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Abstract: Nowadays, rumors spread more rapidly than before, leading to more panic and instability
in society. Therefore, it is essential to seek out propagation law in order to prevent rumors from
spreading further and avoid unnecessary harm. There is a connection between rumor models and
symmetry. The consistency of a system or model is referred to as the level of symmetry under
certain transformations. For this purpose, we propose a fractional-order Ignorant–Latent–Spreader–
Remover (ILSR) rumor propagation model that incorporates media reports and a nonlinear inhibition
mechanism. Firstly, the boundedness and non-negativeness of the solutions are derived under
fractional differential equations. Secondly, the threshold is used to evaluate and illustrate the stability
both locally and globally. Finally, by utilizing Pontryagin’s maximum principle, we obtain the
necessary conditions for the optimal control in the fractional-order rumor propagation model, and we
also obtain the associated optimal solutions. Furthermore, the numerical results indicate that media
reports can decrease the spread of rumors in different dynamic regions, but they cannot completely
prevent rumor dissemination. The results are also exhibited and corroborated by replicating the
model with specific hypothetical parameter values. It can be inferred that fractional order yields more
favorable outcomes when rumor permanence in the population is higher. The presented method
facilitates the acquisition of profound insights into the dissemination dynamics and subsequent
consequences of rumors within a societal network.

Keywords: rumor propagation; fractional order; stability analysis; media reports; nonlinear inhibition
mechanism; fractional stochastic

1. Introduction

Rumor is unverified information about news or events, which is easily generated and
widely disseminated [1]. Particularly, with the development of science and technology,
digital media has emerged as a primary means of providing information, leading to the
large-scale spread of rumors and an uncontrollable situation. Since it is impossible to
verify whether rumors are true or false, several rumors can generate unnecessary tensions
and potential disruptions in individuals’ daily lives. For instance, unusual purchasing
behavior concerning salt is driven by the fear stemming from the rumor related to the
Fukushima nuclear accident. Numerous rumors have emerged since the outbreak of
COVID-19, leading to a range of negative impacts worldwide such as panic buying and
ineffective purchases [2]. This not only upset the pharmaceutical market but also generated
numerous unnecessary obstacles and difficulties for epidemic prevention efforts. As a
result, investigating the dynamics of rumor dissemination, controlling its progression, and
reducing the harmful effects of rumors have all emerged as essential concerns.

In the study of rumor propagation, mathematical models are widely used by scholars.
Daley and Kendall demonstrated the distinctions between rumors and disease propagation
by categorizing individuals into ignorants, spreaders, and stiflers and created the classic DK
rumor-spreading model in 1964 [3]. In 1973, Maki and Thompson modified the DK model to
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study the MK model [4], where interpersonal communication leads to rumor propagation.
According to some scholars, the complexity of the rumor propagation process cannot be
captured by DK and MK models, especially in the complex topology of social networks.
Zanette designed a model framework to simulate the propagation of rumors in small-world
networks [5]. To better understand the way rumors spread, more and more factors are
being considered by creating more rational models, such as hesitating mechanisms [6],
inhibiting strategies, and attitude adjustment [7], etc. To a certain extent, the innovations of
these scholars contribute to the spread of rumors, which, in turn, further research.

To accurately capture the dynamics of rumor dissemination through mathematical
models, the incidence function plays a crucial role that should not be overlooked. Ca-
passo et al. proposed a function f (I) = kI

1+(I/α)
, where I denoted the infective class, the

parameter k indicated contact rate, and α depicted the saturation phenomena of a large
number of infectious individuals, making them more realistic [8]. Moreover, it is more
reasonable to utilize the nonlinear propagation function by introducing the psychological
factor, which effectively depicts the crowding effect and more complex behaviors on ru-
mor propagation [9,10]. Many scholars employed the saturation functions to reflect the
nature of certain phenomena and obtain more accurate results in related rumor propa-
gation [11–13]. Thus, we incorporate a saturated incidence rate in our model. Given the
various ways in which rumors can propagate, individuals can easily access information
on social media platforms, which makes the control of rumor-spreading more complex.
In fact, whenever rumors prevail on social media platforms, the media coverage provides
rumor-dispelling information to influence individuals’ behavior, which can help to prevent
social panic and maintain social harmony. Cui et al. used the form f (I) = µe−mI , where
the parameter µ indicated contact rate and the parameter m > 0 demonstrated that the
significant influence of media coverage on the spread of contagious illnesses should not
be disregarded [14]. Sahu et al. proposed the SEQIRHS model with contact transmission

rate f (I) = β̃e−m Ĩ
Ñ , where the parameter µ indicated contact rate, the parameter m > 0

demonstrated the influence of media coverage, and N represented the total number of
groups to mirror the impact of media reports [15]. It is apparent that the media coverage
did not impact the basic reproduction number; however, it led to a reduction in the count
of individuals who were contagious. The form f (S) = β1 − β2S

m+S (β1 > β2 > 0, m > 0),

where β1 denoted contact rate, was proposed in [16–18], where g(S) = β2S
m+S indicated the

diminished contact rate through media coverage. Cheng et al. introduced a nonlinear
factor f (M) = β1 − β2

M
α+M (β1 > β2 > 0, α > 0), where M represented the cumulative

density of media coverage to modify the contact rate by combining media coverage and
time delay [19]. Pan et al. studied a SIDRW rumor model that combines media coverage
and rumor refutation [20]. Later on, Guo et al. proposed two models, SEIMR and SICMR,
respectively, considering media coverageand the refutation mechanism [21,22]. Various
mathematical models are available to examine the influence of media coverage on rumor
spreading. Therefore, the proposed model should take into account the impact of media
coverage on the dissemination of rumors among individuals.

Obviously, the intervention strategies of the government and the media coverage
cannot indefinitely increase due to the constraints of various limited resources. As rumors
spread, managing them becomes increasingly challenging. Given that the law of rumor
propagation is analogous to that of disease propagation, many researchers have employed
the rumor propagation model with a nonlinear inhibition mechanism [23–26]. The objective
of studying rumor propagation is to restrain rumor spreading. Due to the significant
damage caused by rumors, several control measures to reduce losses have been proposed
by scholars, such as optimal control strategies [25], time-dependent controllers [27], dis-
continuous control strategies [28], event-triggered control [29], hybrid control strategy [30],
and so on. Actually, the spread of rumors is often influenced by various environmental
disturbances, such as interrupted network signals, lost data packets, individual cogni-
tive differences, and so on. These factors contribute to the increased uncertainty in the
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process of spreading rumors. Zhu et al. proposed a rumored model incorporating noise
interference, where they discovered that the level of noise was directly related to the total
number of individuals involved and inversely related to the rumor lifecycle [31]. Tong et al.
established a stochastic IFCD rumor propagation model on heterogeneous networks [32].
Ghosh et al. introduced a stochastic rumor model combining counter-rumor spreaders
and found that stochastic factors significantly contributed to suppressing rumor propaga-
tion [33]. Therefore, it is necessary to consider random factors when modeling the spread
of rumors.

Obviously, the above-mentioned models have almost discussed the propagation mech-
anism of rumors in integer order. However, historical information has an impact on the
dynamic nature of rumors. Zhang et al. first introduced the memory effect through tra-
ditional integer-order differential equations [34]. When rumors appear, an individual’s
experience and scientific knowledge affect whether rumors are accepted. Fractional cal-
culus offers innovative methods to characterize memory effects, serving as an extension
of integral calculus. Until now, Caputo derivatives, which are extensively used in various
fields such as science, biology, engineering, computer, chaos, and many others, have been
undergoing significant development in recent decades [35–43]. Singh conducted an analy-
sis and dynamics of rumor diffusion in a social network using fractional derivatives that
incorporate the Atangana–Baleanu derivative [43]. This research appears to be an exciting
new direction for the study of rumor diffusion, and it could potentially provide valuable
insights into how rumors spread through social networks. Ye et al. examined a study on a
rumor model in two distinct linguistic contexts that incorporate fractional-order dynamics
in reaction–diffusion processes [44]. The impact of memory on rumor propagation was in-
vestigated, and it can be observed from the results that fractional calculus can be employed
to more accurately describe the rumor-spreading process.

However, early memories are blurred by individual forgetting processes and have a
minimal impact on the present [35]. Generally, individuals rely on their latest memory to
make a judgment, which is based on the recently acquired information from government
officials and media reports. On the other hand, due to the limited resources, anomalous
propagation occurs, which is characterized by explosive growth in the initial stage and slow
dissipation in the later stage. Considering the previous study, we establish an Ignorant–
Latent–Spreader–Remover (ILSR) rumor propagation model with media reports and a
nonlinear inhibition mechanism under the Caputo fractional derivative, which comprehen-
sively considers the crowding effect, memory effect, and anomalous propagation.

The organization of the remaining sections of the paper is outlined as follows.
In Section 2, we provide a brief overview of some fundamental definitions of fractional

calculus. In Section 3, we propose an improved fractional-order ILSR rumor model. In
Section 4, the analysis primarily examines the stability of both local and global asymptotic
equilibria. In Section 5, we focus on the optimal control problem. In Section 6, we present the
ILSR rumor model incorporating fractional stochastic elements. In Section 7, the numerical
simulation is examined and supplemented with comments. Finally, the conclusion is
presented in Section 8.

2. Numerous Concepts Associated with the Field of Fractional Calculus

In this section, we provide explanations for fractional-order integration and discuss
various characteristics of the fractional-order differential equation [45]. The definitions of the
Riemann–Liouville and Caputo formulas are highly significant and extensively researched.

Definition 1. The fractional derivative of a continuous function f (t) on [t0, ∞) known as the
Caputo derivative with order α > 0, is investigated as follows [46,47]:

C
t0

Dα
t f (t) =

1
Γ(n − α)

∫ t

t0

f (n)(τ)

(t − τ)α+1−n dτ, t ≥ t0, (1)
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where n = ⌈α⌉ contains the smallest integer greater than α, and the Caputo fractional derivative
of the function f (t) on [t0, ∞) is provided by lim

α→n
C
t0

Dα
t f (t) = f n(0) +

∫ t
t0

f n+1(τ)dτ = f (n)(t),

n = 1, 2, . . . . The Gamma function is represented by Γ(s) =
∫ ∞

0 ts−1e−tdt. Specially, for
0 < α < 1, definition can be equivalently expressed as:

C
t0

Dα
t f (t) =

1
Γ(1 − α)

∫ t

t0

f ′(τ)
(t − τ)α dτ, t ≥ t0,

Lemma 1. The Laplace transform of the function f (t) = tj−1Eα,j(±ωtα) is defined as [46]:

L
(

tj−1Eα,j(±ωtα)
)
=

sα−j

sα ± ω
, (2)

where Eα,j is a two-parameter Mittag–Leffler function.

Lemma 2. If the function f (t) satisfies the subsequent set of criteria [46,47], it obtains:

1. f (t) and f ′(t) exhibit continuity throughout Rn, n ≥ 1.
2. ∥ f (t)∥ ≤ c1 + c2∥t∥ for all t ∈ Rn, with c1 and c2 consisting of a pair of positive variables.

Subsequently, a distinct solution for Rn
+ is established for System (1).

Lemma 3. Assume that f (t) ∈ C[a, b] and C
0 Dα

t f (t) ∈ C[a, b] for α ∈ (0, 1], subsequently, we
obtain the following (Generalized Mean Value Theorem [48]):

f (t) = f (a) +
1

Γ(α)
C
a Dα

t f (ξ)(t − a)α, a < ξ < t, ∀ t ∈ (a, b]. (3)

If f (t) ∈ C[a, b] and C
0 Dα

t f (t) ≥ 0, ∀ t ∈ (a, b], then ∀ t ∈ (a, b], the function f (t) is
non-increasing.

Definition 2. Consider the following linear fractional-order derivative [49]:

C
0 Dα

t (X(t)) = Φ(X),

Xt0 =
(

x1
t0

, x2
t0

, . . . , xn
t0

)T
,

(4)

where Xt(t) =
(

x1
t , x2

t , . . . , xn
t
)T , Φ(X) : Rn → Rn

+ , and 0 < α ≤ 1. The stability of System (4)
tends to be a stable state if |arg(λi)| > απ

2 , i = 1, 2, . . . , n meets all eigenvalues λi of X(t).

Definition 3. Provided that System (3) with f (t) is a differentiable function, accordingly, the
stability of the equilibrium point x∗ can be characterized as asymptotically stable when all eigenval-
ues λi of the Jacobian matrix evaluated at x∗ meet certain conditions |arg(λi)| > απ

2 . If for some
eigenvalues λi, |arg(λi)| < απ

2 , the equilibrium point x∗ is unstable [50].

3. Description of the Model

In this section, we present an Ignorant–Latent–Spreader–Remover (ILSR) model with
fractional-order dynamics. The total population has been divided into four categories:
Inorants, who have not been exposed to the rumor and are more likely to trust it, denoted
by I(t); Latents, who could question the rumor and remain silent in the short term after
hearing the rumor, Refs. [51,52], denoted by L(t); Spreaders who are aware of the rumor
and actively spread it, denoted by S(t); and Removers who have had contact with the
Spreaders but resist and do not spread the rumor or lose interest in the rumor, denoted
by R(t).

The following are the propagation rules:
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(i) When an Ignorant has contact with a Latent, the Ignorant is affected and becomes

a Latent with the possibility of βI(t)S(t)e−mS(t)

1+δS(t) , where β denotes the rumor contact
rate, δ denotes the saturation constant, and m implies the level of the media reports.

Obviously, βe−mS(t)

1+δS(t) → β as S(t) → 0 . The timely popularization of scientific knowl-
edge and countering rumors through media reports can help control rumors to a
certain extent. The influence of media reports on communication is not inherently

decisive, Ref. [15]. The transmission rate f (S) = βe−mS

1+δS is influenced by media reports
in Figure 1.

(ii) Some Latents may tend to become Spreaders with a transfer rate ε and the parameter
φ represents the recovery rate of Spreaders when they are exposed to the impacts of
the forgetting mechanism.

(iii) γS(t)/(1 + kS(t)) represents a saturated treatment function that represents the non-
linear inhibition mechanism, where γ > 1 and k ≥ 0. γ/k means the highest level of
inhibition measure for the Spreaders group.

(iv) We make the assumption that the rate of immigration is Λ, while the rate of emi-
gration is µ. All the parameters of the model are assumed to possess constant and
positive values.

Symmetry 2024, 16, x FOR PEER REVIEW 6 of 26 
 

 

 

Figure 1. Media reports induce contact transmission rate: ( )f S  at 0.2, 0.1. = =  

(ii) Some Latents may tend to become Spreaders with a transfer rate   and the param-

eter   represents the recovery rate of Spreaders when they are exposed to the im-

pacts of the forgetting mechanism. 

(iii) ( ) ( )( )/ 1S t kS t +   represents a saturated treatment function that represents the 

nonlinear inhibition mechanism, where 1   and 0k  . / k  means the highest 

level of inhibition measure for the Spreaders group. 

(iv) We make the assumption that the rate of immigration is  , while the rate of emigra-

tion is  . All the parameters of the model are assumed to possess constant and pos-

itive values. 

In accordance with the previously mentioned propagation rules, Figure 2 presents a 

schematic diagram. Taking into account the assumptions above, the dynamic equation of 

the fractional-order ILSR rumor model is defined as follows: 

( )
( ) ( ) ( )

( )
( )

( )
( ) ( ) ( )

( )
( ) ( )

( ) ( )
( )
( )

( ) ( )

( )
( )
( )

( ) ( )

0

0

0

0

,
1

,
1

,
1

,
1

mS t

C

t

mS t

C

t

C

t

C

t

I t S t e
D I t I t

S t

I t S t e
D L t L t L t

S t

S t
D S t L t S t S t

kS t

S t
D R t S t R t

kS t















 




  


 

−

−


=  − −

+

 = − −
 +



= − − − +



= + −
+

 
 

(5) 

where 
C

0 tD
 is the fractional operator in the Caputo sense with the range of ,0 1    

and the initial conditions are ( ) ( ) ( ) ( )0 0 00 0, 0 0, 0 0, 0I I L L S S R=  =  =  =  

0 0.R   
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In accordance with the previously mentioned propagation rules, Figure 2 presents a
schematic diagram. Taking into account the assumptions above, the dynamic equation of
the fractional-order ILSR rumor model is defined as follows:

C
0 Dα

t I(t) = Λ − βI(t)S(t)e−mS(t)

1+δS(t) − µI(t),

C
0 Dα

t L(t) = βI(t)S(t)e−mS(t)

1+δS(t) − εL(t)− µL(t),

C
0 Dα

t S(t) = εL(t)− γS(t)
1+kS(t) − φS(t)− µS(t),

C
0 Dα

t R(t) = γS(t)
1+kS(t) + φS(t)− µR(t),

(5)

where C
0 Dα

t is the fractional operator in the Caputo sense with the range of α, 0 < α ≤ 1
and the initial conditions are I(0) = I0 ≥ 0, L(0) = L0 ≥ 0, S(0) = S0 ≥ 0, R(0) = R0 ≥ 0.
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The solution of Model (5) demonstrates positivity and remains within bounds. since
(I(t), L(t), S(t), R(t)) ∈ R4

+, the following theorem is acquired.

Theorem 1. The solution of Model (5) is a bounded solution in R4
+.

Proof. We note that the non-negative region R4
+ is positively invariant. Utilizing System (5),

we acquire the following expression:

C
0 Dα

t I(t)
∣∣

I(t)=0 = Λ ≥ 0,

C
0 Dα

t L(t)
∣∣
L(t)=0 = βI(t)S(t)e−mS(t)

1+δS(t) ≥ 0,
C
0 Dα

t S(t)
∣∣
S(t)=0 = εL(t) ≥ 0,

C
0 Dα

t R(t)
∣∣
R(t)=0 = γS(t)

1+kS(t) + φS(t) ≥ 0

(6)

.
If (I(0), L(0), S(0), R(0)) ∈ R4

+, then according to System (6) and Lemma 3, the so-
lution of Model (5) can only be on high hyperplanes I(t) = 0, L(t) = 0, S(t) = 0, and
R(t) = 0. Thus, R4

+ is positively invariant. □

Theorem 2. The region Ω =
{
(I(t), L(t), S(t), R(t)) ∈ R4

+, 0 ≤ I(t) + L(t) + S(t)+R(t) ≤ Λ
µ

}
possesses a positive invariant set for Model (5).

Proof. Provided that N(t) = I(t) + L(t) + S(t) + R(t), and adding the first four equations
of Model (5), we acquire the following expression:

C
0 Dα

t N(t) = Λ − µ(I(t) + L(t) + S(t) + R(t)), (7)

Then, C
0 Dα

t N(t) = Λ − µN(t), according to Lemma 1, the Laplace transform is applied
to the previous equation, and the result is:

N(t) ≤ N(0)Eα(−µtα) +
Λ
µ
(1 − Eα(−µtα)). (8)

Since 0 ≤ Eα(−µtα) ≤ 1, we obtain N(t) ≤ Λ
µ + N(0). This implies that N(t) is

bounded, thus, I(t), L(t), S(t), and R(t) are bounded.
Therefore, all solutions to Model (5) remain positive and bounded. Next, we will

present proof that the solution is unique. □

Theorem 3. A unique solution X(t) ∈ R4
+ for each initial condition X(0) = (I0, L0, S0, R0),

∀t ≥ 0 exists in Model (5).

Proof. To validate the existence and uniqueness, the approach used in [53] is adopted.
Define H(X) = (H1(X), H2(X), H3(X), H4(X)), as follows:
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H1(X) = Λ − βI(t)S(t)e−mS(t)

1+δS(t) − µI(t),

H2(X) =
βI(t)S(t)e−mS(t)

1+δS(t) − εL(t)− µL(t),

H3(X) = εL(t)− γS(t)
1+kS(t) − φS(t)− µS(t),

H4(X) =
γS(t)

1+kS(t) + φS(t)− µR(t).

(9)

Furthermore, for any X, X ∈ Ω1, construct a function as follows:∥∥H(X)− H
(
X
)∥∥ =

∣∣H1(X)− H1
(
X
)∣∣+ ∣∣H2(X)− H2

(
X
)∣∣+ ∣∣H3(X)− H3

(
X
)∣∣

+
∣∣H4(X)− H4

(
X
)∣∣

=

∣∣∣∣Λ − βISe−mS

1+δS − µI − Λ + βISe−mS

1+δS
+ µI

∣∣∣∣
+

∣∣∣∣ βISe−mS

1+δS − (ε + µ)L − βISe−mS

1+δS
+ (ε + µ)L

∣∣∣∣
+
∣∣∣εL − γS

1+kS − (φ + µ)S − εL + γS
1+kS

+ (φ + µ)S
∣∣∣

+
∣∣∣ γS

1+kS + φS − µR − γS
1+kS

− φS + µR
∣∣∣

≤ l1
∣∣I − I

∣∣+ l2
∣∣L − L

∣∣+ l3
∣∣S − S

∣∣+ l4
∣∣R − R

∣∣
≤ L

∥∥(I, L, S, R)−
(

I, L, S, R
)∥∥

≤ L
∥∥X − X

∥∥,

where
L = max(l1, l2, l3, l4),

l1 = 2β
δ + µ,

l2 = 2ε + µ,

l3 = 2γ
k + 2φ + µ,

l4 = µ.

Hence, H(X) satisfies the Lipschitz condition with each initial condition
X(0) = (I0, L0, S0, R0), ∀t ≥ 0. The proposed fractional-order ILSR model always has
a unique solution. □

The variables R(t) absent among the initial three equations can be simplified by
reducing Model (5) as follows:

C
0 Dα

t I(t) = Λ − βI(t)S(t)e−mS(t)

1+δS(t) − µI(t),

C
0 Dα

t L(t) = βI(t)S(t)e−mS(t)

1+δS(t) − εL(t)− µL(t),

C
0 Dα

t S(t) = εL(t)− γS(t)
1+kS(t) − φS(t)− µS(t).

(10)

4. Analysis of the Model

This section presents the stability results of Model (10). Firstly, rumor-demise equi-
librium E0 and rumor-permanence equilibrium E∗ are considered. And then, R0 is used
to represent the basic reproduction number. Lastly, the local stability for both equilibria
is analyzed. According to the next-generation matrix method [54], we derive the basic
reproduction number R0 for Model (10) using the matrices F1 and V1, which stand for the
transmission part. If Q = (I, L, S)T , the original equation can be reformulated as follows:

dQ
dt

= F1(x)− V1(x),
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where

F1 =

 βI(t)S(t)e−mS(t)

1+δS(t)
0
0

,

V1 =


(ε + µ)L(t)[

γ
1+kS(t) + φ + µ

]
I(t)− εL(t)(

βS(t)e−mS(t)

1+δS(t) + µ

)
I(t)− Λ

.

On differentiation (10), the F2 and V2 yield the following expression:

F2 =

0 βIe−mS [(1−mS)(1+δS)−δS]
(1+δS)2

βS
1+δS

0 0 0
0 0 0

,

V2 =


ε + µ 0 0
−ε γ

(1+kS)2 + φ + µ 0

0 βIe−mS [(1−mS)(1+δS)−δS]
(1+δS)2

βS
1+δS + µ

.

The Jacobian matrices of F2 and V2 are obtained at the rumor-demise equilibrium E0:

F0
2 = F2

(
E0) =

 0 βI0 0
0 0 0
0 0 0

,

V0
2 = V2

(
E0) =

 ε + µ 0 0
−ε γ + φ + µ 0
0 βI0 µ

.

Therefore, the R0 considered as the spectral radius of F0
2
(
V0

2
)−1 is obtained as follows:

R0 =
βεΛ

µ(ε + µ)(γ + φ + µ)
.

It is clear that saturated incidence, media reports, and nonlinear inhibition mechanisms
have no impact on the value of R0.

Theorem 4. The rumor-demise equilibrium E0 is considered to be locally asymptotically stable if
R0 < 1 and R0 > 1 becomes unstable.

Proof. The main purpose of the investigation is to assess the stability criterion at E0. The
general Jacobian matrix of Model (10) is calculated as follows:

E0 =


− βSe−mS

1+δS − µ 0 − βIe−mS [(1−mS)(1+δS)−δS]
(1+δS)2

βSe−mS

1+δS −(ε + µ)
βIe−mS [(1−mS)(1+δS)−δS]

(1+δS)2

0 ε − γ

(1+kS)2 − φ − µ

,

After substituting the rumor-demise equilibrium point E0 in the Jacobian matrix, we
obtain the following expression:
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J
(

E0
)
=

−µ 0 − βΛ
µ

0 −(ε + µ)
βΛ
µ

0 ε −(γ + φ + µ)

.

The eigenvalues can be obtained by solving the characteristic equation of the Jacobian
matrix E0, which is given by the following expression:

det
(

J
(

E0
)
− λI

)
= 0, (11)

This gives the following equation:

(λ + µ)
(

λ2 + (2µ + ε + γ)λ + (ε + µ)(γ + φ + µ)(1 − R0)
)
= 0. (12)

For R0 < 1, all the three eigenvalues of J
(
E0) have negative real parts. If R0 > 1,

two eigenvalues of E0 have negative real parts, while one eigenvalue exhibits a positive
real part. Therefore, by utilizing the Routh–Hurwitz criteria [55], it can be concluded that
all solutions of Equation (12) possess negative real parts and meet the given condition
|arg(λ)| > απ

2 . Consequently, according to Definition 2, the rumor-demise equilibrium E0

of the rumor exhibits local asymptotic stability. If R0 > 1, Equation (12) has a positive real
root. Therefore, in accordance with Definition 2.6, E0 is unstable. □

Theorem 5. The rumor-permanence equilibrium E∗ is locally asymptotically stable under the
condition of R0 > 1.

Proof. At the rumor-permanence equilibrium point E∗, the Jacobian matrix is obtained
as follows:

J(E∗) =


− βS∗e−mS∗

1+δS∗ − µ 0 − βI∗e−mS∗ [(1−mS∗)(1+δS∗)−δS∗ ]

(1+δS∗)2

βS∗e−mS∗

1+δS∗ −(ε + µ)
βI∗e−mS∗ [(1−mS∗)(1+δS∗)−δS∗ ]

(1+δS∗)2

0 ε − γ

(1+kS∗)2 − φ − µ

.

The characteristic equation can be expressed as follows:

det(J(E∗)− λI) = 0. (13)

Furthermore, it could be depicted as follows:

λ3 + L1λ2 + L2λ + L3 = 0, (14)

where the coefficients L1, L2, L3 are as follows:

L1 = 3µ + ε + φ + βS∗e−mS∗

1+δS∗ + γ

(1+kS∗)2 > 0,

L2 = (ε + µ)

(
µ + φ + γ

(1+kS∗)2

)(
1 + βS∗e−mS∗

1+δS∗

)
+ βεI∗e−mS∗ [(1−mS∗)(1+δS∗)−δS∗ ]

(1+δS∗)2 ,

L3 =

(
µ + 2βS∗e−mS∗

1+δS∗

)
βεI∗e−mS∗ [(1−mS∗)(1+δS∗)−δS∗ ]

(1+δS∗)2 .

(15)

By a direct calculation, if L2 > 0, L3 > 0 and L1L2 − L3 > 0, it adheres to the Routh–
Hurwitz criterion and satisfies the condition |arg(λi)| > απ

2 , i = 1, 2, 3. All solutions to
Equation (15) exhibit a negative real part according to Definition 3. □
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Theorem 6. If R0 < 1 and Condition (6) is satisfied, then the rumor-demise equilibrium E0 of
Model (10) is globally asymptotically stable.

Proof. From Model (10), we can derive the following conditions: E0 =
(

Λ
µ , 0, 0

)
. Now, the

fractional-order Lyapunov function is considered as

P(t) =
(

I − I0 − I0 ln
I
I0

)
+ L(t) + S(t), (16)

where, I0 = Λ
µ .

The differentiation of Equation (16) with respect to Model (10) can be expressed
as follows:

C
0 Dα

t P(t) =
(

1 − I0
I

)
C
0 Dα

t I(t) + C
0 Dα

t L(t) + C
0 Dα

t S(t)

≤
(

1 − I0
I

)(
µI0 − βISe−mS

1+δS − µI
)
+ βISe−mS

1+δS − εL − µL

+εL − γS
1+kS − φS − µS

≤ −µI
(

1 − I0
I

)2
+ βI0Se−mS

1+δS − µL −
(

γ
1+kS + φ + µ

)
S,

Now, it can be observed from above that if βI0Se−mS

1+δS ≤ µL +
(

γ
1+kS + φ + µ

)
S, then

C
0 Dα

t L(t) ≤ 0. Therefore, according to Lassalle’s invariance principle [56], the rumor-demise
equilibrium E0 of Model (10) is globally asymptotically stable when R0 < 1. □

5. Fractional Optimal Control of the Model

The objective of this section is to devise a control strategy for regulating the dissemi-
nation of fractional rumors. The primary purpose of fractional optimal control is to reduce
the relative density of spreading rumors. In the meantime, it is imperative to take into
account the management of expenses in the actual situation. In view of this, we present a
suggested approach for effectively managing System (5.9), which can be evaluated through
the application of Pontryagin’s maximum principle [57]. Hence, Model (5) represents the
model that includes the control mechanism as follows:

C
0 Dα

t I(t) = Λ − βI(t)S(t)e−mS(t)

1+δS(t) − µI(t),

C
0 Dα

t L(t) = βI(t)S(t)e−mS(t)

1+δS(t) − (ε + µ + u1(t))L(t),

C
0 Dα

t S(t) = εL(t)−
(

γ
1+kS(t) + φ + µ + u2(t)

)
S(t),

C
0 Dα

t R(t) = γS(t)
1+kS(t) + φS(t)− µR(t) + u1(t)L(t) + u2(t)S(t).

(17)

where u1(t) and u2(t) signify the influence of education or network management on the
rumor propagation. The average cost of controlling and educating for L(t) and S(t) is
employed by ψi and ϕi(i = 1, 2). The expected period is [0, T]. The objective function of
the optimal control is established as follows:

J(u1(t), u2(t)) =
∫ T

0

[
ψ1L(t) + ψ2S(t) + ϕ1u2

1(t) + ϕ2u2
2(t)

]
dt. (18)

The feasible region of u1(t) and u2(t) is as follows:

U{ (u1(t), u2(t))|0 ≤ u1(t) ≤ umax
1 , 0 ≤ u2(t) ≤ umax

2 , t ∈ (0, T]}
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where umax
1 < 1 and umax

2 < 1 are the upper bound of u1(t) and u2(t), respectively.
Optimal control u∗

1 and u∗
2 meet J

(
u∗

1 , u∗
2
)
= min{J(u1(t), u2(t)) : (u1(t), u2(t)) ∈ U}. The

most effective measures to reduce the transmission of the rumor while minimizing expenses
are obtained.

Therefore, the following Lagrangian function is defined as follows:

L(L(t), S(t), u1(t), u2(t)) = ψ1L(t) + ψ2S(t) + ϕ1u2
1(t) + ϕ2u2

2(t) (19)

The definition of the Hamiltonian function is as follows:

H
(

L(t), S(t), R(t), ui(t), λj(t)
)

= L(L(t), S(t), u1(t), u2(t))

+λ1(t)
{

Λ − βI(t)S(t)e−mS(t)

1+δS(t) − µI(t)
}

+λ2(t)
{

βI(t)S(t)e−mS(t)

1+δS(t) − (ε + µ + u1(t))L(t)
}

+λ3(t)
{

εL(t)−
(

γ
1+kS(t) + φ + µ + u2(t)

)
S(t)

}
+λ4(t)

{
γS(t)

1+kS(t) + φS(t)− µR(t) + u1(t)L(t) + u2(t)S(t)
}

.

(20)

where i = 1, 2 and j = 1, 2, 3, 4. By utilizing Pontryagin’s maximum principle, we are able
to establish the following theorem.

Theorem 7. Consider I∗, L∗, S∗, and R∗ as the state solutions that yield optimal state solu-
tions, along with their respective optimal controls

(
u∗

1 , u∗
2
)

for the optimal control Problem (17).
Then, there exist the adjoint variables λ1(t), λ2(t), λ3(t) and λ4(t) that meet the given conditions
as follows:

C
0 Dα

t λ1(t) = λ1(t)
(

βS(t)e−mS(t)

1+δS(t) + µ

)
− λ2(t)

βS(t)e−mS(t)

1+δS(t) ,

C
0 Dα

t λ2(t) = −ψ1 − λ2(t)(ε + µ + u1(t))− λ3(t)ε − λ4(t)u1(t),

C
0 Dα

t λ3(t) = −ψ2 + λ1(t)βe−mS(t) I(t)
[
(1−mS(t))(1+δS(t))−δS(t)e−mS(t)

(1+δS(t))2

]
−λ2(t)βe−mS(t) I(t)

[
(1−mS(t))(1+δS(t))−δS(t)e−mS(t)

(1+δS(t))2

]
+λ3(t)

(
γ

(1+kS(t))2 + φ + µ + u2(t)
)
− λ4(t)

(
γ

(1+kS(t))2 + φ + u2(t)
)

,

C
0 Dα

t λ4(t) = λ4(t)µ.

(21)

with the transversality conditions λj(t) for j = 1, 2, 3, 4. The optimal controls u∗
1 and u∗

2 are
given by the following expression:

u∗
1 = min

{
max

{
(λ2−λ4)L∗

2ϕ1
, 0
}

, umax
1

}
,

u∗
2 = min

{
max

{
(λ3−λ4)S∗

2ϕ2
, 0
}

, umax
2

}
.

(22)

Proof. By applying Pontryagin’s maximum principle [57] and denoting I(t) = I∗, L(t) =
L∗, S(t) = S∗ and R(t) = R∗, we derive the following adjoint equation:



Symmetry 2024, 16, 602 12 of 21



C
0 Dα

t λ1(t) = − ∂H(t)
∂I(t) = λ1(t)

(
βS(t)e−mS(t)

1+δS(t) + µ

)
− λ2(t)

βS(t)e−mS(t)

1+δS(t) ,

C
0 Dα

t λ2(t) = − ∂H(t)
∂L(t) = −ψ1 − λ2(t)(ε + µ + u1(t))− λ3(t)ε − λ4(t)u1(t),

C
0 Dα

t λ3(t) = − ∂H(t)
∂S(t) = −ψ2 + λ1(t)βe−mS(t) I(t)

[
(1−mS(t))(1+δS(t))−δS(t)e−mS(t)

(1+δS(t))2

]
−λ2(t)βe−mS(t) I(t)

[
(1−mS(t))(1+δS(t))−δS(t)e−mS(t)

(1+δS(t))2

]
+λ3(t)

(
γ

(1+kS(t))2 + φ + µ + u2(t)
)
− λ4(t)

(
γ

(1+kS(t))2 + φ + u2(t)
)

,

C
0 Dα

t λ4(t) = − ∂H(t)
∂R(t) = λ4(t)µ.

Based on the optimality condition, the differentiation of Equation (20) in relation to
u1(t) and u2(t) is obtained as follows:

∂H(t)
∂u1(t)

∣∣∣
u1(t)=u∗

1

= 2ϕ1u∗
1 − λ2(t)L∗ + λ4(t)L∗ = 0,

∂H(t)
∂u2(t)

∣∣∣
u2(t)=u∗

2

= 2ϕ2u∗
2 − λ3(t)S∗ + λ4(t)S∗ = 0,

(23)

The optimal control is then obtained as follows:

u∗
1 =

(λ2(t)− λ4(t))L∗

2ϕ1
, u∗

2 =
(λ3(t)− λ4(t))S∗

2ϕ2
. (24)

By combining the attributes of a bounded set U, the intervals of u∗
1 and u∗

2 are obtained
as follows:

u∗
1 = min

{
max

{
(λ2−λ4)L∗

2ϕ1
, 0
}

, umax
1

}
,

u∗
2 = min

{
max

{
(λ3−λ4)S∗

2ϕ2
, 0
}

, umax
2

}
.

(25)

□

6. ILSR Rumor Model with Fractional Stochastic

Due to the inherent volatility that occurs during times of crisis, rapid changes in gov-
ernment policies and media coverage may occur. Various noise environments unavoidably
affect the propagation of rumors. A crucial component of Brownian motion is symmetry.
Zhang et al. applied significant discoveries that came from using the symmetry approach to
backward stochastic differential equations [58]. As far as we know, there are few mathemati-
cal models of rumor propagation considering both fractional-order operators and stochastic
processes simultaneously. Now, white noise is added to the rightmost side of each equation
in the Fractional-Order System (5) to transform it into a Fractional Stochastic System. We
consider all of the modeling equations in Model (5) and integrate white noise terms that
exhibit Wiener process features in the modified fractional-order stochastic ILSR model.
These modifications can render modeling equations that describe rumor propagation with
significantly more precision, as shown below:

C
0 Dα

t I(t) = Λ − βI(t)S(t)e−mS(t)

1+δS(t) − µI(t) + σ1µI(t) dB1(t)
dt ,

C
0 Dα

t L(t) = βI(t)S(t)e−mS(t)

1+δS(t) − εL(t)− µL(t) + σ2µL(t) dB2(t)
dt ,

C
0 Dα

t S(t) = εL(t)− γS(t)
1+kS(t) − φS(t)− µS(t) + σ3µS(t) dB3(t)

dt ,

C
0 Dα

t R(t) = γS(t)
1+kS(t) + φS(t)− µR(t) + σ4µR(t) dB4(t)

dt ,

(26)
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where σi, i = 1, 2, 3, 4 are the non-negative values of the intensities of Brownian motions;
Bi(t), i = 1, 2, 3, 4 are white noise processes.

The fractional-order Lyapunov stability method can be employed to examine Model
(26) for fractional stochastic stability at the rumor-demise equilibrium point E0 as follows:

I(t)C
0 Dα

t I(t) + L(t)C
0 Dα

t L(t) + S(t)C
0 Dα

t S(t) + R(t)C
0 Dα

t R(t)

= ΛI(t)− βI2(t)S(t)e−mS(t)

1+δS(t) − µI2(t) + σ1µI2(t) dB1(t)
dt + βI(t)S(t)L(t)e−mS(t)

1+δS(t)

−εL2(t)− µL2(t) + σ2µL2(t) dB2(t)
dt + εL(t)S(t)− φS2(t)− γS2(t)

1+kS(t) − µS2(t)

+σ3µS2(t) dB3(t)
dt + φS(t)R(t) + γS(t)R(t)

1+kS(t) − µR2(t) + σ4µR2(t) dB4(t)
dt .

= ΛI(t) + βI(t)S(t)L(t)e−mS(t)

1+δS(t) + I2(t)
[
− βS(t)e−mS(t)

1+δS(t) − µ + σ1µ
dB1(t)

dt

]
+L2(t)

(
−ε − µ + σ2µ

dB2(t)
dt

)
+ εL(t)S(t) + S2(t)

(
−φ − γ

1+kS(t) − µ + σ3µ
dB3(t)

dt

)
+φS(t)R(t) + + γS(t)R(t)

1+kS(t) + R2(t)
(
−µ + σ4µ

dB4(t)
dt

)
≤ 0.

The fractional stochastic Model (26) is stable at 0 under the following conditions:

− βS(t)e−mS(t)

1+δS(t) − µ + σ1µ
dB1(t)

dt ≤ 0,

−ε − µ + σ2µ
dB2(t)

dt ≤ 0,

−φ − γ
1+kS(t) − µ + σ3µ

dB3(t)
dt ≤ 0,

−µ + σ4µ
dB4(t)

dt ≤ 0.

(27)

The main aim of this section is to demonstrate the combination of white noise and
fractional-order operators and evaluate the performance of the resulting model.

7. Sensitivity Analysis and Numerical Simulation
7.1. Sensitivity Analysis

In this section, we will analyze the sensitivity of the parameters in the fractional rumor
model. The following conditions are satisfied

Aβ = β
R0

∂R0
∂β = 1 > 0,

Aε =
ε

R0

∂R0
∂ε = µ2(γ+φ+µ)

ε(ε+µ)
> 0,

Aγ = γ
R0

∂R0
∂γ = − µγ(ε+µ)

γ+φ+µ < 0,

Aσ = φ
R0

∂R0
∂φ = − µφ(ε+µ)

γ+φ+µ < 0,

(28)

In conclusion, β and ε are sensitive, and all the remaining parameters with the repro-
duction number are not sensitive. Sensitivity analysis shows that it is possible to reduce
the rumor contact rate β and transfer rate ε, thus lowering the value of R0.

7.2. Numerical Simulation

The MATLAB program is used in this section and the fractional Euler method is
applied to investigate the behavior of fractional-order differential equations. The version of
MATLAB is R2021a. The fractional Euler method [59] is employed to solve fractional-order
differential equations and obtain discretized equations, as described below:
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I
(
tp
)
= I(t0) +

hα

Γ(α+1)

p−1
∑

j=0
cj,p

[
Λ − βI(tj)S(tj)

1+bS(tj)
− δI(tj)M(tj)

k+M(tj)
− (η + µ)I

(
tj
)]

,

S
(
tp
)
= S(t0) +

hα

Γ(α+1)

p−1
∑

j=0
cj,p

[
βI(tj)S(tj)
1+bS(tj)

+
δI(tj)M(tj)

k+M(tj)
− (γ + ε + µ)S

(
tj
)]

,

C
(
tp
)
= C(t0) +

hα

Γ(α+1)

p−1
∑

j=0
cj,p

[
γS

(
tj
)
− (ω + µ)C

(
tj
)]

,

R
(
tp
)
= R(t0) +

hα

Γ(α+1)

p−1
∑

j=0
cj,p

[
η I

(
tj
)
+ εS

(
tj
)
+ ωC

(
tj
)
− µR

(
tj
)]

,

M
(
tp
)
= M(t0) +

hα

Γ(α+1)

p−1
∑

j=0
cj,p

[
m0 + ρM

(
tj
)
− ξM

(
tj
)]

,

for p = 1, 2, . . . , N where the cj,p = (p − j)α − (p − 1 − j)α. The fractional Euler method
is employed for the subsequent numerical solutions of the fractional-order differential
equations.

In Refs. [6,15], the initial conditions are used to define Λ = 0.3, β = 0.1, δ = 0.1,
m = 0.1, µ = 0.2, ε = 0.2, γ = 0.01, k = 1, φ = 0.02, and the different derivative order
0 < α ≤ 1. The basic reproduction number is R0 = 0.33 < 1. Figure 3 presents de-
pictions of the evolution of (a) Ignorants, (b) Latents, (c) Spreaders, and (d) Removers
in a rumor-eliminating case for Model (5). In this case, the order of the derivative is
given by α = 0.65, 0.75, 0.85, 0.95, 1. The initial number of individuals is provided by
(I0, L0, S0, R0) = (8500, 1000, 500, 0). The graphs provide evidence of the convergence of
the solutions toward the analytical steady-state solution of the system in the rumor-demise
case in Figure 3. With the decrease in the order α, the convergence rate of the rumor
propagation curve slows down and eventually tends to stabilize, which shows the memory
effect. From the perspective of public opinion transmission, it suggests that such rumors
tend to persist for a longer duration. Further, it exhibits abnormal propagation at a lower
order α, which is characterized by an explosively fast spread in the initial stage and a slower
spread in the subsequent stage in Figure 3c. When the order is α = 1, the fractional-order
differential equation is converted into an integer-order one, which leads to the absence of
the memory effect.
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Figure 3. Dynamic behavior around the rumor-demise equilibrium E0 for (a) I(t), (b) L(t), (c) S(t),
(d) R(t).

The initial parameters are given with the parameters Λ = 2, β = 0.08, δ = 0.1,
m = 0.1, µ = 0.1, ε = 0.2, γ = 0.1, k = 0.1, φ = 0.02, and for varying degrees of derivative
order 0 < α ≤ 1. The calculation result of the basic reproduction number is R0 = 4.60 > 1.
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The initial number of individuals are determined using the same settings as above. The
results obtained from simulating the spread of rumors are shown in Figure 4. The different
convergence rates of rumor propagation depend on the value of the order α. The larger
the order α, the more rapidly the curve approaches stability in the rumor-permanence case.
Therefore, continuous and timely popularization of scientific knowledge and refutation of
rumors are necessary to suppress rumors.
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Figure 4. Stability of the rumor propagation equilibrium E∗ for (a) I(t), (b) L(t), (c) S(t), (d) R(t).

The factor of media reports affects System (5) with different m for α = 0.95 in Figure 5.
Other parameters are shown as mentioned above, R0 = 0.33 and R0 = 4.60. Obviously, the
larger the value of parameter m, the smaller the peak value of rumor-spreading. This implies
that the higher the level of media reports, the wider the range of influence on rumor propa-
gation. The media reports, whether in the rumor-demise case or the rumor-permanence
case, can effectively suppress rumor propagation by spreading effective refutations and
popularizing scientific knowledge.
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Figure 5. Evolutions of S(t) with different m for α = 0.95 with (a) E0 and (b) E∗.

The factor of the nonlinear inhibition mechanism in System (5) with different k for
α = 0.95 is shown in Figure 6. Other parameters are the same as mentioned above,
R0 = 0.33 and R0 = 4.60. It can be inferred that the larger k is, the higher the peak value
of Spreaders S(t) tends to be both in the rumor-demise case and the rumor-permanence
case. Hence, we can adjust the parameter k to minimize the impacts of rumor propagation,
especially in the rumor-permanence case in Figure 6b.
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Figure 6. Different k values with the nonlinear inhibition mechanism for α = 0.95 with (a) E0 and
(b) E∗.

To demonstrate the validity of optimal control, we selected the same parameters as
mentioned above, R0 = 0.33 and R0 = 4.60. As illustrated in Figure 7, which shows
the evolutions of rumor under various control strategies, we find that the evolutions of
Spreaders who are under control, u1 ̸= 0, u2 ̸= 0, are significantly greater than those
without control and those with single control, u1 ̸= 0 or u2 ̸= 0, respectively. Furthermore,
while System (5) was under control, the rumor was also dispelled quickly even for α = 0.95
as shown in Figure 7a, incorporating the memory effect. This indicates that properly
optimized controls can effectively restrict rumor propagation.
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For the numerical simulation of the Fractional Stochastic System (26), the value of the
parameter is defined in Figure 3. Rumor-demise equilibrium E0 of the Model (5) exhibits
both local and global asymptotic stability in the deterministic part. All parameters are de-
noted as mentioned above, R0 = 0.33. It considers σ1 = σ2 = σ3 = σ4 = 6.2 to be the values
of the white noise intensities. Figure 8a shows that the Fractional Stochastic System (26) is
unstable at the rumor-demise equilibrium point. Additionally, if σ1 = σ2 = σ3 = σ4 = 0.8,
then Figure 8b shows that the Fractional Stochastic System (26) is asymptotically mean-
square stable around the rumor-demise point. The numerical simulation of the Fractional
Stochastic System (26) indicates that the system will stay stable as long as the intensities of
the minor fluctuations stay below a certain threshold value. In contrast, the system becomes
unstable if the intensities exceed a certain threshold value, even though it is originally
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stable, which is consistent with Ref. [60]. Therefore, external disturbances play a significant
role in rumor propagation as they might alter its stability.
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Figure 8. ILSR rumor propagation model with the fractional stochastic system for α = 0.95.

The comparison model takes into account the ILSR model without considering the
saturated incidence, media reports, and nonlinear inhibition mechanism while keeping
other parameters unchanged. Refs. [51,52] refers to this as classical ILSR. From Figure 9, we
can easily observe the evolutions of S(t) and R(t) over time when it satisfies R0 = 0.33 < 1,
α = 0.95. The solid red line and the solid blue line depicted in Figure 9a are compared in
Figure 9. The peak value of Spreaders and Removers in ILSR is lower compared to that
in classical ILSR. Namely, the scale of rumor propagation has decreased significantly. The
presence of media reports and nonlinear inhibition mechanisms can significantly affect the
scale of rumor propagation, which is consistent with the above conclusions.

Symmetry 2024, 16, x FOR PEER REVIEW 22 of 26 
 

 

 

Figure 8. ILSR rumor propagation model with the fractional stochastic system for 0.95. =  

The comparison model takes into account the ILSR model without considering the 

saturated incidence, media reports, and nonlinear inhibition mechanism while keeping 

other parameters unchanged. Ref. [51,52] refers to this as classical ILSR. From Figure 9, 

we can easily observe the evolutions of ( )S t   and ( )R t   over time when it satisfies 

0R =0.33 1, 0.95. =  The solid red line and the solid blue line depicted in Figure 9a 

are compared in Figure 9. The peak value of Spreaders and Removers in ILSR is lower 

compared to that in classical ILSR. Namely, the scale of rumor propagation has decreased 

significantly. The presence of media reports and nonlinear inhibition mechanisms can sig-

nificantly affect the scale of rumor propagation, which is consistent with the above con-

clusions. 

 

Figure 9. Evolutions of (a) S(t), (b) R(t) with the ILSR and the classical ILSR models for α = 0.95.



Symmetry 2024, 16, 602 18 of 21

Finally, a model application in an actual situation is presented to verify the model that
has been suggested. We examine the platforms of WeChat, MicroBlog, and Network Media
about “Tesla’s booth at the Shanghai Auto Show is suspected to be a drive’s right” [61] as
the data source for simulation. Then, the number of rumor propagations for a period of
200 h between 20 April to 23 April is fetched. All parameters are denoted as mentioned
above, R0 = 0.33. The appropriate case is fitted to the Model (5) with real data in Figure 10.
The simulation results are consistent with real data, accurately reflecting the evolution of
Spreaders S(t). And the most accurate representation of the rumor spread is α = 0.75. The
results demonstrate that the rumor propagation could be precisely captured, which is quite
consistent with the proposed model.
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8. Conclusions

In this study, the deterministic and stochastic fractional-order ILSR rumor propagate
model incorporating media reports and a nonlinear inhibition mechanism is proposed. The
presence of positive solutions was extensively confirmed, and the equilibrium states were
identified for both the rumor-demise equilibrium and the rumor-permanence equilibrium.
The rumor-demise equilibrium E0 is locally asymptotically stable if R0 < 1. And the
unique rumor-permanence equilibrium E∗ exists under certain conditions and is locally
asymptotically stable if R0 > 1. Moreover, the impact of media reports and the nonlinear
inhibition mechanism are fully discussed. Furthermore, we conducted an examination
of an optimal control strategy for the rumor propagation model. Finally, we confirmed
the previous theoretical investigations by conducting various numerical simulations. It
was confirmed that rumor propagation can be effectively prevented by employing media
reports and control strategies, which lead to a significant improvement in reducing the
risk of rumor-spreading. Then, the deterministic fractional-order system was transformed
into the fractional stochastic system combined with white noise. The investigation focuses
on the dynamic behavior exhibited by the fractional stochastic model around the rumor-
demise equilibrium. The system becomes unstable if the environmental fluctuations are
large enough, even though it is originally stable. Again, introducing the model of classical
ILSR demonstrates the consistency of the above conclusions. Further, combined with real
data, the platform data are used to demonstrate the availability of the proposed model.
In future studies, the effects of time delay and denial may be extended under complex
networks in a fractional-order system.
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