finding adapted
coordinates, or, in other words, as shown in the next sections, finding a sufficient number
of invariant tensors.

An appropriate set of infinitesimal symmetries of the vector field X provides constants
of motion. More specifically, let {X1, . . . , Xd} be a set of d vector fields that take linearly
independent values at every point and that are infinitesimal symmetries of the dynamical
vector field X. If they generate an involutive distribution (i.e., there exist functions fij

k

such that [Xi, Xj] = fij
kXk), then, for each triple of numbers i, j, k, the functions fij

k are
first integrals for X, i.e., X( fij

k) = 0. In fact, the Jacobi identity for the vector fields X, Xi,
Xj, i.e.,

[[X, Xi], Xj] + [[Xi, Xj], X] + [[Xj, X], Xi] = 0,

leads to
[[Xi, Xj], X] = 0 =⇒ [ fij

kXk, X] = −X( fij
k) Xk = 0.

Moreover, for any other index l, Xl( fij
k) is also a first integral for X, because as Xl is

a symmetry of X, then LX

(
LXl ( fij

k)
)
= LXl

(
LX( fij

k)
)
= 0. The constants of motion so

obtained are not functionally independent, but at least this proves the usefulness of finding
these families of vector fields when looking for first integrals.

3. Invariant Tensor Fields and the Integrability of a Vector Field

The main point is that the integrability of a given vector field X on a manifold M is
usually studied by means of its compatible geometric structures. Geometric structures
are defined by tensor fields t, and they are said to be compatible with X when they are
invariant under X, i.e., LXt = 0.

As an example mentioned before, a function F ∈ C∞(M) invariant under X defines a
constant of motion, also called the first integral for X. The corresponding exact 1-form dF
defines an (n − 1)-dimensional foliation (integrable distribution), and the restriction of the
vector field X to each leaf is tangent to the leaf, thus defining a family of vector fields on
lower-dimensional manifolds, which can be considered reduced systems. This property,
where a first integral, i.e., an invariant function, can be used to reduce the integrability of
the vector field to a family of lower-dimensional problems, is a particular example of a
more general case: the mentioned role of tensor fields invariant under a vector field X on
an n-dimensional manifold M in its integrability (see, e.g., [4]).

Another example that we have also considered is that of invariant vector fields Y ∈
X(M), i.e., such that Y ∈ XX(M) = {Y ∈ X(M) | [Y, X] = 0}, then giving rise to
infinitesimal symmetries of X, whose flows transform solutions into solutions. As the
flows of such vector fields Y ∈ XX(M) preserve the set of integral curves of X, we can also
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consider a set of vector fields Y ∈ X(M) whose flows preserve each integral curve of X up
to reparametrisations; i.e., they preserve the one-dimensional distribution generated by
X, and then the vector field Y is a symmetry of the one-dimensional distribution spanned
by X: there exists a function h ∈ C∞(M) such that [Y, X] = h X. Such a set of vector fields
generating flows preserving the set of integral curves of X up to a reparametrisation is also
a real linear space containing XX(M), usually denoted by

XX(M) = {Y ∈ X(M) | [Y, X] = fY X} , fY ∈ C∞(M).

One can check that XX(M) is a real Lie algebra containing XX(M) as a real Lie subal-
gebra, but XX(M) is not an ideal in XX(M).

Moreover, if F is a first integral for X, then when Y is a symmetry of the vector field X
or, more generally, of the one-dimensional distribution spanned by X, the function Y(F) is
also a first integral, because LX(Y(F)) = Y(LX(F))− h X(F) = 0.

Strictly positive symmetric forms g on M invariant under X ∈ X(M) imply that
the given vector field is a Killing vector field whose integrability we have additional
information on (see, e.g., [7]), while a nondegenerate closed 2-form ω on M is invariant
under X ∈ X(M), and such a vector field is a locally Hamiltonian vector field on the
symplectic manifold (M, ω). This is a particularly interesting case that will be studied in
the next section.

Later on, we will see several examples of how to find new first integrals when addi-
tional tensor fields enter the game. Of course, some invariant multivector fields are also
interesting, but the case of Poisson bivector fields is particularly relevant. Differential forms
that are invariant under X give rise to absolutely integral invariants, a theory developed
by Poincaré in [8]. In particular, invariant 2-forms, for instance, the relevant case in the
mechanics of symplectic forms, are very relevant in the study of the integrability of X,
and Arnold–Liouville integrability is based on the existence of an appropriate invariant
symplectic form.

We now remark that when we have a (1, 1)-tensor field R invariant under X, it may be
used as a generator of symmetry, in the sense that if Y is a symmetry of X, then LXR = 0
implies that LX(R(Y)) = 0, and in this sense, R generates symmetry; for instance, as X
itself is a symmetry, the vector fields Rk(X), k ∈ N, are infinitesimal symmetries, too.

Furthermore, if we know such an invariant (1,1)-tensor field R and choose a local basis
of vector fields {X1, . . . , Xn}, then if the matrices A and B are the matrix representatives of
R and LX in such a basis, respectively, then the invariance condition LXR = 0 is written as

Ȧ = [B, A], (2)

where Ȧi
j denotes X(Ai

j), because if R(Xi) = Ai
jXj and LXXi = Bi

jXj, as we have
LX [R(Xi)] = LX [Ai

jXj] = LX(Ai
j)Xj + Ai

jBj
kXk, and R(LXXi) = Bi

j Aj
kXk, then,

taking into account that the X-invariance of R is equivalent to LX [R(Xi)] = R[LX(Xi)],
we find that LXR = 0 is equivalent to LX(Ai

j) + Ai
kBk

j = Bi
k Ak

j and, therefore, to the
matrix Equation (2), which is called the Lax equation [9–11]. Also, note that as the matrix
representative of R2 is A2 and LXR = 0 implies that LXRk = 0, with k ∈ N, we also have

Ȧk = [B, Ak], k = 1, . . . n. (3)

The importance of these equations is that, as for any pair of matrices, the trace of the

commutator is zero, and we have
d
dt

TrAk = 0, and consequently, a (1, 1)-tensor field R
invariant under X provides us with n constants of motion; in principle, not all of them
are functionally independent, as indicated by the Hamilton–Cayley theorem. Another
remark is that, as the coefficients of the characteristic equation det(A − λI) = 0 can be
reconstructed from the traces of powers of A (the Le Verrier method of determining the
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characteristic equation of a matrix; see, e.g., [12]), the roots of such a characteristic equation,
the eigenvalues of A, are constants of motion.

The search for these invariant (1,1)-tensor fields R is not an easy task and used to
come from the existence of alternative structures [5,13–15], with the associated constants of
motion being called non-Noether constants of motion (see, e.g., [13,16,17]), but they may
have a different origin [10,18]. We will come back to this point in Section 5.

Another interesting case is when there exists a volume form invariant under X. This
case and an alternative method to find the first integrals associated with symmetries of a
one-dimensional distribution spanned by the vector field X will be analysed in Section 5.

4. Invariant Symplectic Structures

We recall that (M, ω) is a symplectic manifold if M is a finite-dimensional differentiable
manifold and ω is a nondegenerate 2-form that satisfies dω = 0 (that is, ω ∈ Z2(M)).
The dimension of M is necessarily even, dim M = 2n. General results can be found in
reference textbooks, for instance [19,20]. By the nondegeneracy of ω, we mean that for
every point u ∈ M, the map ω̂u : Tu M // T∗

u M, given by ⟨ω̂u(v), v′⟩ = ωu(v, v′) with
v, v′ ∈ Tu M, has a maximal rank, i.e., (ω)∧n ̸= 0. Such a map ω̂ is a base-preserving fibred
map, and hence, it induces a mapping between the linear spaces of sections, which, with a
slight abuse of notation, we will also write as ω̂ : X(M) // ∧1(M).

The following well-known result completely characterises these symplectic manifolds
from the local point of view:

Theorem 1. (Darboux) Around each point u ∈ M with dim M = 2n, there is a local chart (U, ϕ)
such that if ϕ = (q1, . . . , qn; p1, . . . , pn), then ω|U = dqi ∧ dpi.

Such coordinates are called Darboux coordinates.
Since closed and, in particular, exact 1-forms are distinguished elements in

∧1(M),
the corresponding vector fields are called locally Hamiltonian vector fields and Hamiltonian
vector fields, respectively. If H ∈ C∞(M), the Hamiltonian vector field XH associated
with the Hamiltonian H is the unique vector field satisfying ω̂(XH) = i(XH)ω = dH.
The set of Hamiltonian vector fields will be denoted by XH(M, ω), and that of locally
Hamiltonian vector fields by XLH(M, ω), i.e., XLH(M, ω) = ω̂−1(Z1(M)) and XH(M, ω) =
ω̂−1(B1(M)). Observe that ω̂−1 is an isomorphism of real vector spaces.

The Cartan homotopy identity, i.e., LXα = i(X)dα + d(i(X)α), for any α ∈ ∧p(M),
shows that, given X ∈ X(M), LXω = 0 if and only if i(X)ω is a closed 1-form, i.e., X ∈
XLH(M, ω). In particular, LXH ω = 0. In Darboux coordinates, the Hamiltonian vector field
XH corresponding to the function H is given by

XH =
∂H
∂pi

∂

∂qi −
∂H
∂qi

∂

∂pi
,

and therefore, the equations determining its integral curves are similar to Hamilton equations.
Note that if X, Y ∈ XLH(M, ω), the commutator [X, Y] is a Hamiltonian vector field

with the Hamiltonian ω(Y, X), because, from the relation i(X)LYα −LYi(X)α = i([X, Y])α,
valid for any form α, we obtain

i([X, Y])ω = i(X)LYω −LYi(X)ω = −LYi(X)ω = −i(Y)d(i(X)ω)− d(i(Y)i(X)ω) ,

and then,
i([X, Y])ω = −d(ω(X, Y)) . (4)

Consequently, the set XLH(M, ω) is a Lie algebra, and XH(M, ω) is an ideal
in XLH(M, ω).
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As an important property, if (M, ω) is a symplectic manifold, we can define the Poisson
bracket of two functions F, G ∈ C∞(M) as being the function {F, G} given by

{F, G} = ω(XF, XG) = dF(XG) = −dG(XF) . (5)

In Darboux coordinates for ω, the expression for {F, G} is the usual one:

{F, G} =

(
∂F
∂qi

∂G
∂pi

− ∂F
∂pi

∂G
∂qi

)
. (6)

The aforementioned property (4) means that if F, G ∈ C∞(M), then we have d{F, G} =
−i([XF, XG])ω, i.e.,

[XF, XG] = X{G,F}. (7)

This Poisson bracket {·, ·} is a skew-symmetric R–bilinear map on C∞(M) such that it
satisfies Jacobi’s identity as a consequence of ω being closed. In fact, if F, G, H ∈ C∞(M),

(dω)(XF, XG, XH) = XFω(XG, XH)− XGω(XF, XH) + XHω(XF, XG)

− ω([XF, XG], XH) + ω([XF, XH ], XG)− ω([XG, XH ], XF) ,

and taking into account that XFω(XG, XH) = XF{G, H} = {{G, H}, F} and that ω([XF, XG],
XH) can also be rewritten as ω([XF, XG], XH) = ω(X{G,F}, XH) = {{G, F}, H}, as well as the
corresponding expressions for each cyclic reordering, we find that

(dω)(XF, XG, XH) = 2
[
{{G, H}, F}+ {{H, F}, G}+ {{F, G}, H}

]
.

Finally, we recall that at each point of a neighbourhood of every point of M, the
values of the set of Hamiltonian vector fields generate the tangent space, and therefore,
dω = 0 if and only if the Jacobi identity holds. Hence, the Poisson bracket endows C∞(M)
with a real Lie algebra structure, with the Jacobi identity being a consequence of the
closedness of ω, and property (7) shows that −ω̂−1 ◦ d : C∞(M {·, ·} //XH(M, ω) is a Lie
algebra homomorphism.

A Hamiltonian system is a triplet (M, ω, H), where (M, ω) is a symplectic manifold
and H ∈ C∞(M). Infinitesimal symmetries of a Hamiltonian system (M, ω, H) are vector
fields X whose flows are symplectomorphisms, i.e., LXω = 0, such that they are also
symmetries of H, i.e., XH = 0, and, therefore, they are symmetries of XH , [X, XH ] =
0, because

i([X, XH ])ω = LX(i(XH)(ω))− i(XH)(LXω) = LX(dH) = d(LX(H)) = 0.

Then, for each F ∈ C∞(M), the relation XH F = {F, H} = −XF H shows that XF is
an infinitesimal symmetry of H if and only if F is a first integral for XH (a result usually
known as Noether’s theorem).

It is remarked that, in the case of a Hamiltonian dynamical system, the constants of
motion F play a dual role in the reduction process, either as constants of motion (i.e., first
integrals for XH) or as generating infinitesimal symmetries XF, because if F is a constant
of motion, {F, H} = 0, then the Hamiltonian vector field XF is an infinitesimal symmetry
of H.

Moreover, both XH and XF are tangent to the level sets of F, because XH F = {F, H} =
0, and XFF = {F, F} = 0. The restriction of XF on each leaf of the foliation FH ,
whose leaves are the level sets of H, can be used to determine adapted coordinates, be-
cause [XF, XH ] = X{H,F} = 0, in such a way that the problem of determining the integral
curves of XH is reduced not just in one but also in two degrees of freedom.

In order to be able to simultaneously use the information given by different constants
of motion, F1, . . . , Fr, it is sufficient that {Fi, Fj} = 0, ∀i, j = 1, . . . , r, because [XFi , XFj ] =

X{Fj ,Fi}. If the condition is satisfied, then [XFi , XFj ] = 0 for any pair of indices i and j, and we
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can find adapted coordinates such that XFi = ∂/∂yi for i = 1, . . . , r. The condition is not
necessary because if, for instance, {Fi, Fj} is constant for each pair of indices, then it is also
true that [XFi , XFj ] = 0.

The simplest case will be that of Hamiltonian systems in a space of dimension N = 2 n
for which such n functionally independent first integrals, F1, . . . , Fn, in involution are
known: they are called completely integrable systems.

We are now ready to recall the notion of Liouville–Arnold integrability:

Definition 1. The Hamiltonian dynamical system (M, ω, H), with dim M = 2n, is said to be
completely integrable if there exists a set of n functions {Fj | j = 1, . . . , n}, where Fj ∈ C∞(M),
with F1 = H, which are first integrals, i.e.,

dFk
dt

= LXH Fk = {Fk, H} = 0, ∀k = 2, . . . , n,

that are functionally independent, i.e., dF1 ∧ · · · ∧ dFn =/ 0, and are pairwise in involution, i.e.,

{Fk, Fj} = 0, ∀j, k = 1, . . . n.

A completely integrable system that admits more than n functionally independent
first integrals is said to be superintegrable, and when the number is the maximum number,
2n − 1, the system is called maximally superintegrable [21]. Many such systems can be
found in the physics literature (see, e.g., the recent papers [22,23] and references therein).

The two main examples of Hamiltonian dynamical systems are those of Hamiltonian
systems on the cotangent bundle T∗Q of a manifold Q and those defined by regular La-
grangians on the tangent bundle TQ, to be studied in this section. In fact, the cotangent bun-
dle π : T∗Q //Q is endowed with a canonical 1-form θ ∈ ∧1(T∗Q), defined by θα = π∗

αα,
for all covectors α in Q. Then, ω = −dθ is a symplectic form on T∗Q. It is remarked that if
α is a 1-form in Q, then as α∗θ = α, we have α∗ω = α∗(−dθ) = −d(α∗θ) = −dα.

The geometric framework for the study of Lagrangian mechanics is that of tangent
bundles [5,19,20,24,25]. The tangent bundle τ : TQ //Q is characterised by two geometric
tensors, the vertical endomorphism S, a (1,1)-tensor field on TQ, also called a tangent
structure, which satisfies Im S = ker S and an integrability condition, the vanishing of the
Nijenhuis tensor, NS = 0, and the Liouville vector field ∆ generating dilations along fibres
in TQ [26].

If (U, φ) is a local chart on Q and pri : Rn // R are the natural projections on the
i-th factor and qi = pri ◦ φ, we define the coordinate system (U, q1, . . . , qn) on Q, and the
corresponding chart in U = τ−1(U), given by (U , φ, φ∗), defines a coordinate system
(q1, . . . , qn, v1, . . . , vn) on the open set U = τ−1(U) of TQ. Correspondingly, we consider
the coordinate basis of X(U), usually denoted by {∂/∂qj | j = 1, . . . , n}, and its dual basis
for

∧1(U), {dqj | j = 1, . . . , n}. Then, a vector v at a point q ∈ U is v = vj (∂/∂qj)|q,
i.e., vi = dqi(v), while a covector α at a point q ∈ U is α = αj dqj

|q, with αi = α((∂/∂qi)|q).
With this notation, the coordinate expressions of the vertical endomorphism S and the
Liouville vector field ∆ are [24,25]

S(q, v) =
∂

∂vi ⊗ dqi, ∆(q, v) = vi ∂

∂vi . (8)

Similarly, we can introduce a coordinate system (q1, . . . , qn, p1, . . . , pn) in the open set
Ū = π−1(U) of the cotangent bundle π : T∗Q //Q, and the coordinate expression of the
1-form θ is

θ(q, p) = pi dqi, (9)

which shows that ω = −dθ is a canonical symplectic structure on T∗Q.
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Also, recall that a diffeomorphism φ of the manifold Q induces, in a natural way,
a diffeomorphism of its tangent bundle Φ ∈ Diff(TQ), and it satisfies Φ∗∆ = ∆ and
[Φ∗, S] = 0 [24,25].

The vector field ∆ and the tensor field S can be used to select a special kind of vector
field whose integral curves are given by the lifting solutions of second-order differential
equations. These vector fields, called second-order differential equation vector fields
D ∈ X(TQ) (hereafter shortened to SODE vector fields), are characterised by S(D) = ∆.

Given a Lagrangian L ∈ C∞(TQ), we can define a 1-form θL = dL ◦ S and the exact 2-
form ωL = −dθL. When ωL is regular, the Lagrangian L is said to be regular: i.e., (TQ, ωL)
is a symplectic manifold. Then, the dynamics are given by the uniquely defined SODE
vector field ΓL such that

i(ΓL)ωL = dEL ⇐⇒ LΓL θL − dL = 0, (10)

where the energy function EL ∈ C∞(TQ) is defined by EL = ∆(L)− L. This shows that
(TQ, ωL, EL) is a Hamiltonian dynamical system. The contraction of both sides of the first
equation in (10) shows that the energy function is a first integral. Moreover, this implies
that LΓL ωL = d(i(ΓL)ωL) = 0.

In the usual local tangent bundle coordinates, the expressions of θL and EL are

θL =
∂L
∂vi dqi, EL = vi ∂L

∂vi − L, (11)

while that of ωL is

ωL =
∂2L

∂qj∂vi dqi ∧ dqj +
∂2L

∂vk∂vj dqj ∧ dvk. (12)

It may be of interest to know under what conditions two regular Lagrange functions
L, L′ ∈ C∞(TQ), in TQ produce the same symplectic structure and the same energy
function; i.e., L0 = L − L′ is such that ωL0 ≡ 0 and EL0 = 0.

If α is a 1-form on Q, α ∈ ∧1(Q), then α̂ denotes the function α̂ ∈ C∞(TQ) defined by
α̂(u) = απ(u)(u). Such a function is such that ∆α̂ = α̂ and dα̂ ◦ S = τ∗α.

Then, a function L0 ∈ C∞(TQ) is such that ωL0 ≡ 0 if and only if there exist a closed
1-form α ∈ Z1(Q) and a function h ∈ C∞(Q) such that L0 = α̂+ h ◦ τ (see, e.g., [27]). But, as
for such a function L0, we have EL0 = −h, we see that L, L′ ∈ C∞(TQ) in TQ produces
the same Hamiltonian dynamical system, i.e., ωL = ωL′ and EL = EL′ , if and only if there
exists a closed 1-form α ∈ Z1(Q) such that L′ = L + α̂, and both Lagrangians are then said
to be gauge-equivalent.

It is also possible to identify a complete lift vector field Xc ∈ X(TQ) that is a symmetry
of the Hamiltonian dynamical system (TQ, ωL, EL) in terms of symmetries of L itself. Recall
that if X ∈ X(Q), its complete lift, denoted by Xc, is the vector field on TQ, whose flow is
given by ϕt∗, where ϕt is the local flow of the vector field X. If the local coordinate expression
of the vector field X in a chart of Q is X(q) = Xi(q)∂/∂qi, then the corresponding expression
for Xc in the associated chart of TQ is Xc(q, v) = Xi(q)∂/∂qi + (∂Xi/∂qj)vj∂/∂vi.

It is also remarked that if Φ ∈ Diff(TQ) is a lift of a diffeomorphism φ of the manifold
Q, then Φ∗θL = θΦ∗L, as well as Φ∗EL = EΦ∗L, as a consequence of Φ∗∆ = ∆ and
[Φ∗, S] = 0, because

Φ∗θL = Φ∗(dL ◦ S) = dL ◦ S ◦ Φ∗ = dL ◦ Φ∗ ◦ S = d(L ◦ Φ) ◦ S = θΦ∗L, (13)

while, as ∆ is Φ-related to itself, (∆L) ◦ Φ = ∆(L ◦ Φ), we have

Φ∗EL = Φ∗(∆L)− Φ∗L = ∆(Φ∗L)− Φ∗L = EΦ∗L. (14)

At the infinitesimal level, (13) and (14) mean that if Xc ∈ X(TQ) is the complete lift of
X ∈ X(Q), we have

LXc θL = θXc L, XcEL = EXc L. (15)
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All of these properties can be used to derive Noether’s theorem in the Lagrangian
formalism:

Theorem 2 (Noether). If the vector field X ∈ X(Q) is such that there exists a function h ∈ C∞(Q)

such that XcL = d̂h, then the function f = i(Xc)θL − τ∗h is a constant of motion.

Proof. First, the vector field Xc is Hamiltonian because

LXc θL = θXc L = θd̂h = τ∗(dh) = d(τ∗h),

and then

i(Xc)dθL + d(i(Xc)θL) = d(τ∗h) ⇐⇒ i(Xc)ωL = d((i(Xc)θL − h) = d f .

Moreover, XcEL = EXc L = Ed̂h = 0, and then if ΓL is the dynamical vector field
determined by L, i.e., i(ΓL)ωL = dEL, we have

ΓL f = { f , EL} = −{EL, f } = −XcEL = 0.

Particularly interesting cases are the geodesic Lagrangians defined through a Riemann
structure g by L = 1

2 g(v, v) (see, e.g., [7,28,29]) and the so-called natural Lagrangians defined
by means of a Riemann structure g and a function V in Q as follows: L = 1

2 g(v, v)− V(q).
A remarkable fact is the possibility of the existence of alternative compatible structures

of the same type. For instance, a Hamiltonian vector field XH on the symplectic manifold
(M, ω) can also be a Hamiltonian vector field with respect to an alternative symplectic
structure ω′; i.e., there exists H′ ∈ C∞(M) such that i(XH)ω

′ = dH′. This also implies that
LXH ω′ = 0, and we see in this way that ω′ is an alternative XH-invariant 2-form for XH .
But if ω′ is a 2-form such that LXH ω′ = 0, then LXH (ω

′ − λ ω) = 0, λ ∈ R, also implies
that LXH (ω

′ − λ ω)∧n = 0, and as (ω′ − λ ω)∧n = fλ (ω)∧n, we see that LXH fλ = 0, and
therefore, the function coefficients of powers of λ are first integrals. They are usually called
non-Noether first integrals [13,16]. Such constants are the same ones as those associated
with the invariant (1,1)-tensor field R = ω̂−1 ◦ ω̂′ in Section 3.

We now mention two particular methods for finding such an XH-invariant 2-form
ω′. First, if a vector field Y is such that [Y, XH ] = 0 but is not a locally Hamiltonian
vector field, then ω′ = LY(ω) is an XH-invariant closed 2-form, because LXH (LY(ω)) =
LY(LXH (ω)) = 0. Second, if ϕ ∈ Diff(M) is a noncanonical symmetry of the Hamil-
tonian vector field defined by the Hamiltonian dynamical system (M, ω, H), from the
relation i(ϕ∗(XH))((ϕ

−1)∗(ω)) = d((ϕ−1)∗H), we see that if ϕ∗(XH) = XH , then
i(XH)((ϕ

−1)∗(ω)) = d((ϕ−1)∗H), and therefore, LXH ((ϕ
−1)∗(ω)) = 0, and equivalently,

LXH (ϕ
∗(ω)) = 0. As it was assumed that ω′ = ϕ∗(ω) ̸= ω, we can choose such an

XH-invariant closed 2-form ω′ to define, together with ω, the pencil. We also recall
that ϕ ∈ Diff(M) is said to be a canonoid transformation of the Hamiltonian dynam-
ical system (M, ω, H) when ϕ∗(XH) is also a Hamiltonian vector field or, equivalently,
when XH is Hamiltonian with respect to the transformed 2-form ϕ∗(ω), and in this case,
LXH (ϕ

∗(ω)) = 0 [14,15]; i.e., we can also choose ω′ = ϕ∗(ω) as the invariant XH-form.

5. Invariant Volume Forms and Jacobi Multipliers

Another interesting case with many applications, both in the theory of differential
equations and in classical mechanics, is that of the existence of a volume form invariant
under a given vector field X on an oriented manifold (M, Ω). Each volume form is of
the form R Ω, with R ∈ C∞(M), and the invariance condition is LX(R Ω) = 0, and if we
take into account that LX(R Ω) = d(i(X)(R Ω)) = d(i(R X)(Ω)) = LR X(Ω), we see that
the invariance condition of R Ω under X is equivalent to the invariance condition of Ω
under R X.
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Also, recall that for each vector field X ∈ X(M), the volume form LXΩ is proportional
to Ω, and the proportionality function is called the divergence of X, i.e.,

LX(Ω) = div(X)Ω , (16)

and if local coordinates are chosen such that Ω = dx1 ∧ · · · ∧ dxn, when the local expression

of X is X = Xi ∂

∂xi , the local expression of div(X) is

div(X) =
∂Xi

∂xi .

Vector fields X such that div(X) = 0 are called divergence-free vector fields and
possess interesting properties (see, e.g., [4]).

Recalling the properties of Lie derivatives, we find that, as for each f ∈ C∞(M),
L f X(Ω) = LX( f Ω) = f LX(Ω) + (LX f )Ω, using the definition (16) of div(X), we have

div( f X) = f div(X) + X( f ) . (17)

Nonvanishing functions R such that LX(R Ω) = LR X(Ω) = 0, i.e., div(R X) = 0,
are called Jacobi multipliers, and (17) shows that the nonvanishing function R is a Jacobi
multiplier if and only if (see [30,31] and references therein)

R div(X) + X(R) = 0 ⇐⇒ div(X) + X(log R) = 0 . (18)

Locally defined Jacobi multipliers, obtained as particular solutions of (18), always
exist, but in some particular cases, global solutions, giving rise to invariant volume forms,
do not exist [32,33].

Note that the relation LX(R Ω) = d(i(X)(R Ω)) = d(i(R X)Ω) means that, for each
positive function f , the function R is a Jacobi multiplier for X on the oriented man-
ifold (M, Ω) if and only if f R is a Jacobi multiplier for X in the oriented manifold
(M, f−1 Ω). Moreover, if two Jacobi multipliers are known, there exist two invariant
volume forms, Ω1 = R1 Ω and Ω2 = R2 Ω, such that Ω2 = (R2/R1)Ω1, and hence, as
LXΩ2 = LX(R2/R1)Ω1 = 0, the quotient R2/R1 is a first integral.

An interesting case is that of a SODE vector field Γ ∈ X(TQ) admitting a Lagrangian
formulation L; i.e., there exists a regular Lagrange function L ∈ C∞(TQ) such that
i(Γ)ωL = dEL or, equivalently, LΓθL = dL. The tangent bundle TQ is orientable, and
a local chart of TQ induced by one on Q induces a (local) orientation. As LΓωL = 0, the vol-
ume form (ωL)

∧n is Γ-invariant, and therefore, if a volume form Ω was previously fixed,
there will be a Jacobi multiplier R such that (ωL)

∧n = R Ω. If, for instance, Ω is the volume
form determined by a tangent bundle local chart, Ω = dq1 ∧ · · · ∧ dqn ∧ dv1 ∧ · · · ∧ dvn,
we find, according to (12), that the determinant of the Hessian matrix W with elements
Wij = ∂2L/∂vi∂vj is a Jacobi multiplier, because (ωL)

∧n is a real multiple of det W dq1 ∧
· · · ∧ dqn ∧ dv1 ∧ · · · ∧ dvn (see [30] and references therein). Alternative Lagrangian formu-
lations provide different Jacobi multipliers giving rise to constants of motion, which allows
the system to be reduced.

Hojman [34] and González-Gascón [35] explored a new approach in the search for first
integrals, which has become more and more important over the last several years for its
applications to f (R)-gravity and FRW cosmology [36–42].

The main result is very general and a simple consequence of a geometric relation that,
when particularised to specific cases, gives rise to many results scattered throughout the
physics literature. So, different relations among vector fields and their divergences can be
used to establish first integrals and integral invariants for vector fields on a manifold M.
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The following geometric relation plays a fundamental role: if X, Y is an arbitrary pair
of vector fields on an oriented manifold (M, Ω), then

LX(div (Y))−LY(div (X)) = div ([X, Y]), (19)

because as the Lie derivatives of a p-form α satisfy LX(LYα)−LY(LXα) = L[X,Y]α, then
in the particular case α = Ω, we have

LX(LYΩ)−LY(LXΩ) = L[X,Y]Ω, (20)

and from the difference between

LX(LYΩ) = LX(div(Y)Ω) = LX(div(Y))Ω + div(Y)div(X)Ω

and the corresponding relation

LY(LXΩ) = LY(div(X)Ω) = LY(div(X))Ω + div(X)div(Y)Ω,

we obtain (19).
Consequently, from relation (19), we see that if the vector field X ∈ X(M) on an

oriented manifold (M, Ω) is divergence-free, then if the vector field Y is an infinitesi-
mal symmetry of X, i.e., [X, Y] = 0, we find that div (Y) is a constant of motion for X.
Something similar happens when the vector field Y is an infinitesimal symmetry of the
one-dimensional distribution generated by X: i.e., there exists a function h such that
[Y, X] = h X, because then, in this case, the function div (Y) + h is a first integral for X.
Actually, if div (X) = 0, then LXΩ = 0, and hence, as [X, Y] = −h X,

LX(LYΩ) = LY(LXΩ) + L−h XΩ = −LX(h Ω) = −X(h)Ω,

and then, from
LX(LYΩ) = LX(div (Y)Ω) = LX(div (Y))Ω,

we obtain LX(div (Y) + h) = 0, and therefore, the following function I is a constant of
motion for X:

I = div (Y) + h. (21)

When the vector field X ∈ X(M) is not divergence-free, because, for any nonvanishing
function R, the constants of motion of X coincide with those of R X, if we choose R as
a Jacobi multiplier for X, then the vector field X̄ = R X is such that when [Y, X] = h X,
we have [Y, X̄] = h̄ X̄, with h̄ = (Y(R)/R) + h, and hence, the preceding result shows
that the function I = div (Y) + h̄ = div (Y) + Y(log R) + h is a constant of motion for X̄
and, therefore, for X [43].

6. A Geometric Approach to a Generalised Sundman Transformation

An infinitesimal time-reparametrisation, usually called a Sundman transformation [44],
introduced when looking for an analytic solution to the three-body problem [45–47], is very
intriguing, at least from a geometric perspective, because its geometric meaning is not clear.
So, in the nonautonomous approach, t is not a coordinate but rather a parameter of the
integral curve. It was introduced for a second-order differential equation, but it admits a
clear geometric generalisation to systems of first-order differential equations.

The geometric approach was developed in [28,48]. This infinitesimal time-
reparametrisation is written as

dt
dτ

= f (x). (22)

It has allowed researchers to find solutions to many different problems in the theory
of differential equations and related physical problems, for instance, the linearisation of
differential equations, or to regularise some equations of motion and to avoid collision
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singularities. More generally, it is used to transform a given equation into another one
of a more appropriate form. Moreover, as a SODE vector field on Q can be seen as a
particular case of a vector field on TQ, it is enough to consider, for the time being, Sundman
transformations for systems of first-order differential equations.

The meaning of infinitesimal time-reparametrisation (22) is based on the following
property: if γ(t) is a curve, we carry out the mentioned Sundman transformation by
introducing a new parameter τ into such a curve such that

dτ

dt
=

1
f (γ(t))

, (23)

and we obtain the reparametrised curve γ̄(τ), given by γ̄(τ(t)) = γ(t), and then

dγ

dt
=

dγ̄

dτ

dτ

dt
=

1
f (γ(t))

dγ̄

dτ
.

Consequently, if γ(t) is an integral curve of X, i.e., dγ/dt = Xγ(t), then

dγ̄

dτ
= f (γ(t))

dγ

dt
= f (γ(t)) Xγ(t) = ( f X)γ(t) = ( f X)γ̄(τ) ;

i.e., the curve γ̄ is an integral curve of the vector field f X.
This implies that we can consider the given Sundman transformation to be a change

from the vector field X to the conformally related one f X [28,48], but note that the integral
curves of the vector fields X ∈ X(M) and f X ∈ X(M) coincide up to their respective
reparametrisations. Of course, such infinitesimal time-reparametrisation implies a new
velocity v̄ with respect to the new time, and then it is related to the old one by v̄i = f vi.

It was proven in [49] that for a given incomplete vector field X, it is possible to find
a function f ∈ C∞(M) such that the vector field f X is a complete vector field, and this
property shows the usefulness of Sundman transformations in the regularisation process.
The relevance of the property of replacing a vector field with a conformally related one in the
Kustaanheimo–Stiefel regularisation of the Kepler problem was also demonstrated in [49].
Conformally related vector fields have also been considered in the study of superintegrable
systems (see, e.g., [22,23]). Moreover, two conformally related vector fields X and f X on
a manifold M have the same local first integrals, but, as indicated in [49], this is not true
for general tensor fields T, because L f XT ̸= f LXT. This is an important fact because it
provides us with a way to obtain, from a vector field X that does not preserve T, vector
fields f X under which a given tensor field T is invariant.

As an example, we can focus on the linearisation of a system of first-order differen-
tial equations.

• Linearisation

Recall that a manifold M can be endowed with a linear structure if there exists a com-
plete vector field ∆, playing the role of a Liouville vector field, with only one nondegenerate
critical point, such that F (0)

∆ = R, and F (1)
∆ separates derivations [5]. Here, F (k)

∆ denotes
the set of functions on the manifold M defined by

F (k)
∆ = { f ∈ F (M) | ∆ f = k f }, k ∈ N.

Linear functions (with respect to ∆) are those defined by f ∈ F (M) such that L∆ f = f ,
i.e., f ∈ F (1)

∆ , and linear vector fields X ∈ X(M) are those preserving the R-linear subspace

F (1)
∆ , that is, satisfying LX(F

(1)
∆ ) ⊂ F (1)

∆ or, equivalently, LX∆ = [X, ∆] = 0.
When X is such that LX∆ ̸= 0, there may exist a positive function f such that

L f X∆ = 0, because L f X∆ = [ f X, ∆] = f [X, ∆] − ∆( f ) X. This happens when there
exists h such that [X, ∆] = h X and the function f is such that h = ∆(log f ).
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A chart (U, φ) of M identifies U with an open set of Rn, and then U is endowed with
the complete vector field ∆ = xi ∂/∂xi, and if X = Xi(x) ∂/∂xi, we say that the vector field
X is linear when [∆, X] = 0, and as

[∆, X] =

[
xi ∂

∂xi , X j ∂

∂xj

]
=

(
xi ∂Xk

∂xi − Xk

)
∂

∂xk , (24)

[∆, X] = 0 is equivalent to Xi(x) = Ai
j xj, with integral curves for X solutions of ẋi =

Ai
j xj.

Similarly, vector fields X whose integral curves are solutions of an inhomogeneous
linear system, ẋi = Ai

j xj + Bi, are characterised by

[∆, [∆, X]] = −[∆, X].

The preceding results can be summarised as follows [48]:

Theorem 3. Let X be a vector field on a differentiable manifold M endowed with a linear structure ∆.

1. L∆X = h X, for some function h, if and only if there exists a nonvanishing positive function
f such that the vector field f X satisfies L∆( f X) = 0.

2. L∆X = 0 if and only if, for any coordinate system (U, φ) such that ∆|U = xi ∂

∂xi , the local
expression of X is linear.

3. L2
∆X = −L∆X if and only if for any coordinate system such that ∆|U = xi ∂

∂xi , the local
expression of X is affine in xi.

• Divergence-free case

If a vector field X ∈ X(M) on an oriented manifold (M, Ω) is such that LXΩ ̸= 0,
there may be a positive function f ∈ C∞(M) such that L f XΩ = 0. These functions are
called Jacobi multipliers and play a relevant role in its integrability by quadratures.

Recall that as LXΩ is also a volume form, we can define the divergence of X by
LXΩ = div X Ω, and then X is divergence-free if and only if LXΩ = 0. Note that as
L f XΩ = LX( f Ω), the search for such a Jacobi multiplier is equivalent to the determination
of an X-invariant volume form f Ω (more details can be found in [30,31]).

• Geodesic case

Another possibility would be to consider a Riemannian structure on the manifold M
given by a nondegenerate symmetric two-times covariant tensor field g. As L f X g ̸= f LX g,
some non-Killing vector fields X, i.e., such that LX g ̸= 0, can give rise to Killing ones [7]
just by multiplication by a convenient function f .

• Hamiltonian case

Given a closed 2-form ω that is non-invariant under the vector field X on a manifold,
i.e., LXω ̸= 0, if there is a positive function f such that L f Xω = 0, i.e., if f i(X)ω is a
closed form, then when the nondegeneracy condition d f ∧ω = 0 is satisfied, the 2-form f ω
is symplectic, and the vector field X is locally Hamiltonian with respect to this symplectic
form f ω. Recall that, in the case where X is also locally Hamiltonian with respect to the
original symplectic form ω, such a function f must be a constant of motion for X, X f = 0.
Moreover, we can make use of the alternative symplectic structure to find non-Noether
constants of motion, as explained in Section 4.

The same can be said about bivector fields Λ, particularly those of Poisson structures,
i.e., such that [Λ, Λ]S = 0, where [·, ·]S denotes the Schouten bracket. In this case,

{ f , g} = Λ(d f , dg), f , g ∈ C∞(M),
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defines a Poisson bracket. Hamiltonian vector fields X f on M are those of the form
X f g = {g, f }. Given a vector field X and a Poisson structure Λ, sometimes, there ex-
ists a function f such that f X is Hamiltonian with respect to the Poisson structure Λ: a
Hamiltonisation process.

7. Sundman Transformations for Systems of Second-Order Differential Equations

As indicated above, the Sundman transformation was first introduced to deal with
systems of second-order differential equations, such as Newton’s equations of motion. It is
well known that an autonomous system

d2xi

dt2 = Xi(x1, . . . , xn, ẋ1, . . . , ẋn), i = 1, . . . , n, (25)

is associated with a system of 2n first-order differential equations
dxi

dt
= vi

dvi

dt
= Xi(x1, . . . , xn, v1, . . . , vn)

i = 1, . . . , n, (26)

whose solutions define the integral curves of the SODE vector field Γ on TQ

Γ = vi ∂

∂xi + Xi(x, v)
∂

∂vi ; (27)

i.e., a system of second-order differential equations can be dealt with using a SODE vector
field on the tangent bundle, Γ ∈ X(TQ), such that S(Γ) = ∆.

The theory of Sundman transformations developed for systems of first-order differen-
tial equations suggests that we proceed by similarity and define the transformed vector
field as obtained by multiplication by the function defining the Sundman transformation.
But the appearance of second-order derivatives suggests that this approach may need to be
modified. On the other hand, when multiplying by the function f , the SODE characteristic
property is lost. This leads us to examine this definition more carefully. It will be shown
that we can overcome these two problems in the particularly important case of the function
f defining the Sundman transformation, being a constant-sign basic function.

As remarked in [48], when applying a Sundman transformation (22), the new velocities
with respect to the new time, v̄, are related to the previous ones by v̄i = f vi, because

vi =
dxi

dt
=

dxi

dτ

dτ

dt
=

1
f

v̄i ,

and therefore,
∂

∂vi =
∂v̄j

∂vi
∂

∂v̄j = f
∂

∂v̄i .

This suggests the use of non-natural coordinates on TQ, the so-called quasi-velocities [50].
With the change of coordinates to a new coordinate system on the manifold TQ

(xi, vi) 7→ (x̄i, v̄i) , x̄i = xi, v̄i = f (x) vi ,

(we keep the notation x̄i for clarity), we see, by direct computation, that

∂

∂xj =
∂

∂x̄j +
∂ f
∂xj vi ∂

∂v̄i =
∂

∂x̄j +
1
f

∂ f
∂x̄j v̄i ∂

∂v̄i ,

∂

∂vj = f
∂

∂v̄j .
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Consequently, the new coordinate expression of the preceding vector field Γ is

Γ(x, v̄) =
v̄i

f
∂

∂x̄i +

(
f Xi(x, v̄/ f ) + v̄i 1

f 2
∂ f
∂x̄j v̄j

)
∂

∂v̄i . (28)

Under a generalised Sundman transformation of the given system, we can use, as sug-
gested in [48], the operational relations

d
dt

=
1
f

d
dτ

,
d2

dt2 =
1
f

d
dτ

(
1
f

d
dτ

)
=

1
f 2

d2

dτ2 − 1
f 3

d f
dτ

d
dτ

, (29)

and hence, if x(t) is a solution of the system, and the new parameter τ is given by

τ(t) =
∫ t 1

f (η)
dη,

then x̄(τ) such that x̄(τ(t)) = x(t) satisfies the SODE system

d2 x̄
dτ2 = X̄i

(
x̄,

dx̄i

dτ

)
, i = 1, . . . , n,

with

X̄i
(

x̄,
dx̄
dτ

)
= f 2 Xi

(
x̄,

1
f

dx̄
dτ

)
+

d
dτ

(log f )
dx̄i

dτ
, (30)

together with v̄i = f vi, i.e., dx̄i/dτ = f dxi/dt. The system can be rewritten as
dx̄i

dτ
= f vi = v̄i

dv̄i

dτ
= f 2 Xi

(
x̄,

1
f

v̄
)
+

d
dτ

(log f ) v̄i
(31)

This shows that the images under the generalised Sundman transformation of the
integral curves of the considered vector field Γ are the integral curves of the vector field
Γ̄(x̄, v̄)

Γ̄(x̄, v̄) = v̄j ∂

∂x̄j +

(
1
f

v̄j ∂ f
∂x̄j v̄i + f 2Xi

(
x̄,

1
f

v̄
))

∂

∂v̄i , (32)

and a simple comparison shows that

Γ̄(x̄, v̄) = f (x̄)Γ(x̄, v̄). (33)

8. Alternative Tangent Bundle Structures

The relevance and usefulness of the existence of alternative geometric structures in
the description of mechanical systems, particularly the tensorial characterisation of linear
structures and vector bundle structures, are also well known [5].

We first review the work by Crampin and Thompson on almost-tangent structures on
M [26]. An almost-tangent structure on a manifold M is a (1,1)-tensor field S on M such
that, at each point p ∈ M, the kernel of the linear map Sp : Tp M // Tp M coincides with its
image. It follows that S2 = 0. The almost-tangent structure S is said to be integrable if its
Nijenhuis tensor NS vanishes.

We recall that the Nijenhuis tensor NT of a (1,1)-tensor field T on a manifold M is a
(1,2)-tensor field given by

NT(X1, X2) = [T(X1), T(X2)] + T2([X1, X2])− T([T(X1), X2])− T([X1, T(X2)]),
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where X1, X2 ∈ X(M). Therefore, as S2 = 0,

NS(X1, X2) = [S(X1), S(X2)]− S([S(X1), X2])− S([X1, S(X2)]), ∀X1, X2 ∈ X(M).

The NS = 0 condition implies that the vertical distribution defined by ker S = Im S
is involutive, because if X, Y ∈ ker S = Im S, then there exist X̃, Ỹ ∈ X(M) such that
S(X̃) = X and S(Ỹ) = Y, and then

[X, Y] = [S(X̃), S(Ỹ)] = S([S(X̃), Ỹ]) + S([X̃, S(Ỹ)]);

i.e., [X, Y] lies in the image of S, which coincides with ker S, and therefore, the distribution
defined by ker S is involutive and hence integrable in the Darboux sense. The integral
submanifolds of such a foliation are the fibres of a fibration π : M //Q, where Q is an
n-dimensional manifold. The vertical vector fields are those taking values in ker S. Then,
if X ∈ X(M) projects onto a vector field X̄ ∈ X(Q), then S(X) only depends on X̄.

Crampin and Thompson showed [26,51] that there are local coordinates (xi, ui) on
M such that S = (∂/∂ui)⊗ dxi. Here, (x1, . . . , xn) are coordinates on Q, and if X1, . . . , Xn
are vector fields on M projecting onto ∂/∂x1, . . . , ∂/∂xn, respectively, as [S(Xi), S(Xj)] = 0,
then local coordinates on the fibres can be chosen such that S(Xi) = ∂/∂ui. The coordinates
ui are determined only up to an additive constant on each fibre, because they are solutions
of the system S(Xi)uj = δ

j
i , and we can change ui by ūi = ui + f i(x). The ambiguity is

fixed by the choice of the zero section.
Such a choice uniquely determines, for each coordinate system (xi) on the base mani-

fold Q, a system of local coordinates (xi, ui) such that

S =
∂

∂ui ⊗ dxi.

Furthermore, there is a uniquely defined vertical vector field ∆ such that L∆S(X) =
−S(X) and ∆ = 0 on the zero section. The explicit expression of ∆ is

∆ = ui ∂

∂ui . (34)

Such a vector field ∆ provides a linear space structure to every fibre of π : M //Q.
The vector fields associated with systems of second-order differential equations with

respect to the new integrable almost-tangent structure are such that S(D) = ∆, i.e., of
the form

D(x, u) = ui ∂

∂xi + f i(x, u)
∂

∂ui .

It was shown in [48] that, starting with the standard tangent bundle structure given by
the vertical endomorphism S and a constant-sign basic function τ∗

Qh on TQ, with h ∈ C∞(Q),
we can introduce a new integrable almost-tangent structure (τ∗

Qh) S on TQ, simply denoted
by S̄ = h S, because ker(h S) = Im(h S), and Nh S = 0. The vertical distribution defined
by ker(h S) coincides with the usual one defined by ker S, and the set of leaves can be
identified with the base manifold Q.

If we choose a local set of coordinates for Q, (q1, . . . , qn), and if X1, . . . , Xn are τQ-
projectable vector fields on TQ and τQ-related to ∂/∂q1, . . . , ∂/∂qn, respectively, then the
vector fields h S(X1), . . . , h S(Xn) are pairwise commuting, and there exist local coordinates
v̄1, . . . , v̄n such that S(h Xi) = h S(Xi) = ∂/∂v̄i, and as S(Xi) = ∂/∂vi, with the same choice
for the zero section, we can see that S̄ = (τ∗

Qh) S has the local expression

S̄ =
∂

∂v̄i ⊗ dqi = h S,

with the fibre coordinates given by h v̄i = vi. The vector field ∆̄ coincides with ∆.
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Note that v̄i values are not coordinates adapted to the original tangent bundle structure
because the 1-forms αi defining such coordinates of the vector v by v̄i = αi(v) are not exact,
with αi = (1/h)dqi, and correspond to the so-called quasi-velocities [50]. In summary, we
obtain a new tangent bundle structure on TQ, with its corresponding Liouville vector field
∆̄ = ∆ and a new concept of a SODE vector field. When h = f−1, we see that Γ̄ = f Γ is a
SODE vector field with respect to S̄ = (1/ f )S.

If we successively apply two Sundman transformations to a system characterised
by the functions f1 ∈ C∞(Q) and f2 ∈ C∞(Q), we obtain a new system by applying
the Sundman transformation defined by the product f2 f1 ∈ C∞(Q), and we see that the
transformed vector field is a SODE vector field with respect to the new tangent bundle
structure ¯̄S = f−1

2 f−1
1 S. As the set of positive real functions is an Abelian multiplicative Lie

group, the Sundman transformation corresponding to f−1 is the inverse of the Sundman
transformation defined by f . More details can be found in [48].

9. Linearisability of Scalar Second-Order Differential Equations

A particularly interesting case is that of systems of second-order differential equations
that are linear in a given coordinate system: i.e., the functions Xi are of the form

Xi(x, v) =
(

Ai
j xj + Bi

j vj
)

,

where Ai
j and Bi

j are real numbers. In geometric terms, this can be written as [∆̃, Γ] = 0,
with ∆̃ = ∆Q + ∆, where

∆Q = xi(∂/∂xi), ∆ = vi(∂/∂vi).

Note that the vector field ∆̃ is not intrinsic, but it depends on the choice of the chart
on U. More explicitly, the vector field ∆̃ is the complete lift of ∆Q. Our aim is to study
under which circumstances a given system of second-order differential equations can be
transformed by an appropriate Sundman transformation into a linear one.

Consider the simplest case of a one-dimensional autonomous SODE, i.e., n = 1,
and X1 = F is a basic function. The equation of the integral curves of the vector field Γ̄
transformed under a Sundman transformation of Γ = v ∂/∂q + F(q) ∂/∂v is

dv̄
dτ

=
1
f

f ′(q) v̄ v̄ + f 2 F(q), (35)

and, in the particular case of a system defined by a potential function V , where F = −V ′,
the expressions of the SODE vector field Γ in coordinates (q, v) and its transformed vector
field Γ̄ = f Γ in coordinates (q̄, v̄) are given, respectively, by

Γ(q, v) = v
∂

∂q
− V ′(q)

∂

∂v
, Γ̄(q̄, v̄) = v̄

∂

∂q̄
+

(
f ′

f
v̄2 − f 2V ′(q̄)

)
∂

∂v̄
.

But as the energy function E = 1
2 v2 + V = 1

2 (v̄/ f )2 + V is a conserved quantity, if we
restrict ourselves to studying the motions for a given energy E,

dv̄
dτ

= f f ′(q) 2(E − V)− f 2 V ′(q) =
d
dq

(
f 2(E − V)

)
. (36)

This is an inhomogeneous linear differential equation in the variable q if and only if
there exist constants A, B and C such that f 2(E − V) = A q2 + B q + C, from where

dv̄
dτ

= 2 A q̄ + B =⇒ d2q̄
dτ2 = 2 A q̄ + B.
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In the relevant case of the radial equation for a given fixed angular momentum ℓ for
the Coulomb–Kepler problem, for which q is the radial variable r and V(r) = −k/r,

V(r) = − k
r
+

ℓ2

2r2 , F(r) = −V ′(r) =
ℓ2

r3 − k
r2 ,

and from f 2 (E − V) = Ar2 + B + C, we obtain

f 2
(

E +
k
r
− ℓ2

2r2

)
= Ar2 + B r + C,

i.e., f 2 E = A r2, f 2 k = B r2 and ℓ2 f 2 = −2 C r2, and therefore, the general solution is a
multiple of f (r) = r, with

A = E, B = k, C = − ℓ

2
,

and then the transformed second-order differential equation is [52]

d2r̄
dτ2 = 2 E r + k.

The Sundman transformation is independent of ℓ, because f (r) is proportional to r.
In the opposite direction, if we start from the linear SODE vector field Γ of the one-

dimensional harmonic oscillator, i.e., Γ = v (∂/∂x)− ω2 x (∂/∂v), which corresponds to
F(x) = −ω2x, i.e., V = 1

2 ω2x2, under the Sundman transformation defined by a given
function f , it becomes

Γ̄(x̄, v̄) = f (x̄) Γ(x, v̄) = v̄
∂

∂x̄
+

(
1
f

d f
dx̄

v̄2 − f 2 ω2 x̄
)

∂

∂v̄
, v̄i = f vi,

and the projections onto the base manifold of its integral curves are solutions of

d2 x̄
dτ2 − 1

f
d f
dx̄

(
dx̄
dτ

)2
+ f 2 ω2 x̄ = 0;

i.e., it appears that an additional quadratic damping term and linearity are lost.
Conversely, an equation of this last type can be reduced to a harmonic oscillator by the

Sundman transformation defined by f−1. If, for instance, f (x) = x2, the former equation
reduces to

d2 x̄
dτ2 +

2
x̄

(
dx̄
dτ

)2
+ ω2 1

x̄3 = 0;

i.e., it is the Ermakov–Pinney equation under the action of a damping quadratic term. This
is a prototype for linearisable examples.

As indicated in [48], the linear structure on Q = R depends on the choice of the
coordinate y, ∆Q = y ∂/∂y, and then the linearisability character of a given SODE depends
on the choice of y. Therefore, in the study of the linearisation process, we need to first
find a coordinate transformation y = φ(x) from the original coordinate to the adapted one
and then a Sundman transformation, dτ = h(x) dt, that transforms our original SODE into
a linear one in the new coordinate y and its velocity. This will be implemented in several
steps by finding several coordinate transformations and Sundman transformations that
simplify the form of the SODE. Then, we describe the composition of ordinary changes
of coordinates with the Sundman transformation considered so far. We will refer to a
transformation of the form y = x, dτ = h(x) dt as a pure Sundman transformation and
to y = φ(x), dτ = dt as a pure coordinate transformation. By composing such types
of transformations, we obtain a group of generalised Sundman transformations (h, φ)
defined as

y = φ(x), dτ = h(x) dt, (37)
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with the composition law

(h2, φ2) ⋆ (h1, φ1) = ((h2 ◦ φ1)h1, φ2 ◦ φ1).

This set of generalised Sundman transformations is a semidirect product group whose
neutral element is (1, id), and the inverse of (h, φ) is ((1/h) ◦ φ−1, φ−1). Pure Sundman
transformations are those of the form (h, id) and constitute an Abelian invariant subgroup,
while the usual coordinate transformations correspond to those of the form (1, φ) and also
make up a subgroup. Finally, each transformation can be factorised as

(h, φ) = (1, φ) ⋆ (h, id) = (h ◦ φ−1, id) ⋆ (1, φ).

Definition 2. A SODE is fibre-linearisable (or linearisable in velocities) under a generalised
Sundman transformation if it can be transformed to a SODE of the form ẍ + A(x)ẋ + b(x) = 0,
where A and b are real functions, and a SODE is linearisable under generalised a Sundman
transformation if it can be transformed into a SODE of the form ẍ + α ẋ + Bx + C = 0 for some
real numbers α, B, C ∈ R. Note that when C ̸= 0, the transformed equation is an inhomogeneous
linear equation.

The group properties of the set of generalised Sundman transformations can be used
to study the linearisability of a scalar SODE:

d2x
dt2 = X

(
x,

dx
dt

)
. (38)

The possible linearising transformations will be factorisable as a composition of a pure
coordinate transformation and a pure Sundman transformation. Inverting the process, we
can first see the form of the image under a pure Sundman transformation of the prototype
linear equation. We can see that its image under the general transformation rule for the
one-dimensional case is an equation of the form

d2x
dt2 + γ0(x)

(
dx
dt

)2
+ A0(x)

dx
dt

+ b0(x) = 0; (39)

i.e., the function X(x, v) is a polynomial of degree two at most in the variable v = dx/dt,
∂3X/∂v3 = 0. Such a class is invariant under changes of coordinates because if x̄ = φ(x),

dx̄
dt

=
dφ

dx
dx
dt

,
d2 x̄
dt2 =

d2 φ

dx2

(
dx
dt

)2
+

dφ

dx
d2x
dt2 ,

and therefore, x̄ satisfies an equation of the same type. Therefore, we obtain the following:

Theorem 4. A necessary condition for fibre-linearisability under a generalised Sundman transfor-
mation is that the function X(x, v) be a polynomial of degree 2 at most in the variable v = dx/dt,
or in other words, ∂3X/∂v3 = 0, and consequently, second-order differential equations linearisable
under a generalised Sundman transformation must be of the previous form.

Such a class of equations is invariant under a generalised Sundman transformation
and contains a subset of linear equations that correspond to the null function γ0 = 0. We
must determine which of these equations are linearisable.

Note that the quadratic in the velocity term can always be eliminated by an appropriate
pure Sundman transformation, x1 = x, dt1 = h(x) dt. Under such a transformation, the
SODE becomes

d2x1

dt2
1

+

(
γ0 +

h′

h

)(
dx1

dt1

)2
+

1
h

A0
dx1

dt1
+

1
h2 b0 = 0,
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so that the new coefficients are γ1 = γ0 + h′/h, A1 = A0/h and b1 = b0/h2. We can choose
the function h as a nontrivial solution h0(x) of the linear ODE

dh
dx

+ γ0(x)h = 0,

with the general solution h(x) = K exp
(
−
∫

γ0(x) dx
)

, with K being a constant, which is

irrelevant for our purposes. With this choice, under the pure Sundman transformation
defined by h, the second-order differential equation becomes the fibre-linear equation

d2x1

dt2
1

+ A1(x1)
dx1

dt1
+ b1(x1) = 0, (40)

with A1 = A0/h0 and b1 = b0/h2
0. Therefore, any SODE of the given class is fibre-

linearisable by a pure Sundman transformation. If both A1 and b1 vanish identically (i.e.,
A0 and b0 vanish identically), then we have already obtained a special linear equation,
more specifically, d2x1/dt2

1 = 0.
Note that, in the case where at least one of such functions is not the zero function, once

we have obtained an inhomogeneous fibre-linear SODE, we can use only the Sundman
transformation preserving the set of inhomogeneous fibre-linear SODEs. These are more
general than affine transformations of coordinates, as stated in the following lemma.

Lemma 1. If a generic Sundman transformation x̄ = φ(x), dt̄ = h(x) dt preserves the set of
inhomogeneous fibre-linear SODEs, then there exists a real constant c =/ 0 such that dφ/dx = c h.
Moreover, a Sundman transformation x̄ = φ(x), dt̄ = h(x) dt, such that the condition holds,
transforms every inhomogeneous fibre-linear SODE

d2x
dt2 + A(x)

dx
dt

+ b(x) = 0 (41)

into an analogous one with the coefficients Ā(x̄) and b̄(x̄), where

Ā(x̄) =
1

h(x)
A(x) and b̄(x̄) =

c
h(x)

b(x). (42)

The value of the constant c does not have any influence on the linearisability, and with-
out losing generality, we can take c = 1 (or c = −1 when appropriate).

This shows that we can only transform the fibre-linear SODE by means of a Sundman

transformation x2 = φ(x1), and dt2 = h(x1) dt1, with φ(x) =
∫ x

h(ζ) dζ. As for such a

transformation, dx2/dt2 = dx1/dt1, the expression of the transformed SODE is

d2x2

dt2
2

+
1

h(x1)
A1(x1)

dx2

dt2
+

1
h(x1)

b1(x1) = 0,

where the substitution of x1 by φ−1(x2) in the last two terms is understood.
This SODE is linear if and only if the function A1/h is constant and the function b1/h

is affine in the variable x2. There are two different situations:
(a) If A1 vanishes identically (also recall that A0 vanishes identically), we can choose

the function h as h = |b1| in the Sundman transformation, and the transformed SODE is

d2x2

dt2
2

+ β = 0, β = sign(b).

The Sundman transformation is x2 =
∫ x1

|b(ζ)| dζ, and dt2 = |b(x1)| dt1.
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Alternatively, we can take the generalised Sundman transformation x2 =
∫ x1

b(ζ) dζ,

and dt2 = |b(x1)| dt1, and the transformed SODE is d2x2/dt2
2 + 1 = 0.

(b) If A1 is not the zero function, in order to make the coefficient of dx2/dt2 constant,
we must take h(x1) = |A1(x1)| (up to an irrelevant multiplicative constant). Thus, the trans-

formation x2 =
∫ x1

A1(ζ) dζ, and dt2 = |A1(x1)| dt1, transforms the given inhomogeneous

fibre-linear SODE into the form

d2x2

dt2
2

+ α
dx2

dt2
+ b2(x2) = 0,

with α = sign(A) (once again, we assume α to be constant) and b2(x2) = b1(x1)/|A1(x1)|,
where we assume that x1 is replaced by its corresponding value in terms of x2.

A generalised Sundman transformation preserving the form of the above SODE, i.e., in-
homogeneous fibre-linear with a constant coefficient α, must be of the form
x̄ = m x + n, dt̄ = m dt, with m and n as constants, and therefore, it is either linear or,
otherwise, not linearisable. Obviously, the new SODE is linear if and only if db2/dx2 is
constant, db2/dx2 = B ∈ R.

One can find the conditions in the original data γ0, A0 and b0 for b2(x2) to be an
affine function. The following linearisability condition can be proven [48]: the SODE is
linearisable if and only if the functions A0, b0 and γ0 satisfy(

A0
d

dx
− 3A′

0

)(
A0

d
dx

+ γ0 A0 − A′
0

)
b0 = 0.

Notice that this condition is also satisfied in the first two cases (A0 = b0 = 0 and
A0 =/ 0, b0 = 0), and moreover, we can prove that such a condition is invariant under a
generalised Sundman transformation.

All of these results can be summarised by the following statement [48]:

Theorem 5. (i) A second-order differential equation

d2x
dt2 = X

(
x,

dx
dt

)
is fibre-linearisable by a Sundman transformation y = φ(x), dτ = h(x) dt, if and only if it is of
the form

d2x
dt2 + γ(x)

(
dx
dt

)2
+ A(x)

dx
dt

+ b(x) = 0. (43)

Moreover, it can always be transformed into a constant-coefficient α form

d2y
dτ2 + α

dy
dτ

+ β(y) = 0,

with α = sign(A) (understanding that α = 0 if A = 0).
(ii) A second-order differential equation is linearisable if and only if it is of the preceding form

and the coefficients γ(x), A(x) and b(x) satisfy

Q ≡
(

A
d

dx
− 3A′

)(
A

d
dx

+ γA − A′
)

b = 0. (44)

More specifically, we find the following:

• If A = 0 and b = 0, then the SODE can be transformed into the form

d2y
dτ2 = 0 (45)
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by the Sundman transformation

y = x, dτ = exp
(
−
∫ x

γ(ζ) dζ

)
dt. (46)

• If A = 0 and b =/ 0, then the SODE can be transformed into the form

d2y
dτ2 + 1 = 0 (47)

by the Sundman transformation

y =
∫ x

b(ζ) exp
(

2
∫ ζ

γ(η) dη

)
dζ, dτ = |b(x)| exp

(∫ x
γ(ζ) dζ

)
dt. (48)

• If A =/ 0 and the above condition is satisfied, then the SODE can be transformed into the form

d2y
dτ2 + α

dy
dτ

+ By + C = 0, (49)

where α = sign(A), by the Sundman transformation

y =
∫ x

A(ζ) exp
(∫ ζ

γ(η) dη

)
dζ, dτ = |A(x)| dt. (50)

To illustrate the theory and for the sake of completeness, we mention several examples,
which have been more developed in [48].

1. The Ermakov–Pinney differential equation [53,54]

ẍ +
2
x

ẋ2 +
ω2

x3 = 0,

so that γ(x) = 2/x, A(x) = 0 and b(x) = ω2/x3. Therefore, it is Sundman-linearisable and
can be transformed into its canonical form by means of the transformation

y = ω2x2, dτ =
ω2

x
dt.

2. Geodesics on the sphere: The differential equation is ẍ = 2ẋ2 cot x + sin x cos x, so
that γ(x) = −2 cot x, A(x) = 0 and b(x) = − sin x cos x. It is Sundman-linearisable into
its canonical form by means of the transformation given by

y =
1

2 sin2(x)
, dτ = | cot(x)| dt.

3. The differential equation [55]

ẍ +
1
x

ẋ2 + x ẋ +
1
2
= 0,

so that γ(x) = 1/x, A(x) = x and b(x) = 1/2. The condition Q = 0 is trivially satisfied
because (

A
d

dx
+ γA − A′

)
b =

(
x

d
dx

)
(1/2) = 0,

and therefore, it is Sundman-linearisable. If we consider the interval x > 0, then the
Sundman transformation y = (1/3)x3 and dτ = x dt transforms the given SODE into its
canonical form

d2y
dτ2 +

dy
dτ

+
1
2
= 0.
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Notice that this equation is not linearisable by point transformations, as it does not
satisfy Lie criteria, but it is Sundman-linearisable.

4. As a generalisation of the preceding example, we consider the differential equation

ẍ +
1
x

ẋ2 + x ẋ + b(x) = 0.

The condition Q = 0 is(
A

d
dx

− 3A′
)(

A
d

dx
+ γ A − A′

)
b = (∆R − 3)∆Rb = 0,

with ∆R = x ∂/∂x.
Therefore, Q = 0 if and only if ∆Rb is homogeneous with degree 3, say, ∆Rb = 3k1x3

with k1 ∈ R, and hence, b(x) = k1x3 + k2. It follows that the more general Sundman-
linearisable SODE of the above form is

ẍ +
1
x

ẋ2 + xẋ + k1x3 + k2 = 0.

A Sundman transformation linearising this equation is y = (1/3)x3 and dτ = |x| dt.
5. We can also study the Liénard equation,

ẍ + f (x) ẋ + g(x) = 0, (51)

and the existence of generalised Sundman transformations leading from the original equa-
tion to the linear equation

d2y
dτ2 + σ

dy
dτ

+ y = 0

can also be found [56], because the Liénard equation is a particular case of the master
equation

d2x
dt2 + γ(x)

(dx
dt

)2
+ A(x)

dx
dt

+ b(x) = 0,

with γ(x) = 0, A(x) = f (x) and b(x) = g(x). The linearisability condition is

Q ≡
(

A
d

dx
− 3A′

)(
A

d
dx

+ γA − A′
)

b = 0, (52)

which, in our particular case, turns out to be(
f (x)

d
dx

− 3 f ′(x)
)(

f (x)
d

dx
− f ′(x)

)
g = 0,

and therefore,
f 2 g′′ − f f ′′ g − 3 f f ′ g′ + 3 f ′2g = 0.

Then, given the function f , the function g is any function of the linear space of solutions
of the linear second-order differential equation in the variable g. As g = f is a solution of
such an equation, we introduce the change of the variable g = f ζ, and the new equation is
f ζ ′′ − f ′ ζ ′ = 0, which shows that the general solution is

ζ = k1

∫ x

0
f (ξ) dξ + k2,

and therefore, the linearisability condition implies that the function g is

g(x) = k1 f (x)
∫ x

0
f (ξ) dξ + k2 f (x).
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Finally, the Liénard-type equation containing a dissipative term studied in [57]

ẍ + f (x) ẋ2 + g(x) ẋ + h(x) = 0 (53)

can be reduced by a pure Sundman transformation dτ = F(x) dt to a Liénard Equation (51),
as more explicitly shown in [48].
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