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Abstract: The predominant approach for studying volatility is through various GARCH specifications,
which are widely utilized in model-based analyses. This study focuses on assessing the predictive
performance of specific GARCH models, particularly the Markov-Switching GARCH (MS-GARCH).
The primary objective is to determine the optimal number of regimes within the MS-GARCH frame-
work that effectively captures the conditional variance of the Muscat Securities Market Index (MSMI).
To achieve this, we employ the Akaike Information Criterion (AIC) to compare different MS-GARCH
models, estimated via Maximum Likelihood Estimation (MLE). Our findings indicate that the chosen
models consistently exhibit at least two regimes across various GARCH specifications. Furthermore,
a validation using the Value at Risk (VaR) confirms the accuracy of volatility forecasts generated by
the selected models.

Keywords: Markov-Switching GARCH; volatility; conditional variance; value at risk; forecasting;
Muscat Securities Market Index

1. Introduction

Predicting market volatility holds significance within financial economics. Accurate
forecasts of forthcoming volatility are essential for risk and asset managers, and various
financial stakeholders aiming to mitigate risks and optimize returns. The consequences
of the recent financial crisis emphasized the importance of accurate forecasts, especially
given the tightening of financial regulations and widespread skepticism surrounding
financial markets. Therefore, understanding volatility behavior is imperative not just for
regulatory compliance but also for mitigating the potential impact of future crises. This
problem will explore empirical methodologies stemming from the ARCH model, short for
Autoregressive Conditional Heteroskedasticity, pioneered by Engle [1].

Among the prevalent approaches for modeling volatility, the Generalized Autore-
gressive Conditional Heteroskedasticity (GARCH) model introduced by Bollerslev [2],
stands out. GARCH models are favored for their relative ease of estimation and diagnostic
testing. Additionally, their popularity stems from their capacity to capture volatility series’
characteristics, such as nonlinearity, clustering, and asymmetry, as described by Enders [3].

Despite the plethora of GARCH specifications, many models exhibit excessive persis-
tence, reacting sluggishly to market movements. This conditional dependency inherent
in GARCH models aids in capturing volatility clustering but compromises adaptability to
sudden shifts in stock movements, as noted by Lamoureux and Lastrapes [4].

Volatility series often undergo shifts due to structural changes or altered market ex-
pectations. Terms like “increase” and “decrease” denote states characterized by significant
return movements, indicative of high-variance regimes. Conversely, periods characterized
by the absence of such extreme fluctuations indicate low-variance regimes. Integrating
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states or regimes into a GARCH model modifies its mean-reversion behavior to be con-
tingent on the state, leading to fluctuations in the speed at which the variance returns to
its long-run average across distinct regimes. Multi-state models offer greater flexibility
compared to single-state models, as they account for the average mean reversion of various
states, as highlighted by Alexander and Lazar [5].

In 1994, Cai [6] and Hamilton and Susmel [7] introduced Markov-Switching Regres-
sion combined with the ARCH model discussed in [8,9]. This led to the SWARCH model,
allowing volatility to transition across various regimes with specified probabilities, pro-
viding a more flexible approach to volatility estimation. For further information, refer to
He et al. [10].

Derived from the SWARCH model, another advancement emerged known as the Markov-
Switching GARCH (MS-GARCH) model, introduced by Gray [11] and Klaassen [12]. Research
conducted by Marcucci [13] and Ardia [14] showcased the superior short-term forecasting
accuracy of MS-GARCH compared to traditional GARCH models when applied to the S&P
100 index. Despite its favorable attributes, there exists a scarcity of literature exploring the
full potential and capabilities of MS-GARCH.

Recently De la Torre-Torres et al. [15,16] investigated the application of two-regime
Markov-switching models featuring asymmetric, time-varying exponential Generalized
Autoregressive Conditional Heteroskedasticity (MS-EGARCH) variances within the frame-
work of random-length Lumber Futures trading. They explored a trading strategy based
on a two-regime framework (low volatility with s = 1 and high volatility with s = 2),
where the decision to invest in Lumber Futures or 3-month U.S. Treasury bills (TBills)
depended on the probability of being in the high-volatility regime s = 2 being less than or
equal to 50%.

Tamilselvan and Vali [17] conducted a study on the Muscat Securities Market Index
(MSMI), focusing on forecasting stock market volatility based on daily observations be-
tween January 2001 and November 2015; they employed GARCH(1,1), EGARCH(1,1), and
TGARCH(1,1) models in their analysis. The results reveal a direct relationship between
return and risk. Furthermore, their research emphasizes the enduring impact of volatility
shocks and identifies substantial evidence of asymmetry in stock returns using asymmetric
GARCH models. Their study emphasizes the considerable persistence of volatility, an
asymmetrical association between return shocks and adjustments in volatility, and the exis-
tence of a leverage effect across all four indices. Consequently, investors are encouraged to
develop investment strategies by examining both historical and recent information, as well
as forecasting future market movements, to efficiently manage financial risks and capitalize
on opportunities in the stock market. Also, many researchers have studied the volatility
behavior of the Muscat Securities Market Index (MSMI). In particular, Prabhakaran [18]
studied the volatility of the MSM Index by using GARCH(1,1) and EGARCH(1,1). However,
Sha et al. [19] directed their attention towards examining the volatility of the stock market
involving both Regular and Parallel market players in Muscat Oil and Gas companies,
while also evaluating their interrelations. This study employed the GARCH model to
gauge the volatility of the Muscat Securities Market, particularly focusing on Oil and Gas
companies listed in the MSM. However, to capture more structural breaks in volatility,
such as several states depicted in the conditional variance process, and assess the optimal
number of volatility regimes exhibited by the Muscat Securities Market Index series, in
this paper we introduce the switch in time series, provided by Markov-switching regime
MS-GARCH models. In Section 2, we present a different MS-GARCH model, while in
Section 3 we delve into the data methodology concerning our time-series analysis of the
MSMI. The empirical findings are elaborated upon in Section 4, and Section 5 provides a
summary of the study’s results.

2. Markov-Switching GARCH Models

In [11], Gray introduced the concept of consolidating conditional variances from
two regimes at each time step while developing a generalized regime-switching model
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for short-term interest rates. This combined conditional variance from a single regime is
then utilized as an input for the calculation of the conditional variance at the following
time step. To elaborate further, Gray’s method entails constructing the conditional variance
equation within the framework of the GARCH(1,1) model in a regime-switching context,
as outlined below.

In an MS-GARCH(1,1) model featuring dual regimes, the state variable progresses via
a Markov chain. Specifically, it employs a first-order Markov chain, where the likelihood
of the current state, known as the transition probability, is contingent solely upon the
immediately preceding state, which can be mathematically described as follows:

Pr(St = j|St−1 = i, St−2 = it−2, · · · , S0 = i0) = Pr(St = j|St−1 = i) = pij, (1)

where (i0, i1, . . . , it−2, i, j) ∈ Nt+1 , (St)t∈N is a stochastic process.
In this section, we recall the MS-GARCH model, as introduced by Bollerslev [2]. In

what follows, we denote by Pt the price of the stock market index at time t, and by rt its log
return given by

rt = 100 × log
( Pt

Pt−1

)
. (2)

The time index of rt is then partitioned into two subsets: an in-sample and an out-
sample. The total sample period extends from t = −D + 1,−D + 2, . . . , 0, with the out-
sample ranging from t = 1, 2, . . . , n. The period within the sample ranges from 1 January
2000 to 7 May 2018, while the out-sample period spans from 8 May 2014 to 29 September
2022. Moreover, we make the assumption that E[rt] = 0, and the series (rt) is devoid of
serial correlation.

The MS-GARCH model, as delineated by Ardia et al. [20], is characterized by the
following definition:

rt|(St = k, Tt−1) ∼ f (0, hk,t, Φk),

where the function f (·) represents a continuous distribution characterized by a mean of zero
and a conditional variance hk,t that switches within regime (k). Φk describes the set of all
additional parameters of the model and Tt−1 stands for the set of accumulated information
up to time t− 1 that is generated by {rt−1, rt−2, . . .}. In each model, the conditional variance
hk,t can move according to a Markov process St ∈ {1, 2, . . . K} ⊂ N. We define the matrix of
transition for St by

P =


p11 p12 · · · p1K
p21 p22 · · · p2K

...
...

. . .
...

pK1 pK2 · · · pKK

,

where the entries pij of the matrix above are defined as Pr(St = j|St−1 = i) providing the
probability to be in state or regime (j) at time t given that the Markov chain was in state (i)
at time t − 1 and ∑K

j=1 pij = 1 for i fixed. When i = j, pii is referred to as the persistence
probability within the specified regime (i). Our focus in this work lies on the scenario of
three regimes, specifically St ∈ {1, 2, 3}.

Up to now, the concept underlying MS-GARCH specifications entailed the integration
of GARCH structures with parameters that dynamically adjust to accommodate structural
breaks in the conditional variance. Nevertheless, this approach brings about an issue of
path dependence, wherein the conditional variance at time t is dependent on the complete
sequence of regimes St (t = 1, . . . , K). To circumvent this issue, we refer to the work of
Haas et al. [21] and Ardia et al. [20].
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Numerous studies have demonstrated that GARCH(1,1) offers more accurate depic-
tions of market volatility dynamics compared to even higher-order ARCH specification [21].
In line with Bollerslev’s work [2], the expression for the conditional variance process of
GARCH(1,1) can be represented as follows:{

rt = ϵt
√

ht, ϵt
i.i.d.∼ f (0, 1),

ht = ω + αr2
t−1 + βht−1 = ψ(rt−1, ht−1),

(3)

with ω > 0, α ⩾ 0, and β ⩾ 0 to guarantee a positive variance. The sequence (ϵt) consists
of independent and identically distributed (i.i.d.) random variables with a mean of zero
and a variance of one. A conditional distribution f (·) must be designated.

Throughout the subsequent discussions, ht is presumed to represent a Markov-
Switching GARCH(1,1) process described by St, (t = 1, . . . , K):

ht = ψ(rt−1, ht−1, St).

We substitute St into Equation (3), resulting in the representation of the conditional variance
in switching regimes as follows:

ht = ωk + α1,k r2
t−1 + β1,k ht−1.

As described in [11], Gray (1996) employs the information set available at time t − 1 to
integrate hidden regimes, thus mitigating path-dependence concerns, depicted as follows:

ht =
K

∑
k=1

pk,t hk,t,

where, hk,t represents the conditional variance of rt within regime (k), while pk,t = Pr(St =
k|ζt−1) denotes the probability of being within a particular regime (k) based on information
available up to t − 1.

Suppose that St ∈ {1, 2}, in this case, the conditional distribution of rt involves a
switching between distribution f (hk,t) within regime (k).

P =

(
p11 p12
p21 p22

)
=

(
p 1 − p

1 − q q

)
(4)

To simplify, let us consider the scenario with only two regimes. The unconditional probabil-
ity of being in a particular state St = 1, usually named ergodic probability, is calculated
as π1 = (1 − q)/(2 − p − q). Thus, the generalized form of the MS-GARCH(1,1) model
featuring two regimes can be represented as follows:

rt|ζt−1 ∼
{

f (h1,t) with transition rate p1,t

f (h2,t) with transition rate p2,t.
(5)

In the equation above, f (·) denotes one of the potential conditional distributions, such as
normal (N), Student’s (t), or GED. The quantity hi,t represents the conditional variance in
the ith regime, defining the distribution. Additionally, p1,t = Pr(St = 1|ζt−1) signifies the
ex-ante probability, with ζt−1 denoting the information set up to time t − 1, encompassing
the σ-algebra induced by all observed variables up to that point.

Thus, the MS-GARCH model consists of three key elements: the conditional variance,
the regime process, and the conditional distribution. Meanwhile, the conditional mean,
often represented as a drift or driftless random walk is represented as follows:

rt = ηt
√

ht (6)
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where ηt denotes a process characterized by zero mean and unit variance.
Given the entire trajectory (St, St−1, . . .) the conditional variance of rt and ζt−1 is

denoted by hi,t = Var(rt|St = i, ζt−1). It is then expressed as follows:

hi,t = α0,i + α1,i r2
t−1 + β1,i ht−1. (7)

To alleviate the notable influence of negative returns on conditional volatility, often termed
the “leverage effect”, we adopt the GJR-GARCH model proposed by Glosten et al. [22]. This
model aims to capture asymmetry effects present in our time series, and the conditional
variance process can be represented by the following:

hi,t = α0,i + (α1,i + γi11{rt−1<0}) r2
t−1 + β1,i ht−1, (8)

where 11{rt−1<0} = 1 if rt−1 < 0 and 0 otherwise. For i ∈ {1, 2}, where γi ⩾ 0, the parameter
γi serves as the measure of asymmetry in the conditional variance process.

Another critical aspect affecting the effectiveness of our conditional volatility modeling
concerns the assumed distribution of innovations (ηt), which must be carefully specified.
In our investigation, we concentrate on three distributions: Student’s (t), normal (N),
and generalized error distribution (GED). We prioritize skewed distributions to address
asymmetry. For the definition of skewed density, we defer to Fernandez and Steel [23],
presented as follows:

fξ(z) =
2σξ

ξ + ξ−1 f ∗(zξ),

where

zξ =

ξ−1(σξ z + µξ) if z ⩾ −
µξ

σξ

ξ(σξz + µξ) otherwise
,

with µξ = m(ξ − ξ−1), σ2
ξ = (1 − m2)(ξ2 − ξ−2) + 2m2 − 1, and m =

∫ ∞
0 2t f ∗(t)dt.

The asymmetry degree is captured by the parameter 0 < ξ < ∞, whereas f ∗(·)
describes a symmetric density function with a mean of zero and a variance of one.

To derive the one-step-ahead forecast of the MS-GARCH, we aggregate potential
expected conditional variances across each state, weighting them by the ex-ante probability
denoted as pj,t and represents the likelihood of being in the initial regime at time t; based
on the information available up to time t − 1, as outlined in Hamilton [9], one can write

pj,t = Pr(St = j|ζt−1) =
2

∑
i=1

pij
f (rt−1|St−1 = i)pi,t−1

∑2
k=1 f (rt−1|St−1 = k)pk,t−1

, (9)

where pij denote the transition probabilities, while f represents the density functions as
defined in Equation (5).

This yields the calculation for the one-step-ahead forecast:

ĥT,T+1 = Pr(ST+1 = 1|ζT)(α0,1 + α1,1 r2
T + β1,1 h1,T) (10)

+Pr(ST+1 = 2|ζT)(α0,2 + α1,2 r2
T + β1,2 h2,T).

According to Marcucci’s regime-switching GARCH [13], at time T − 1, the forecast for
volatility h steps ahead can be computed as follows:

ĥT,T+h =
h

∑
m=1

ĥT,T+m =
h

∑
m=1

2

∑
i=1

Pr(ST+m = i|ζT−1)ĥi,T,T+m. (11)
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In this context, ĥT,T+h denotes the combined volatility forecast at time T for the
following h steps, and ĥi,T,T+m indicates the m-step-ahead volatility forecast in regime i at
time T, which can be computed iteratively.

ĥi,T,T+m = α0,i + (α1,i + β1,i)ET [hi,T,T+m−1|ST+m], (12)

where ĥi,T,T = hi,T and ET stands for the conditional expectation given in the information
up to time T (ζT) .

The collection of log-likelihood functions is expressed as follows:

ℓ =
T+w

∑
−D+1+w

log[p1,t f (rt|St = 1) + (1 − p1,t) f (rt|St = 2)], (13)

where w takes values from the set {0, 1, . . . , n}, D represents the duration of trading days
included in the in-sample analysis, and f (rt|St = i), as defined by Marcucci [13], denotes
the conditional distribution given regime i occurring at time t.

3. Data and Methodology

This paper focuses on estimating a multi-regime GARCH model using data from
the MSMI index. The dataset consists of daily rate of return information, derived from
intra-daily extreme values of stock returns and closing prices obtained from an investment
platform’s historical data. The total dataset spans from 1 January 2000 to 29 November
2022, encompassing 5394 observations from the MSMI, accounting for various holidays.
Recall that the rate of return is given (2). As anticipated, the volatility fluctuates throughout
the period, displaying clusters of volatility where significant changes in the index are often
succeeded by further significant changes, while small changes are typically followed by
small changes (refer to Figures 1 and 2). Additionally, we present the correlation between
the magnitude of fluctuations in log returns and the evolution of the stock market index.
The time index of rt is within the set {1, 2, . . . , n}.

Figure 1. Illustration of the evolution of the close price index for MSM.

Figure 2. Illustration of the evolution of logarithmic return (%) for the MSM index.
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In this empirical section, we utilize MS-GARCH(1,1) models to estimate the volatility
of the log return rt. To address the fat tails characteristic of financial returns, we investigate
three different distributions for the innovations: normal (N), Student’s (t), and generalized
error distribution (GED). To evaluate the performance of the models, we compare the
forecasts produced by various MS-GARCH specifications against the “true” volatility.
However, identifying the “true” daily volatility presents challenges. Thus, this study
utilizes a measure of the “true volatility”. The traditional volatility estimator used is
referred to as the Close-Close Volatility Estimator, calculated as follows:

σ̂t =

√
252 × 1

n

n

∑
k=1

r2
t−k for t > n. (14)

This represents the primary historical volatility estimator, favored for its simplicity and
widespread use. Pérez-Cruz et al. [24] suggested the approximation with n = 5.

Figures 1 and 2 displays a graphical representation of our series, allowing us to
assess volatility clustering. We observe alternating periods of low and high fluctuations.
Additionally, we present the correlation between the magnitude of fluctuations in log
returns and the evolution of the stock market index.

Table 1 presents summary statistics of daily log returns for the MSMI. The mean
log return is close to zero at 0.015%, supporting the assumption of a zero mean. The
standard deviation, approximately unity at 0.853%, indicates considerable volatility (an
assumption to be confirmed). The skewness coefficient exhibits a significant negative value,
suggesting a leftward spread in the distribution’s tail. Additionally, the excess kurtosis
exceeds the normal distribution’s value of 0, indicating heavier tails in the distributions.
The LM-Statistic test confirms the presence of the ARCH effect in all series, rejecting the
null hypothesis of “no ARCH effect”. Additionally, The Jarque-Bera (JB-Statistic) test rejects
the null hypothesis of “normality”, indicating that the distributions are not normal.

Table 1. Summary of return data statistics.

Statistic MSMI

Mean (%) 0.015
Median (%) 0.019
Minimum (%) −8.038
Maximum (%) −8.038
Std.Dev. (%) 0.853
Skewness −1.02
Kurtosis 21.425
JB-Statistic 10,419.2
JB p-value <0.01
LM (12) 1786
LM p-value <0.01

4. Estimation and Identification of the Number of Regimes

In our study, we have introduced the standard GARCH model alongside the multi-
regime MS-GARCH model, aimed at enhancing the ability to capture the persistence of
conditional volatility in the stock market index. To accommodate these complex models,
we employed the Maximum Likelihood (ML) approach as outlined by Marcucci [13]. The
adequacy of our models was assessed using the Akaike Information Criterion (AIC) to
identify the most suitable model.

In this section, we conduct an analysis of log-return results for the MSMI. For our
analysis, we fitted all 18 models using historical data spanning from 1 January 2000
to 29 November 2022. Throughout this study, we utilized the R package developed by
Ardia et al. [20] to estimate the parameters and AICs to identify the optimal number of
regimes (comparison between 1, 2, and 3 regimes).
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4.1. Identification of the Number of Regimes

Before commencing model fitting, we pre-processed our series using the AR(1) model,
chosen based on the AIC, to ensure the absence of correlation between log-return observa-
tions rt. Table 2 presents the AIC values for the different models. Ardia [14] demonstrated
numerous advantages of using the AIC for selecting the most suitable model to provide a
more accurate description of stochastic volatility.

Table 2. Akaike Information Criterion.

MSMI
k = 1 k = 2 k = 3

S-GARCH

Sk-N 9211.09 8669.49 8613.02
Sk-STD 8604.86 8579.34 8581.85
Sk-GED 8640.25 8570.44 8579.71

GJR-GARCH

Sk-N 9210.49 8671.46 8619.43
Sk-STD 8606.17 8601.82 8596.48
Sk-GED 8640.82 8572.95 8636.4

Next, we compare the two-regime models with different distributions (skewed normal,
skewed Student’s, and skewed GED), starting with their AIC values. For the MSMI, the
skewed GED with two regimes provides more adequacy for standard GARCH. Also, the
two-regime GJR-GARCH with skewed distribution again offers better adequacy. Thus,
regarding the smallest value of AIC (8570.44), the optimal specification for describing
MSMI log returns appears to be the two-regime standard GARCH model with a skewed
generalized error distribution.

4.2. Estimation of the Tentative Model

In the previous section, we established that the log-returns of the MSMI data under
consideration were tentatively characterized by the two-regime MS-GARCH model with a
skewed GED. Table 3 presents parameter estimates for a given regime (k), including the
parameters of the standard GARCH(1,1) model (α0,k, α1,k, β1,k), and Φ(k) ≡ (ηk, ξk), where
ηk and ξk represent the parameters of the skewed GED, representing the tail and asymmetry,
respectively. Additionally, the transition matrix elements pij = Pr(St = j|St−1 = i) are
provided, where pkk represents the persistence probability in the kth regime. The results
indicate that all estimated parameters are statistically significant.

Also, in Table 4 below we present some additional proprieties as unconditional volatil-
ity defined for each regime (for regime i: α0,i

1−α1,i−β1,i
).

We observe that the first regime exhibits a low unconditional variance of 0.42%, while the
second regime demonstrates a significantly higher unconditional variance of 2.98%.
From our analysis, we can infer the unconditional probabilities of the regimes.

For K = 2 (the number of regimes), these probabilities are computed as follows:

π1 =
1 − p22

2 − p11 − p22
and π2 =

1 − p11

2 − p11 − p22
,

ensuring that π1 + π2 = 1. In the case of the MSMI, the unconditional probabilities are
found to be approximately 82% for the first regime and 18% for the second regime. This
suggests greater stability in the first regime compared to the second.

These observations are illustrated by the smoothed probabilities graph, depicting the
quantity Pr(St = 1|ζt−1), as shown in Figures 3 and 4.
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Table 3. Selected model parameters.

MSMI
Parameter Mean Std.Dev. p-Value
α0,1 0.008 0.0008 <0.001
α1,1 0.12 0.0135 <0.001
β1,1 0.834 0.0043 <0.001
η1 1.292 0.0394 <0.001
ξ1 1.053 0.0198 <0.001

α0,2 0.303 0.0563 <0.001
α1,2 0.663 0.1 <0.001
β1,2 0.856 0.004 <0.001
η2 0.856 0.0235 <0.001
ξ2 0.715 0.0174 <0.001
p11 0.95 0.0202 <0.001
p12 - - -
p21 0.23 0.0056 <0.001
p22 - - -

V(1)
per 0.954 - -

V(2)
per 0.966 - -

Table 4. Selected specifications.

Specification (Φ̂) Unconditional Probabilities (πk) Unconditional Volatility (%)

Class Dist Regimes Regime 1 Regime 2 Regime 1 Regime 2
MSMI S-GARCH Sk-GED K = 2 0.822 0.178 0.423 2.98

Figure 3. Smoothed probability for the state 1.

Figure 4. Smoothed probability for the state 2.
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4.3. Backtesting of the Selected Models

Our chosen regime-switching models demonstrated significant flexibility in capturing
volatility persistence for the MSMI. To further assess the efficacy of these models, we now
turn to an out-of-sample analysis.

The out-of-sample period spans from 8 May 2018 to 29 September 2022, comprising
approximately 1079 log-return observations for the MSMI. To ensure robustness, a reliable
model should precisely predict the Value at Risk (VaR) for a predetermined coverage
level. To achieve this, we utilize a broad window, leveraging a family of models capable
of accommodating time-varying parameters. This approach enhances the accuracy of
forecasting the one-ahead Value at Risk at the 5% coverage level, utilizing the models
selected earlier.

Throughout this study, we utilized the R package developed by Ardia et al. [20] to
compute p-values for various back-testing hypothesis tests. These tests are crucial for
ensuring the accurate conditional coverage of the Value at Risk (VaR). The tests employed
in this study include the Unconditional Coverage (UC) test proposed by Kupiec [25], which
examines the number of VaR violations (or hits), defined as It(α) = 1 if rt < VaRt(α) and
zero otherwise. Additionally, we utilize the Conditional Coverage (CC) test by Christof-
fersen [26] and the Dynamic Quantile (DQ) test by Engle and Manganelli [27]. These tests
consider the number of violations and require that the violation variable (It(α)) be inde-
pendently distributed. These evaluations align with the regulatory requirements set forth
by the Basel Committee on Banking Supervision [28,29] regarding the internal validation
of VaR models.

The results, as presented in Table 5, highlight the effectiveness of selected models in
accurately predicting VaR at the 5% risk level.

Table 5. Results of Value at Risk (VaR) backtesting at the 95% confidence level.

Unconditional Coverage Conditional Coverage Dynamic Quantile
uc LRstat uc LRp cc LRstat cc LRp DQstat DQp

MSMI 0.172 0.667 1.320 0.516 5.839 0.558

The findings from the Unconditional Coverage (UC), Conditional Coverage (CC),
and Dynamic Quantile (DQ) tests suggest that the null hypothesis, indicating accurate
forecasting of one-ahead VaR at the 5% coverage level, is supported (i.e., p-value > 0.05).

Additionally, a visualization of the backtest results is presented in Figure 5 below,
demonstrating the models’ ability to capture significant breaks in log returns.

Additionally, we graph the historical volatility alongside the estimates of the two regimes
using MS-GARCH with the skewed GED (refer to Figure 6). The red line represents the
volatility derived from the historical volatility estimator.

Finally, after exploring the performance of volatility forecasting within the class of
MS−GARCH models by the backtesting method, under the same assumptions of the
estimated models we provide a one-ahead volatility forecast for 120 future annualized
volatility starting from 5395 since we have 5394 observations in the dataset (see Figure 7).
We observe that we are still in regime 1, which is characterized by a low volatility.



Symmetry 2024, 16, 569 11 of 14

Figure 5. Analysis of Value at Risk for the stock market index using the MS−GARCH model.

Figure 6. Historical volatility versus MS-GARCH estimated volatility.
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Figure 7. One−ahead forecast for annualized volatility using MS−GARCH models.

5. Conclusions

In this study, we conducted an analysis of stock market indices, particularly focusing
on the MSMI (Oman), utilizing their daily log returns spanning from January 2001 to
September 2022, encompassing a dataset of 21 years. The aim was to investigate the optimal
number of regimes using two categories of GARCH models: the standard GARCH(1,1)
model and the asymmetric GJR-GARCH(1,1) model. These models incorporated different
skewed conditional distributions (normal, Student’s (t), and GED), with all parameters
permitted to transition across a designated number of regimes.

In the analysis of the empirical data, we used the Maximum Likelihood approach
to estimate approximately 18 models. We compared these models based on the Akaike
Information Criterion (AIC), which evaluates the balance between model fitting quality
and complexity. Model estimation stability was ensured by testing different seeds, with
our judgment determining model convergence.

For the MSMI, the GED distribution with two regimes showed greater adequacy for the
standard GARCH model. Furthermore, the two-regime GJR-GARCH model with skewed
distribution demonstrated even better adequacy. Consequently, based on the smallest AIC
value, the most suitable specification for describing MSMI log returns was identified as
the two-regime standard GARCH model with a skewed GED. This suggests that the stock
market index exhibits two regime specifications: one characterized by low volatility and
the other by high conditional variance with persistent volatility.

Finally, we assessed the validity of the selected models through out-of-sample analysis,
utilizing statistical tests such as the Unconditional Coverage (UC), Conditional Coverage
(CC), and Dynamic Quantile (DQ) tests, aligned with Basel Committee requirements. We
also evaluated the models’ ability to predict MSMI volatility.

An area of interest for future research is to explore the application of these results
using a Bayesian approach, considering prior distributions.
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