
Citation: Zahra, S.W.; Nadeem, M.;

Arshad, A.; Riaz, S.; Ahmed, W.; Abu

Bakr, M.; Alabrah, A. Emergence of

Novel WEDEx-Kerberotic

Cryptographic Framework to

Strengthen the Cloud Data Security

against Malicious Attacks. Symmetry

2024, 16, 605. https://doi.org/

10.3390/sym16050605

Received: 7 April 2024

Revised: 8 May 2024

Accepted: 8 May 2024

Published: 13 May 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

symmetryS S

Article

Emergence of Novel WEDEx-Kerberotic Cryptographic
Framework to Strengthen the Cloud Data Security
against Malicious Attacks
Syeda Wajiha Zahra 1 , Muhammad Nadeem 2 , Ali Arshad 3,* , Saman Riaz 4 , Waqas Ahmed 5,
Muhammad Abu Bakr 6 and Amerah Alabrah 7

1 Department of Computer Science, National University of Technology, Islamabad 44000, Pakistan;
syeda.wajia786@gmail.com

2 Department of Computer Science, University of Science and Technology Beijing, Beijing 100083, China;
nadeem72g@gmail.com

3 Department of Computing, NASTP Institute of Information Technology, Lahore 58810, Pakistan
4 Department of Computing, Riphah International University, Lahore 54660, Pakistan; samanriaz@hotmail.com
5 Department of Computer Science, Qurtuba University of Science and Technology,

Dera Ismail Khan 29050, Pakistan; waqasahmad9107@gmail.com
6 Department of Electrical Engineering, National University of Technology, Islamabad 44000, Pakistan;

muhammadabubakr@nutech.edu.pk
7 Department of Information Systems, College of Computer and Information Science, King Saud University,

Riyadh 11543, Saudi Arabia; aalobrah@ksu.edu.sa
* Correspondence: alli.arshad@gmail.com

Abstract: Researchers have created cryptography algorithms that encrypt data using a public or
private key to secure it from intruders. It is insufficient to protect the data by using such a key. No
research article has identified an algorithm capable of protecting both the data and the associated
key, nor has any mechanism been developed to determine whether access to the data is permissible
or impermissible based on the authentication of the key. This paper presents a WEDEx-Kerberotic
Framework for data protection, in which a user-defined key is firstly converted to a cipher key using
the “Secure Words on Joining Key (SWJK)” algorithm. Subsequently, a WEDEx-Kerberotic encryption
mechanism is created to protect the data by encrypting it with the cipher key. The first reason for
making the WEDEx-Kerberotic Framework is to convert the user-defined key into a key that has
nothing to do with the original key, and the length of the cipher key is much shorter than the original
key. The second reason is that each ciphertext and key value are interlinked. When an intruder
utilizes the snatching mechanism to obtain data, the attacker obtains data or a key unrelated to the
original data. No matter how efficient the algorithm is, an attacker cannot access the data when these
methods and algorithms are used to protect it. Finally, the proposed algorithm is compared to the
previous approaches to determine the uniqueness of the algorithm and assess its superiority to the
previous algorithms.

Keywords: Kerberos; cryptographic; random seed; cloud computing; cyber security; network attacks

1. Introduction

Nowadays, attackers use sneaky methods to get into cloud networks, in which attack-
ers always identify weaknesses in the infrastructure of the cloud or faults that people make
when using the online service [1]. Cloud providers or users may occasionally commit errors
in configuring their systems, exposing them to potential vulnerabilities [2]. Attackers do
everything possible to gain access to users’ data, including sending fake emails to users that
look like real emails and asking for usernames and passwords [3]. When someone falls for
this trick and enters their information, an attacker can use it to sneak into a cloud account.
Different attacks target the data stored in a cloud network and aim to retrieve, change,

Symmetry 2024, 16, 605. https://doi.org/10.3390/sym16050605 https://www.mdpi.com/journal/symmetry

https://doi.org/10.3390/sym16050605
https://doi.org/10.3390/sym16050605
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com
https://orcid.org/0000-0003-1561-7209
https://orcid.org/0000-0003-3566-7078
https://orcid.org/0000-0003-1842-8040
https://orcid.org/0000-0001-5136-7927
https://orcid.org/0000-0001-9750-3883
https://doi.org/10.3390/sym16050605
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com/article/10.3390/sym16050605?type=check_update&version=2

Symmetry 2024, 16, 605 2 of 28

or destroy it [4]. One typical attack is a “data breach,” in which attackers get access to
confidential data saved in a cloud server [5]. Attackers may employ numerous techniques
to infiltrate a cloud network [6], including trying to decipher passwords or focusing on
vulnerabilities in cloud services. Once attackers access the network, they may acquire
any desired information, which can be used for different purposes, such as identity theft,
economic deception, or other unlawful endeavors [7].

Cloud attacks on enterprises’ networks have become problematic in the digital world [8].
Cybercriminals are constantly developing innovative methods to exploit weaknesses in cloud
settings [9]. When enterprises accidentally expose their data and resources to the public
Internet, misconfiguration of cloud services is one typical attack vector that opens doors
for attackers [10]. Every time a hacker attempts to access data, their initial effort is to get
the original data, for which they make every effort and perform malicious attacks on the
encrypted data. Malicious attacks utilize advanced techniques to break encryption and get
unauthorized access to encrypted data. Malicious attacks include advanced cryptanalysis,
brute force attacks, and fault injection attacks. After obtaining access to the data, the intruder’s
next phase is to transmit the recipient’s destructive data rather than the original data to carry
out unlawful actions across the entire network [11], as illustrated in Figure 1. Organizations
must implement robust security measures and train personnel on best practices to protect
against these constantly developing cloud-based risks as cloud usage rises [12].

Symmetry 2024, 16, x FOR PEER REVIEW 2 of 30

to users that look like real emails and asking for usernames and passwords [3]. When
someone falls for this trick and enters their information, an attacker can use it to sneak
into a cloud account. Different attacks target the data stored in a cloud network and aim
to retrieve, change, or destroy it [4]. One typical attack is a “data breach,” in which attack-
ers get access to confidential data saved in a cloud server [5]. Attackers may employ nu-
merous techniques to infiltrate a cloud network [6], including trying to decipher pass-
words or focusing on vulnerabilities in cloud services. Once attackers access the network,
they may acquire any desired information, which can be used for different purposes, such
as identity theft, economic deception, or other unlawful endeavors [7].

Cloud attacks on enterprises’ networks have become problematic in the digital world
[8]. Cybercriminals are constantly developing innovative methods to exploit weaknesses
in cloud settings [9]. When enterprises accidentally expose their data and resources to the
public Internet, misconfiguration of cloud services is one typical attack vector that opens
doors for attackers [10]. Every time a hacker attempts to access data, their initial effort is
to get the original data, for which they make every effort and perform malicious attacks
on the encrypted data. Malicious attacks utilize advanced techniques to break encryption
and get unauthorized access to encrypted data. Malicious attacks include advanced crypt-
analysis, brute force attacks, and fault injection attacks. After obtaining access to the data,
the intruder’s next phase is to transmit the recipient’s destructive data rather than the
original data to carry out unlawful actions across the entire network [11], as illustrated in
Figure 1. Organizations must implement robust security measures and train personnel on
best practices to protect against these constantly developing cloud-based risks as cloud
usage rises [12].

Figure 1. Data snatching mechanism.

1.1. Cryptography
Cryptography is used to secure communication and protect information from unau-

thorized access or malicious attacks [13]. It entails encrypting data (plaintext) so that only
authorized users may decode it using a specific key or algorithm. The two main types of
cryptographic techniques are symmetric and asymmetric key cryptography [14]. Symmet-
ric cryptography encrypts data using a similar key [15], whereas asymmetric cryptog-
raphy uses two separate keys to encrypt and decrypt data [16]. This paper will develop a
framework in which data are encrypted with a dynamic key while data are decrypted
with a static key called a cipher key. Each encrypted ciphertext key will only work on the
text from which the key is derived.

Figure 1. Data snatching mechanism.

1.1. Cryptography

Cryptography is used to secure communication and protect information from unau-
thorized access or malicious attacks [13]. It entails encrypting data (plaintext) so that
only authorized users may decode it using a specific key or algorithm. The two main
types of cryptographic techniques are symmetric and asymmetric key cryptography [14].
Symmetric cryptography encrypts data using a similar key [15], whereas asymmetric cryp-
tography uses two separate keys to encrypt and decrypt data [16]. This paper will develop
a framework in which data are encrypted with a dynamic key while data are decrypted
with a static key called a cipher key. Each encrypted ciphertext key will only work on the
text from which the key is derived.

1.2. Problem Formulation

Researchers have developed several techniques and machine learning algorithms
to prevent data misuse by attackers. For encoding data, multiple researchers created
static keys with cryptographic methods. Data that have been broadcast over the network
and encrypted by researchers may be retrieved with the use of a static key. Data can be
encapsulated through all these techniques, but such mechanisms are unreliable for cloud
networks. If an attacker uses cryptanalysis, the key can be easily obtained, which is a data

Symmetry 2024, 16, 605 3 of 28

security problem. Malware can be detected with machine learning algorithms, but the data
cannot be saved. These issues of cloud networks have yet to be solved entirely in any paper,
and no reliable mechanism has been developed for cloud networks.

1.3. Proposed Framework

This paper developed a WEDEx-Kerberotic framework to secure data, and various
algorithms are used to secure data and keys. The WEDEx-Kerberotic system is made up
of two different methods, in which the first method is designed for data encryption and
decryption, which is named “WEDEx”. “WEDEx” is made up of different words. The
purpose of creating the WEDEx” algorithm is to provide key-based security for exchanging
and encrypting large-scale data, which is why “WEDEx” is made up of various words
whose full form is “Widely Encrypted Data Exchange”. Another technique is “Kerberotic”,
which is a data security mechanism built from “Kerberos Authentication System”. The
aim of the Kerberotic system is to provide a complete encryption and key authentication
framework. The WEDEx-Kerberotic system aims to develop a framework that thoroughly
performs data encryption, decryption, key generation, and verification phases. Along with
encrypting and decrypting the data, it is also essential to encrypt the key used on the data.
Verification of this key is also necessary when any authentic or inauthentic key is used on
encrypted data. When all processes are carried out in parallel, a framework for the cloud
can be efficient.

Firstly, a user-defined key K[x] will be taken, and then a key K[j] will be obtained by
implementing the SWJK (secure words on joining key) algorithm on the key K[x]. K[x] is
the original key (user-defined key), while K[j] is the key obtained from the SWJK algorithm.
A user-defined key will decrease its length by two times when the SWJK algorithm is
applied to it. The most significant advantage of the SWJK key is that the SWJK key will
be utterly different from the user-defined key. When cryptanalysis is carried out, no value
will be the same, making the cryptanalysis impossible. Applying the SWJK algorithm’s
key to the WEDEx-Kerberotic method will produce a ciphertext. Each text’s value in the
WEDEx-Kerberotic system will be connected to the one after it. If the attacker changes
even one value, all values will be automatically changed, and the attacker will get data that
cannot be easily deciphered and has no relation to the authentic data. The key generated
through the SWJK technique will be saved in the Kerberos system. The Kerberos system
will act as a database authentication system. The user will first send the key they got from
the SWJK method to the Kerberos system in order to decode the data. The Kerberos system
will verify the validity of the SWJK key via the KSS method. After verification of the key’s
validity, the data decryption will automatically use the same key, yielding the plaintext.
The peculiarity of this work is that when such methods and algorithms are employed for
data security, data leakage or breakage will become impossible if the attacker applies any
technique or algorithm to the suggested algorithm.

The remaining paper will be distributed in this manner. In Section 2, the proposed
work will be discussed. The suggested algorithm will be detailed in Section 3. The
suggested work will be appraised in Section 4. In Section 5, we will compare the suggested
work with existing work to see how much better it is. Conclusions and suggestions for
further study are included in Section 6.

2. Related Work

M. A. Al-Shabi [17] integrated several symmetric and asymmetric methods to assess
the effectiveness of various cryptographic algorithms. After gathering the methods, the
uniqueness of each one was evaluated, and it was then debated which method was best for
data security. Researchers determined that when data are encrypted using symmetric algo-
rithms, greater security may be given for the data than asymmetric algorithms. Researchers
also found that symmetric methods are more reliable and efficient than asymmetric ones.

Musa et al. [18] state that man-in-the-middle attacks, in which the attacker does
everything they can to destroy data, constitute the majority of assaults against cloud

Symmetry 2024, 16, 605 4 of 28

networks. To address this issue, researchers originated a hill cipher algorithm that takes
advantage of all practical methods for securing data against man-in-the-middle attacks.
The researchers started with plaintext and applied the standard ASCII table to acquire
ASCII values. Afterward, using Hill cipher methods, researchers used the ASCII values to
create a ciphertext.

Hossain et al. [19] created a data security method by merging three separate processes:
the first was Playfair, the second was stream cipher, and the third was Caesar cipher. The
program first used the Caesar cipher approach and acquired a CT1 ciphertext. Next, the
Playfair method was used for CT1, resulting in the CT2 ciphertext. Ultimately, a ciphertext
was acquired by applying a stream cipher to the cipher values derived from CT2. Each
method in data security utilizes three distinct static keys.

According to Akanksha et al. [20], it is pretty simple for an attacker to obtain the data
once they have obtained the key using cryptanalysis or a key-base assault. To address this
problem, the researchers used a static key on the simple text and spoke about the necessity
of repeating the plaintext if the key is shorter than the plaintext. The researchers generated
a static key using a key generator that used the complete length of the plaintext rather
than using the same key again. Researchers then used this key with the Vigenère cipher
technique to generate a ciphertext.

H. Sun and R. Grishman [21] used several strategies to enhance the security of the
Hill cipher algorithm and created an improved version known as the Hill cipher chain
algorithm. This algorithm is used to secure the primary key. The data were encrypted using
the Hill cipher method after encrypting the main key. This encryption process included
employing a 2x2 matrix structure, resulting in the generation of a ciphertext.

Tan et al. [22] claim that the Ceaser cipher algorithm is readily broken. The researchers
created a hybrid method to address this issue by fusing the best Ceaser cipher and Vigenère
cipher elements. First, raw text was encrypted using the Caesar cipher method. Then, each
character was shifted on a formula. The Caesar cipher algorithm results were then used to
implement the effective Vigenère cipher method, yielding a ciphertext.

Several strategies are available for protecting cloud data from attackers, which, when
utilized appropriately, can preserve data security. The researchers [23] created an effective
solution by combining several ways to address this issue. First, the data were transformed
into a decimal format using an ASCII table. To enhance the amount of encrypted text, a
radix 64-bit algorithm for encryption was applied to encode decimal values. The ciphertext
was then produced using the Hill encryption method. The Hill matrix method was created
to make a key that could be used up to the same plaintext from which it was taken.

Singh and Pandey [24] conducted a comprehensive study of many studies to assess
the issues presented by replay attacks. In addition, they compiled an extensive collection
of techniques, records, and procedures that can be utilized to protect data against replay
attacks. Subsequently, the discussion covered other grounds for replay attacks, such as the
deficiency of security procedures, the utilization of vulnerable design, and the employment
of weak protocols. After conducting a comprehensive analysis of several research articles
and gathering diverse approaches, it was concluded that integrating these techniques into
a cohesive algorithm makes it possible to enhance the security of cloud data and protect it
from replay assaults.

In an extensive review, N. R. Tadapaneni examined several research publications [25]
and elucidated that the absence of an initial degree of security in the infrastructure is the
main factor behind the occurrence of attacks on cloud networks. Researchers emphasized
multiple safety obstacles that could be used to mitigate attacks and fix this issue. Re-
searchers assert that any technology may be divided into two distinct phases. One step
is beneficial for ensuring dependable transmission on the cloud network, while the other
involves the attacker attempting to obstruct the transmission of users. Subsequently, many
strategies and algorithms were integrated and deliberated to ascertain how the intrusion
ratio may be minimized using all effective ways on the cloud server.

Symmetry 2024, 16, 605 5 of 28

Amirreza and Behrouz [26] state that protecting data against replay assaults on a
control system network is complex. To detect and mitigate replay attacks on the control
system network, a linear quadratic Gaussian (LQG) controller system was developed. A
robust network structure was first devised using dropout-packet characteristics via the
Kullback–Leibler divergence algorithm. It was observed that the occurrence of replay
attacks on a cloud network typically results in a larger ratio of successful assaults compared
to the rate at which these attacks are detected.

When content is transmitted over a network of clouds, it may be opened for any node
linked to the network [27]. This means that if someone who is not authorized wants to
intercept and alter the original data packets, they can do so by broadcasting illicit data
packets to nodes on the network. Differentiating between illicit packets and genuine ones is
a difficult task. Replay attacks were carried out using three separate nodes inside a control
area network (CAN) to tackle this problem, and malfunctioning nodes were detected. Two
replay attacks were executed to identify malfunctioning nodes, including the interception
of the entire message, subsequent modification, and dissemination of this altered message
over the network’s entirety. Subsequently, the whole communication was collected and
subsequently disseminated. During the discussion, it was determined that detecting a
partial replay attack message is more uncomplicated than detecting a whole replay attack
message when data are made public in the cloud network.

Researchers developed an application [28] that utilizes intrusion detection systems to
defend the public cloud infrastructure from outside attacks. The framework was initially
designed to ensure the security of the cloud network. Subsequently, the intrusion detection
system identified outside attacks occurring on a cloud network. The subsequent discussion
focused on strategies to safeguard the cloud network against these attacks. The Cloudflare
method, which blocks the attacker’s IP address on a static or dynamic basis, was employed
to defend the cloud network from internal attacks, and it was discussed if every device in
the cloud network was protected. After that, researchers discussed that the attacking rates
can be reduced if these security mechanisms are implemented on the network.

Felix and Isaac [29] developed a triple pass protocol (TPP) method to protect data in
which data were encrypted in three different phases. First, a plaintext was taken, square
matrix encryption was applied to the plaintext, and a ciphertext called ciphertext-1 was
obtained. Subsequently, the Hill matrix algorithm was used to ciphertext-1, and new
results were obtained called ciphertext-2. Ultimately, the ciphertext-2 values were inverted,
resulting in the acquisition of a ciphertext referred to as the original ciphertext. The primary
purpose of developing the triple pass protocol was to provide security in three stages that
could not be broken.

In 2021 [30], researchers created an algorithm known as the Hill matrix. An image was
used as input to accomplish file-based encryption, during which the file was encrypted
and the colors were determined. Before coloring, the image underwent a conversion to
grayscale. After converting the image to grayscale, it was converted to pixels, and then the
conversion was carried out in matrix form. After converting the image to the matrix, the
Hill matrix algorithm was implemented, and the file was encrypted.

In a study [31], Elsaeidy et al. first identified several origins of replay and DDoS
assaults. They then created a deep learning model with a hybrid approach that could
effectively identify attacks inside a smart city environment. After that, researchers discussed
how DDoS attacks send out messages without connecting to any data. Meanwhile, replay
attacks capture the original data and broadcast malicious data instead of the data with the
same infrastructure as the original data. Either kind of attack may harm the cloud server.
Three real-time datasets were used to solve this problem: environmental, smart-soil, and
smart-river datasets. These datasets were implemented on a hybrid deep learning model
and identified the attacks. Following that, it was discussed that replay attacks could not be
easily detected due to the same infrastructure as DDoS attacks because of their behavior.

Multiple algorithms and methods [32] have been devised to protect cloud data against
replay attacks. However, it is essential to note that cloud data are still vulnerable to

Symmetry 2024, 16, 605 6 of 28

such assaults. The researchers developed an effective encryption method to tackle this
problem, which was used to encrypt the raw text data and then upload the encrypted
data to the cloud server. The data were validated at several stages after receiving it, and
the authenticity of the arriving data were identified. After that, the existing work was
compared with the previous work, and it was discussed that the cloud server could be
secured from the attacker if this approach is employed to defend against replay attacks.

Bharath and Rajesh [33] gathered several symmetric and asymmetric cryptography
methods to assess the effectiveness and accuracy of different algorithms. Researchers have
shown that when encryption is performed using symmetric cryptography, a single key is
utilized for encryption and decryption. However, if encryption is performed using asym-
metric key cryptography, two separate keys will be used for encryption and decryption.
Encryption will be performed using one key, while decryption will be performed using
another. Subsequently, many algorithms were gathered, and their performance and effi-
ciency were assessed. The discussion concluded that the symmetric method outperforms
the asymmetric approach in terms of both performance and efficiency.

3. Proposed Algorithm

Three procedures will be devised to preserve and encrypt data from potential intruders.
The first is to develop a customized ASCII table that aims to shift each ASCII value to
different indexes. When the attacker attempts to access the data from the cloud, their
first approach is to employ the Standard ASCII table in their grabbing methods. Using a
customized ASCII table rather than the Standard ASCII table makes it challenging for an
attacker to get ASCII indexation. When the attacker attempts to decode the data using any
method on the cipher data, the attacker will obtain data utterly unrelated to the original
data. A Kerberos system will be developed to implement the customized table and store
the data, which will be discussed in Section 3.2. To protect the cloud data, it is vital to
protect the key associated with it. It does not matter how many secure algorithms are
developed for cloud data. Each algorithm works with a key. Once an attacker has access
to the key, it will be easy for the attacker to gain access to the data, which is a problem.
To solve this problem, the SWJK algorithm will be developed in this paper, which aims to
protect user-defined keys by using the SWJK algorithm, and the key has to be encrypted
with a key of various symbols, numbers, and characters. When such a key is used to protect
data, it will be challenging for an attacker to guess the key or implement cryptanalysis.
The discussion on the SWJK algorithm will be carried out in detail in Section 3.2. Table 1
displays many mathematical notations and their respective meanings.

Table 1. Mathematical Notations.

Notation Meaning

[δ1] Odd indexes
[δ2] Even indexes∮
[m n] m-nth results of SWJK
σ Indexes value that will be a test
* Multiplying values from nth to nth

v [m]
[n]

Concatenation results of
∮

n (s)∫ [p]
[q]

∫
is the positional result of row (p) and

column (q)
γ[r] Concatenation of key-value results.

Concatenation
∈ Belong to
⊥ Dependency

3.1. Customized ASCII Table

The most crucial components for data security against hackers or cryptanalysis assaults
are ASCII values. When attempting to steal data, an attacker always employs predefined

Symmetry 2024, 16, 605 7 of 28

ASCII tables that are advantageous to the attacker. Data security may be considerably
increased when employing a customized ASCII table to store data instead of an ordinary
ASCII table. The data for this research have been stored in a modified ASCII table. Charac-
ters, numbers, and alphanumeric letters are arranged in a randomly generated fashion in a
customized ASCII table. When the values of the provided ASCII table and the customized
ASCII table are in separate indexes, it will be challenging for the attacker to obtain the
customized ASCII table index data. Figure 2 displays a whole ASCII table.

Symmetry 2024, 16, x. https://doi.org/10.3390/xxxxx www.mdpi.com/journal/symmetry

Figure 2. Customized ASCII table.

Figure 2. Customized ASCII table.

3.2. Kerberotic System

Figure 3 depicts the database system (DS) and authentication system (AS) that com-
prise the key distribution system known as the Kerberos system. Whenever a user encrypts
data, all the keys generated by the SWJK algorithm will be automatically saved in the key
database system. All varieties of SWJK keys will be kept in the key database system, which
is a centralized database system. All keys used in data encryption will be checked within
the framework of the authentication system, which is called the key verification system. If
the key is valid, then text decryption will be possible. If the arriving key does not match an
existing key, the data decryption process will not be possible. Data decryption is possible
only when the arriving key matches any one of the keys that are already stored in the
database of the Kerberos system, and the data decryption will be carried out automatically
on the same key that has already been used, whether the arriving key will match with
encrypted text or not. To implement the data decryption process, the key must match the
stored key of the database system. When the key does not match the database, the data
decryption process will not be possible.

Symmetry 2024, 16, x FOR PEER REVIEW 8 of 30

the key must match the stored key of the database system. When the key does not match
the database, the data decryption process will not be possible.

When an arriving key is matched with a key stored in the database system, data de-
cryption is possible whether the key is authentic or inauthentic. However, by not using
the original key, the attacker will get data that is not authentic and will have no relation
to the original data. The main advantage of using such an algorithm would be that the
attacker would not have to match the key repeatedly and could not decipher the decrypted
data. The original key obtained from the SWJK algorithm must be implemented on the
cipher data to get the original data. Otherwise, data decryption will not be possible.

Figure 3. Key distribution system.

Various researchers used different algorithms to protect data from attackers. Some
researchers used user-defined symmetric keys to secure the data. Some researchers have
worked on public and private user-defined keys to protect cloud data. Different symmet-
ric and asymmetric user-defined keys are not the best solution to protect the data entirely
from attackers. Each user uses a key to protect the data, but by guessing this key, an at-
tacker can access the cloud data. When the proposed SWJK algorithm is implemented on
the user-defined key, a new key (cipher key) containing various symbols, numbers, and
characters is obtained. Then, when the data are encrypted with that key, it will be impos-
sible for an attacker to get or access it. The length of the key obtained from the SWJK
algorithm will be much less than the original key, and no snatching, guessing, or crypta-
nalysis mechanism can be used on such a key. Various researchers have used symmetric
or asymmetric keys to secure data. If any algorithm has been developed to protect the key,
then the length of the key has not been reduced with the help of any algorithm. When the
cipher key length is half the user-defined key, no matter how efficiently the algorithm is
developed for key generation, the key cannot be accessible.

When the SWJK algorithm is applied on a user-defined key K[x], a secure key “K[j]”
will be produced. After obtaining the key K[j], the key will be implemented on plaintext
data, and a ciphertext will be obtained. The key “K[j]” will be stored on the KSS of the
Kerberos system, as illustrated in Figure 4. To establish whether the key submitted on the
Kerberos system is legitimate or invalid before attempting to decrypt the data, the user’s
key must first be authenticated. The purpose of an authentication system (AS) is to check
the authenticity of the key. When the user uses the key K[j] for data decryption, the key
will first be transmitted to the encryption system, where the key-matching process will be
carried out with the help of KSS. Data decryption is possible if the arriving key matches
the KSS key. If the arriving key matches the KSS key, but some other data are encrypted
with that KSS key, and when the arriving key is applied to the encrypted data, the user
will get data that has no relation to the original data. The attacker consistently attempts to
get the key, which is why this technique is used. Even after decrypting the encrypted data
using a key obtained through the key-matching mechanism, the attacker cannot access the
original data because that data have no relation to the original data. The advantage of this
will be that the encrypted data will not be attacked and searched repeatedly, which is a
better form of data security.

Figure 3. Key distribution system.

When an arriving key is matched with a key stored in the database system, data
decryption is possible whether the key is authentic or inauthentic. However, by not using
the original key, the attacker will get data that is not authentic and will have no relation
to the original data. The main advantage of using such an algorithm would be that the
attacker would not have to match the key repeatedly and could not decipher the decrypted
data. The original key obtained from the SWJK algorithm must be implemented on the
cipher data to get the original data. Otherwise, data decryption will not be possible.

Various researchers used different algorithms to protect data from attackers. Some
researchers used user-defined symmetric keys to secure the data. Some researchers have
worked on public and private user-defined keys to protect cloud data. Different symmetric

Symmetry 2024, 16, 605 8 of 28

and asymmetric user-defined keys are not the best solution to protect the data entirely from
attackers. Each user uses a key to protect the data, but by guessing this key, an attacker can
access the cloud data. When the proposed SWJK algorithm is implemented on the user-
defined key, a new key (cipher key) containing various symbols, numbers, and characters
is obtained. Then, when the data are encrypted with that key, it will be impossible for an
attacker to get or access it. The length of the key obtained from the SWJK algorithm will be
much less than the original key, and no snatching, guessing, or cryptanalysis mechanism
can be used on such a key. Various researchers have used symmetric or asymmetric keys
to secure data. If any algorithm has been developed to protect the key, then the length of
the key has not been reduced with the help of any algorithm. When the cipher key length
is half the user-defined key, no matter how efficiently the algorithm is developed for key
generation, the key cannot be accessible.

When the SWJK algorithm is applied on a user-defined key K[x], a secure key “K[j]”
will be produced. After obtaining the key K[j], the key will be implemented on plaintext
data, and a ciphertext will be obtained. The key “K[j]” will be stored on the KSS of the
Kerberos system, as illustrated in Figure 4. To establish whether the key submitted on the
Kerberos system is legitimate or invalid before attempting to decrypt the data, the user’s
key must first be authenticated. The purpose of an authentication system (AS) is to check
the authenticity of the key. When the user uses the key K[j] for data decryption, the key
will first be transmitted to the encryption system, where the key-matching process will be
carried out with the help of KSS. Data decryption is possible if the arriving key matches the
KSS key. If the arriving key matches the KSS key, but some other data are encrypted with
that KSS key, and when the arriving key is applied to the encrypted data, the user will get
data that has no relation to the original data. The attacker consistently attempts to get the
key, which is why this technique is used. Even after decrypting the encrypted data using a
key obtained through the key-matching mechanism, the attacker cannot access the original
data because that data have no relation to the original data. The advantage of this will be
that the encrypted data will not be attacked and searched repeatedly, which is a better form
of data security.

Symmetry 2024, 16, x FOR PEER REVIEW 9 of 30

Figure 4. Framework of WEDEx Kerberotic system.

Data decryption will be feasible if K[j] meets KSS. The original data will be decrypted
if the incoming key is equal to the one used to encrypt the data. The data will be decrypted
but will only be authentic if the key is genuine and matches the encrypted data.

SWJK Key Generator Algorithm
The SWJK key generator is an excellent technique for protecting data from intruders.

In this technique, the cipher key is generated using a user-defined key, and then the ci-
phertext is obtained by applying the cipher key to plaintext. It is relatively easy for an
attacker to figure out a username-base key, numeric key, or alphabetic key pattern. A typ-
ical example of this is cryptanalysis data mining. However, obtaining that key will be
complicated when data are encrypted with a cipher key.

The SWJK technique is created to address this issue, which will firstly generate a user-
defined key K[x], as illustrated in Figure 5. “x” refers to the key’s length, which is main-
tained constant in the proposed technique K[7]. Following acquiring the key, K[7] will be
indexed using Equation (1).

[K] = [K0] [K1] [K2] …… [Kp] (1)

As illustrated in Equation (2), the equivalent ASCII value K[n] of each key value will
be determined after indexing the key [K].

K[n] = (AS0[K0]) (AS1[K1) ……. (ASn[Kn]) (2)

(AS0[K0]) indicates that the ASCII of Index [K0] is [AS0]. Similarly, (AS1[K01]) indicates
that the ASCII of Index [K1] is ASCII [AS1]. After obtaining the key K[n] index ASCII val-
ues, the index values will be divided into two sections, the first of which will be odd in-
dexation [δ1] as illustrated in Equation (2.1), and the second, even indexation [δ2] is illus-
trated in Equation (2.2).

Odd Indexes [δ1] = (AS1[K1]) (AS3[K3]) …. (ASx[Kx]) (2.1)

Odd indexation [δ1] will have all the odd values of K[n], which start with [n1] and
end will be on [nx].

EVEN INDEXES [Δ2] = (AS0[K0]) (AS2[K2]) …. (ASYX[KY]) (2.2)

Even indexation [δ2] will contain all even values. Even values start from Index [n0] and
end on [ny]. The SWJK algorithm will be applied to the odd index values [δ1]. In the SWJK al-
gorithm, odd indexation [δ1] values will be obtained, and Equation (3) will be applied to the
values. ∮[m n] (s) = σ* mod [x] (3)

Figure 4. Framework of WEDEx Kerberotic system.

Data decryption will be feasible if K[j] meets KSS. The original data will be decrypted
if the incoming key is equal to the one used to encrypt the data. The data will be decrypted
but will only be authentic if the key is genuine and matches the encrypted data.

SWJK Key Generator Algorithm

The SWJK key generator is an excellent technique for protecting data from intruders. In
this technique, the cipher key is generated using a user-defined key, and then the ciphertext
is obtained by applying the cipher key to plaintext. It is relatively easy for an attacker to
figure out a username-base key, numeric key, or alphabetic key pattern. A typical example

Symmetry 2024, 16, 605 9 of 28

of this is cryptanalysis data mining. However, obtaining that key will be complicated when
data are encrypted with a cipher key.

The SWJK technique is created to address this issue, which will firstly generate a
user-defined key K[x], as illustrated in Figure 5. “x” refers to the key’s length, which is
maintained constant in the proposed technique K[7]. Following acquiring the key, K[7] will
be indexed using Equation (1).

[K] = [K0] [K1] [K2] [Kp] (1)
Symmetry 2024, 16, x FOR PEER REVIEW 11 of 30

Figure 5. SWJK key generator.

Various algorithms (Algorithm 1 to Algorithm 5) have been developed to convert
plaintext to ciphertext, as shown in Figure 6. These algorithms aim to derive a cipher key
from a user-defined key and then use this cipher key on plaintext to encrypt the data.
After that, the data are to be decrypted using the same cipher key. In Algorithm 1, the
SWJK key generator algorithm was developed to convert a user-defined key into a cipher
key. SWJK will convert the user-defined key into a key with a combination of different
numbers, characters, and symbols, and the length of the cipher key will be significantly
reduced to the original key length. Algorithm 2 was used to find the mid-point from
plaintext using a randomized mid-point algorithm. The reason for finding the mid-point
is to interlink the plaintext bits values with each other. A secure data encryption algo-
rithmwass developed in Algorithm 3 to obtain ciphertext from plaintext, cipher key, and
mid-point value. In Algorithm 4, text decryption was performed using a cipher key and
ciphertext. The key generated by the SWJK algorithm (Algorithm 1) is used to decrypt the
ciphertext. After that, the novelty of the key obtained from the SWJK algorithm is deter-
mined, for which cryptanalysis (Kasiski test algorithm) is used on cipher keys in Algo-
rithm 5.

Algorithm 1: SWJK Key Generator
Input: User-Defined Key K[x]
Output: SWJK Key K[j]
1. Input a key K[x] length of 7.
2. Divide the key K[x] into index form.
 [K] = [K0] [K1] [K2] …… [Kp]
3. Convert each index value of [K] into ASCII form.

K[n] = (AS0[K0]) (AS1[K1) ……. (ASn[Kn])
4. Split K[n] indexes into odd [δ1] index and even [δ2] index form.
5. Apply the SWJK algorithm on [δ1] for the values of Index [m] and Index [n].

(a) ∮[m n] (s) = σ* mod [x] on [δ1] values and obtained the values of Index [m] and In-dex [n]
(b) Convert ∮[m n] values into 1x2-matrix form by using the equation ∯[௡][௠] =ቈ∮[೘భ][೙]∮[೘మ][೙]቉

6. Convert Step-4 [δ2] ven-indexes into 2x2-matrix form. ൣδ[ଶ௫ଶ]൧ = ൤ [𝑖] [𝑗][𝑘] [𝑙]൨
7. Sum the values of Step-5(a) with Step-6 by using an equation [𝛾[௥]] = ∫ [௤][௣] + ∯[௡][௠].
8. Convert step-7 [𝛾[௥]] results in 1x4-matrix form.
9. A key K[j] will be obtained.

Figure 5. SWJK key generator.

As illustrated in Equation (2), the equivalent ASCII value K[n] of each key value will
be determined after indexing the key [K].

K[n] = (AS0[K0]) (AS1[K1) (ASn[Kn]) (2)

(AS0[K0]) indicates that the ASCII of Index [K0] is [AS0]. Similarly, (AS1[K01]) indicates
that the ASCII of Index [K1] is ASCII [AS1]. After obtaining the key K[n] index ASCII values,
the index values will be divided into two sections, the first of which will be odd indexation
[δ1] as illustrated in Equation (2a), and the second, even indexation [δ2] is illustrated in
Equation (2b).

Odd Indexes [δ1] = (AS1[K1]) (AS3[K3]) (ASx[Kx]) (2a)

Odd indexation [δ1] will have all the odd values of K[n], which start with [n1] and end
will be on [nx].

Even Indexes [δ2] = (AS0[K0]) (AS2[K2]) (ASyx[Ky]) (2b)

Even indexation [δ2] will contain all even values. Even values start from Index [n0]
and end on [ny]. The SWJK algorithm will be applied to the odd index values [δ1]. In the
SWJK algorithm, odd indexation [δ1] values will be obtained, and Equation (3) will be applied
to the values. ∮

[m n] (s) = σ* mod [x] (3)

In eq (ii), “σ” i[1] and i[3] are the values on which testing will be applied. “i” represents
the index number. “

∮
” is the result of Equation 3. Index [m] will contain the values of the

test-related indexes i[1] and i[3]. First, the first value will be obtained from Index i[1] and
utilized for testing. A second value will be obtained from Index i[3] for testing. The value of
Index [n] will be the Index [5] value used in mod [x].

Symmetry 2024, 16, 605 10 of 28

After getting the two values from Indexes i[1][3] and I [3][5], all values will be trans-
formed using Equation (4) into 1x2-matrix form.

{
[m]
[n] =

[∮
[1][5]∮
[3][5]

]
(4)

After getting the values from Equation (4) index, all values of even indexation [δ2] will
be converted into the 2x2-matrix form[δ[2x2]] with the help of Equation (5).[

δ[2x2]

]
=

[
[i] [j]
[k] [l]

]
(5)

In Equation (5), two rows and two columns are denoted by [2x2], while the indexes
represent the values that result from [δ2] [i][j][k][l]. The result of Equation (5) can also be
expressed as in Equation (6). [

δ[2x2]

]
=

∫ [p]

[q]
(6)

In Equation (6), [p] denotes the length of rows and [q] the length of columns. All values
will be added together, as illustrated in Equation (7), once the results of odd indexation
Equation (4) and even indexes Equation (6) have been obtained.

γ[r] =
∫ [p]

[q]
+
{

[m]
[n] (7)

By rules, we know that the values of γ[r] belong to
∫ [p]
[q] and

v [m]
[n] . So, mathematically

for Equation (8), the following can be said:

[
γ[r]

]
∈

[∫ [p]

[q]

{
[m]
[n]

]
(8)

[γ[r]] is the key generated by the SWJK algorithm. After obtaining the values from [γ[r]],
convert the values of [γ[r]] to 1x4-matrix form. After that, a key K[j] will be obtained. After
generating the key K[j] from the SWJK algorithm, we can say that the SWJK algorithm can
reduce the length of K[x]. If this algorithm is used to generate the key, no one attacker can
guess the key and no one can perform the cryptanalysis attack on the [γ[r]] key. The length
of the original key is K[7], while the length of the text obtained by the SWJK algorithm is
K[4], which means that the length of the SWJK key is twice that of the original key. The key
values generated by the SWJK algorithm [γ[r]] will be different from the original key K[x].

So, mathematically, for Equation (9), the following can be said:

[γ[r]] ⊥K[x] (9)

The length and values of [γ[r]] will be determined by K[x] but the values obtained from
[γ[r]] will be different from K[x]. When the key length of K[x] is longer, then the length of
[γ[r]] will be two times less than the actual key, which makes the SWJK algorithm innovative.

Various algorithms (Algorithms 1–5) have been developed to convert plaintext to
ciphertext, as shown in Figure 6. These algorithms aim to derive a cipher key from a
user-defined key and then use this cipher key on plaintext to encrypt the data. After that,
the data are to be decrypted using the same cipher key. In Algorithm 1, the SWJK key
generator algorithm was developed to convert a user-defined key into a cipher key. SWJK
will convert the user-defined key into a key with a combination of different numbers,
characters, and symbols, and the length of the cipher key will be significantly reduced to
the original key length. Algorithm 2 was used to find the mid-point from plaintext using a
randomized mid-point algorithm. The reason for finding the mid-point is to interlink the
plaintext bits values with each other. A secure data encryption algorithmwass developed

Symmetry 2024, 16, 605 11 of 28

in Algorithm 3 to obtain ciphertext from plaintext, cipher key, and mid-point value. In
Algorithm 4, text decryption was performed using a cipher key and ciphertext. The key
generated by the SWJK algorithm (Algorithm 1) is used to decrypt the ciphertext. After
that, the novelty of the key obtained from the SWJK algorithm is determined, for which
cryptanalysis (Kasiski test algorithm) is used on cipher keys in Algorithm 5.

Algorithm 1: SWJK Key Generator

Input: User-Defined Key K[x]
Output: SWJK Key K[j]

1. Input a key K[x] length of 7.
2. Divide the key K[x] into index form.

[K] = [K0] [K1] [K2] [Kp]
3. Convert each index value of [K] into ASCII form.

K[n] = (AS0[K0]) (AS1[K1) (ASn[Kn])

4. Split K[n] indexes into odd [δ1] index and even [δ2] index form.
5. Apply the SWJK algorithm on [δ1] for the values of Index [m] and Index [n].

(a)
∮

[m n] (s) = σ* mod [x] on [δ1] values and obtained the values of Index [m] and Index
[n].

(b) Convert
∮

[m n] values into 1x2-matrix form by using the equation
v [m]

[n] = [

∮
[m1][n]∮
[m2][n]

]

6. Convert Step-4 [δ2] ven-indexes into 2x2-matrix form.
[
δ[2x2]

]
=

[
[i] [j]
[k] [l]

]
7. Sum the values of Step-5(a) with Step-6 by using an equation [γ [r]

]
=

∫ [p]
[q] +

v [m]
[n] .

8. Convert step-7 [γ [r]

]
results in 1x4-matrix form.

9. A key K[j] will be obtained.
Symmetry 2024, 16, x FOR PEER REVIEW 12 of 30

Figure 6. Algorithm flow of WEDEx-Kerberotic encryption and decryption system.

3.3. WEDEx-Kerberotic Data Encryption System
A system for network authentication called Kerberos is often used to provide trust-

worthy authorization for users and services across unsafe connections, like the Internet.
Kerberos’ primary objective is to provide reliable authentication in a networked context so
that users can securely authenticate their identities to one another without sending sensi-
tive information over the Internet. It uses the key distribution centre (KDC), a dependable
third-party service, and symmetric key cryptography.

The WEDEx-Kerberotic encryption system is created to protect both the data and the
key concurrently since it is not sufficient to secure either the key or the method for protect-
ing the data. To begin, a key K[x] with a length of K[7] will encrypt the data. After that, the
key K[x] will be subjected to the SWJK algorithm to produce the key K[j], whose length will
be K[4], which is two times less than K[x]. After getting the key K[j], the ASCII of plaintext
P[n] and key K[j] will be determined, and both will be converted to Bit [P]. After converting
K[j] and P[n] to Bits [P], both will be XORed with each other with the help of Equation (10).

E = P ⊙ K (10)

After XORing the values, the binary values [E] will be obtained, and then the random-
ized seed mechanism will be implemented on these binary values [E]. The original key K[x]
will be taken for the randomized seed mechanism, and the mid-point of the key will be deter-
mined with the help of the randomized seed mid-point algorithm.

Algorithm 2: Randomized Mid-Point
Input: Key K[x]
Output: Mid-Point
1. Count the key K[x] length.
2. Calculate the total number of key K[x] indexes.

K[x] = K[0] K[1] K[2] …… K[6]
3. Calculate the mid-point value by using the equation

Figure 6. Algorithm flow of WEDEx-Kerberotic encryption and decryption system.

Symmetry 2024, 16, 605 12 of 28

3.3. WEDEx-Kerberotic Data Encryption System

A system for network authentication called Kerberos is often used to provide trust-
worthy authorization for users and services across unsafe connections, like the Internet.
Kerberos’ primary objective is to provide reliable authentication in a networked context so
that users can securely authenticate their identities to one another without sending sensitive
information over the Internet. It uses the key distribution centre (KDC), a dependable
third-party service, and symmetric key cryptography.

The WEDEx-Kerberotic encryption system is created to protect both the data and
the key concurrently since it is not sufficient to secure either the key or the method for
protecting the data. To begin, a key K[x] with a length of K[7] will encrypt the data. After
that, the key K[x] will be subjected to the SWJK algorithm to produce the key K[j], whose
length will be K[4], which is two times less than K[x]. After getting the key K[j], the ASCII
of plaintext P[n] and key K[j] will be determined, and both will be converted to Bit [P]. After
converting K[j] and P[n] to Bits [P], both will be XORed with each other with the help of
Equation (10).

E = P ⊙ K (10)

After XORing the values, the binary values [E] will be obtained, and then the randomized
seed mechanism will be implemented on these binary values [E]. The original key K[x] will
be taken for the randomized seed mechanism, and the mid-point of the key will be determined
with the help of the randomized seed mid-point algorithm.

Algorithm 2: Randomized Mid-Point

Input: Key K[x]
Output: Mid-Point

1. Count the key K[x] length.
2. Calculate the total number of key K[x] indexes.

K[x] = K[0] K[1] K[2] K[6]
3. Calculate the mid-point value by using the equation

[m] = (K[x] + 1)/2
4. IF [m] == [EVEN_INTEGER], THEN

GOTO Step-5
ELSE IF [m]== [ODD_INTEGER], THEN

Apply [m]+=[m]
5. A mid-point value will be obtained.

After finding the randomized seed mid-point [m], [m] will be converted to an 8-bit binary,
and then 4-bit splitting will be carried out to obtain “α” and “β” values. After obtaining the
“α” and “β” values, with the help of Equation (11), secure encrypted text will be produced
in binary form.

L = α E β (11)

A bit-appending mechanism will be applied to all binary values obtained from Equation (11).
In the bit-appending mechanism, the 4 bits of “α” will be merged with the beginning of 4 bits of
the XORed Text [E] to get an 8-bit binary result, as illustrated in Figure 7. Similarly, 4 bits from
the previous text and 4 bits from the next text will be combined to form an 8-bit pair, resulting
in a secure 8-bit binary text. When bits are concatenated, each bit depends on another bit. The
entire ciphertext will be affected if a single value is changed. The unique aspect is that it will
change and impact the whole text. When each value of the text is linked, and the length of
the encrypted text is greater than the original text, the attacker will consider each value as an
encrypted value and try to decrypt the value even though the length of the encrypted text is
not the actual length the original text.

Symmetry 2024, 16, 605 13 of 28

Symmetry 2024, 16, x FOR PEER REVIEW 13 of 30

 [m] = (K[x] + 1)/2
4. IF [m] == [EVEN_INTEGER], THEN

GOTO Step-5
ELSE IF [m]== [ODD_INTEGER], THEN

 Apply [m]+=[m]
5. A mid-point value will be obtained.

After finding the randomized seed mid-point [m], [m] will be converted to an 8-bit binary,
and then 4-bit splitting will be carried out to obtain “α” and “β” values. After obtaining the
“α” and “β” values, with the help of Equation (11), secure encrypted text will be produced
in binary form.

L = α ┼ E ┼ β (11)

A bit-appending mechanism will be applied to all binary values obtained from Equation
(11). In the bit-appending mechanism, the 4 bits of “α” will be merged with the beginning of 4
bits of the XORed Text [E] to get an 8-bit binary result, as illustrated in Figure 7. Similarly, 4
bits from the previous text and 4 bits from the next text will be combined to form an 8-bit
pair, resulting in a secure 8-bit binary text. When bits are concatenated, each bit depends on
another bit. The entire ciphertext will be affected if a single value is changed. The unique
aspect is that it will change and impact the whole text. When each value of the text is linked,
and the length of the encrypted text is greater than the original text, the attacker will con-
sider each value as an encrypted value and try to decrypt the value even though the length
of the encrypted text is not the actual length the original text.

Figure 7. WEDEx-Kerberotic encryption mechanism.

After implementing the bit appending mechanism, the bit appending results will be con-
verted to decimal [D]. ASCII values will be obtained using the formula Y = D + 3 on the deci-
mal [D] result. When this formula is applied, the resulting values [L] will be shifted to the
next 3-values to the original values. When the attacker implements the attacking mechanism
on the data, the attacker will consider the shifted values as the original values and try to
decrypt the data, which will not be the original values. After getting its different values, all

Figure 7. WEDEx-Kerberotic encryption mechanism.

After implementing the bit appending mechanism, the bit appending results will be
converted to decimal [D]. ASCII values will be obtained using the formula Y = D + 3 on the
decimal [D] result. When this formula is applied, the resulting values [L] will be shifted
to the next 3-values to the original values. When the attacker implements the attacking
mechanism on the data, the attacker will consider the shifted values as the original values
and try to decrypt the data, which will not be the original values. After getting its different
values, all the values will be merged, and a text called ciphertext will be obtained. The key
snatching technique cannot be implemented, nor can it be used to compromise the security
of the data when the WEDEx-Kerberotic algorithm is used for data security. The key and
the data are protected simultaneously with the aid of the suggested method, increasing key
and data security.

Algorithm 3: Encryption

Input: Plaintext P[n]
Output: Ciphertext

1. Plaintext P[n] and SWJK key K[j].
2. Convert P[n] and SWJK key K[j] into ASCII form.
3. Convert each value of P[n] and K[j] into an 8-binary value form.
4. Find the random seed [α, β] values using a randomized mid-point Algorithm.
5. Apply bit appending mechanism on “L = α E β.”
6. Convert each bit appending value into decimal [D] form.
7. Apply the value shifting formula “Y = D + 3” in Step 6.
8. Find the ASCII value of [Y].
9. A ciphertext will be obtained.

3.4. WEDEx-Kerberotic Data Decryption System

The WEDEx-Kerberotic technique encrypts the data, which will first be decrypted
using a ciphertext [C]. Each character in ciphertext [C] will be changed into its corresponding
ASCII [D] character. After obtaining the various ASCII values, the bit-reversing process
will be used for each ASCII value, for which the formula Y = D − 3 will be utilized. Each

Symmetry 2024, 16, 605 14 of 28

value will be transformed to an 8-bit binary after being obtained through the bit reversing
mechanism, as illustrated in Figure 8.

Symmetry 2024, 16, x FOR PEER REVIEW 14 of 30

the values will be merged, and a text called ciphertext will be obtained. The key snatching
technique cannot be implemented, nor can it be used to compromise the security of the data
when the WEDEx-Kerberotic algorithm is used for data security. The key and the data are
protected simultaneously with the aid of the suggested method, increasing key and data
security.

Algorithm 3: Encryption
Input: Plaintext P[n]
Output: Ciphertext
1. Plaintext P[n] and SWJK key K[j].
2. Convert P[n] and SWJK key K[j] into ASCII form.
3. Convert each value of P[n] and K[j] into an 8-binary value form.
4. Find the random seed [α, β] values using a randomized mid-point Algorithm.
5. Apply bit appending mechanism on “L = α ┼ E ┼ β.”
6. Convert each bit appending value into decimal [D] form.
7. Apply the value shifting formula “Y = D + 3” in Step 6.
8. Find the ASCII value of [Y].
9. A ciphertext will be obtained.

3.4. WEDEx-Kerberotic Data Decryption System
The WEDEx-Kerberotic technique encrypts the data, which will first be decrypted

using a ciphertext [C]. Each character in ciphertext [C] will be changed into its correspond-
ing ASCII [D] character. After obtaining the various ASCII values, the bit-reversing pro-
cess will be used for each ASCII value, for which the formula Y = D − 3 will be utilized.
Each value will be transformed to an 8-bit binary after being obtained through the bit re-
versing mechanism, as illustrated in Figure 8.

Figure 8. WEDEx-Kerberotic decryption mechanism.

All decimal numbers will be transformed into binary [B] form after being obtained.
After that, a bit’s elimination mechanism will be applied to these bits. The first 4-bit “α” of
the start and 4-bit “β” of the end will be removed with the help of Equation (12).

G = α ┬ E ┬ β (12)

After that, SWJK key K[j] will be taken and converted to ASCII. The binary values [G]
and [J] will then be obtained. [G] is the value that will be obtained from the ciphertext [C]
mechanism, while [J] will be obtained from the SWJK key.

Equation (13) will help implement the XORed mechanism on binary values [B] and
[J], and the results [Q] will be obtained in binary form.

Q = [G] ⊙ [J] (13)

The binary outcome of the XOR will be implemented using a bits pairing technique. To
acquire equal ASCII values, each value derived from binary pairings will be transformed

Figure 8. WEDEx-Kerberotic decryption mechanism.

All decimal numbers will be transformed into binary [B] form after being obtained.
After that, a bit’s elimination mechanism will be applied to these bits. The first 4-bit “α” of
the start and 4-bit “β” of the end will be removed with the help of Equation (12).

G = α E β (12)

After that, SWJK key K[j] will be taken and converted to ASCII. The binary values [G]
and [J] will then be obtained. [G] is the value that will be obtained from the ciphertext [C]
mechanism, while [J] will be obtained from the SWJK key.

Equation (13) will help implement the XORed mechanism on binary values [B] and [J],
and the results [Q] will be obtained in binary form.

Q = [G] ⊙ [J] (13)

The binary outcome of the XOR will be implemented using a bits pairing technique. To
acquire equal ASCII values, each value derived from binary pairings will be transformed
into decimals. The result obtained from the equivalent values will be considered plaintext
P[n]. Figure 8 illustrates a complete decryption mechanism.

Algorithm 4: Decryption

Input: Ciphertext
Output: Plaintext

1. Ciphertext [C]
2. Transform each cipher (C) text value into ASCII (D) format.
3. Apply the bit reversing mechanism “Y = [D] − 3” in Step 2.
4. Convert each value of step-3 [Y] into 8-bit binary form.
5. Apply the bit-elimination mechanism in Step 4.
6. Eliminate the values of “α” and “β” using a randomized seed mechanism.
7. Binary values [G] and [J] will be obtained from Step 6.
8. XOR mechanism “Q = [B] ⊙ [J]” will be applied to binary values.
9. Apply the bit pairing mechanism in Step 8 and obtain Decimal [E] values.
10. Change each decimal [E] value to its corresponding ASCII character.
11. Plaintext P[n].

Symmetry 2024, 16, 605 15 of 28

Algorithm 5: Kasiski Test

Input: Ciphertext
Output: Key Prediction

1. Ciphertext
2. Determine the values of the repeated ciphertext
3. Determine indexes of repeated numbers
4. Calculate the length employing the Kasiski length method

Apply the “Y = Y1 − Yn” formula to calculate the distance between the first and xth values
Determine the greatest common division among all distances

5. Calculate the length of the key using Step 4
6. IF CIPHER_TEXT_LENGTH = = KEY_LENGTH, then go to next step

ELSE (FIND_KEY) and go to step 9

7. Implement the index of coincidence

Jc (Y) = (Favorable cases/Total Possible cases)
Jc (Y) = (Hi/ Tc)

8. Kasiski K
9. key
10. Exit

4. Testing

The derived key of the SWJK method is initially checked to determine the security of
the data and the key. After that, a ciphertext will be produced by applying the key from the
SWJK algorithm to the plaintext.

4.1. SWJK Key Testing

Step 1: First, a key K[x] is taken, illustrated in Figure 9, whose length is K[7].

Symmetry 2024, 16, x FOR PEER REVIEW 15 of 30

into decimals. The result obtained from the equivalent values will be considered plaintext
P[n]. Figure 8 illustrates a complete decryption mechanism.

Algorithm 4: Decryption
Input: Ciphertext
Output: Plaintext
1. Ciphertext [C]
2. Transform each cipher (C) text value into ASCII (D) format.
3. Apply the bit reversing mechanism “Y = [D] − 3” in Step 2.
4. Convert each value of step-3 [Y] into 8-bit binary form.
5. Apply the bit-elimination mechanism in Step 4.
6. Eliminate the values of “α” and “β” using a randomized seed mechanism.
7. Binary values [G] and [J] will be obtained from Step 6.
8. XOR mechanism “Q = [B] ⊙ [J]” will be applied to binary values.
9. Apply the bit pairing mechanism in Step 8 and obtain Decimal [E] values.
10. Change each decimal [E] value to its corresponding ASCII character. 11. Plaintext P[n].
4. Testing

The derived key of the SWJK method is initially checked to determine the security of
the data and the key. After that, a ciphertext will be produced by applying the key from
the SWJK algorithm to the plaintext.

4.1. SWJK Key Testing
Step 1: First, a key K[x] is taken, illustrated in Figure 9, whose length is K[7].

Figure 9. Plaintext.

Step 2: Each K[x] value is converted into index form, as illustrated in Figure 10.

Figure 10. Plaintext indexes.

Step 3: After obtaining the index values of the plaintext, the customized ASCII value of
each index value is obtained, as illustrated in Figure 11.

Figure 11. ASCII values.

Step 4: After getting the ASCII values, all indexes are transformed into even indexes
and odd indexes, as illustrated in Figure 12.

Figure 9. Plaintext.

Step 2: Each K[x] value is converted into index form, as illustrated in Figure 10.

Symmetry 2024, 16, x FOR PEER REVIEW 15 of 30

into decimals. The result obtained from the equivalent values will be considered plaintext
P[n]. Figure 8 illustrates a complete decryption mechanism.

Algorithm 4: Decryption
Input: Ciphertext
Output: Plaintext
1. Ciphertext [C]
2. Transform each cipher (C) text value into ASCII (D) format.
3. Apply the bit reversing mechanism “Y = [D] − 3” in Step 2.
4. Convert each value of step-3 [Y] into 8-bit binary form.
5. Apply the bit-elimination mechanism in Step 4.
6. Eliminate the values of “α” and “β” using a randomized seed mechanism.
7. Binary values [G] and [J] will be obtained from Step 6.
8. XOR mechanism “Q = [B] ⊙ [J]” will be applied to binary values.
9. Apply the bit pairing mechanism in Step 8 and obtain Decimal [E] values.
10. Change each decimal [E] value to its corresponding ASCII character. 11. Plaintext P[n].
4. Testing

The derived key of the SWJK method is initially checked to determine the security of
the data and the key. After that, a ciphertext will be produced by applying the key from
the SWJK algorithm to the plaintext.

4.1. SWJK Key Testing
Step 1: First, a key K[x] is taken, illustrated in Figure 9, whose length is K[7].

Figure 9. Plaintext.

Step 2: Each K[x] value is converted into index form, as illustrated in Figure 10.

Figure 10. Plaintext indexes.

Step 3: After obtaining the index values of the plaintext, the customized ASCII value of
each index value is obtained, as illustrated in Figure 11.

Figure 11. ASCII values.

Step 4: After getting the ASCII values, all indexes are transformed into even indexes
and odd indexes, as illustrated in Figure 12.

Figure 10. Plaintext indexes.

Step 3: After obtaining the index values of the plaintext, the customized ASCII value of
each index value is obtained, as illustrated in Figure 11.

Symmetry 2024, 16, x FOR PEER REVIEW 15 of 30

into decimals. The result obtained from the equivalent values will be considered plaintext
P[n]. Figure 8 illustrates a complete decryption mechanism.

Algorithm 4: Decryption
Input: Ciphertext
Output: Plaintext
1. Ciphertext [C]
2. Transform each cipher (C) text value into ASCII (D) format.
3. Apply the bit reversing mechanism “Y = [D] − 3” in Step 2.
4. Convert each value of step-3 [Y] into 8-bit binary form.
5. Apply the bit-elimination mechanism in Step 4.
6. Eliminate the values of “α” and “β” using a randomized seed mechanism.
7. Binary values [G] and [J] will be obtained from Step 6.
8. XOR mechanism “Q = [B] ⊙ [J]” will be applied to binary values.
9. Apply the bit pairing mechanism in Step 8 and obtain Decimal [E] values.
10. Change each decimal [E] value to its corresponding ASCII character. 11. Plaintext P[n].
4. Testing

The derived key of the SWJK method is initially checked to determine the security of
the data and the key. After that, a ciphertext will be produced by applying the key from
the SWJK algorithm to the plaintext.

4.1. SWJK Key Testing
Step 1: First, a key K[x] is taken, illustrated in Figure 9, whose length is K[7].

Figure 9. Plaintext.

Step 2: Each K[x] value is converted into index form, as illustrated in Figure 10.

Figure 10. Plaintext indexes.

Step 3: After obtaining the index values of the plaintext, the customized ASCII value of
each index value is obtained, as illustrated in Figure 11.

Figure 11. ASCII values.

Step 4: After getting the ASCII values, all indexes are transformed into even indexes
and odd indexes, as illustrated in Figure 12.

Figure 11. ASCII values.

Step 4: After getting the ASCII values, all indexes are transformed into even indexes
and odd indexes, as illustrated in Figure 12.

Symmetry 2024, 16, x FOR PEER REVIEW 16 of 30

Figure 12. Split odd and even index values.

After splitting the values into odd and even indexes, both index values have to be con-
catenated separately.

Odd Indexes [δ1] = [1] [3] [5]

Even Indexes [δ2] = [0] [2] [4] [6]

Step 5: After splitting the values into odd and even indexes, the SWJK algorithm is
implemented on odd indexes [δ1].

Step 5.1: All values of odd indexes are first converted to the index character to identify
parallel values of indexes, and then the equivalent of each value is determined, as illus-
trated in Figure 13.

Figure 13. Indexes parallel values.

Step 5.2: After obtaining the parallel values, Equation 14 will be implemented in step
5.1. ∮[m n] (s) = σ* mod [x] (14)

Where [m] is the ASCII value of Index [1] and Index [3]. Firstly, the Index [1] ASCII
value will be used in the equation to get the result-1. After that, Index [3] ASCII value will
be used in testing 2 by the equation and get the result-2. Index [m] value will be placed in
“σ.” [n] is the static value that will be the same for Index [m] testing. Index [n] will be placed
in “mod[x].” “s” represents several time tests.

Step 5.2.1: First, Index [1] and Index [5] will be tested and will get the first result
value. ∮[1 5] (1) = (227)* mod [6]

= 3…result (i)

Step 5.2.2: After testing the Index [1] and Index [5], Index [3] and Index [5] will be tested
by using Equation (15), and a second result will be obtained. ∮[3 5] (2) = (2)* mod [6]

= 4
(15)

Step 5.2.2: After getting the two values from Index [1][5] and Index [3][5], both results
values will be converted into 1x2 matrix form.

∯[௡][௠] = ൥∮[ଵ][ହ]∮[ଷ][ହ] ሺ1ሻሺ2ሻ൩
= ቂ34ቃ

Step 6: After obtaining the results from odd indexes [δ1], even indexes will be converted
to 2x2-matrix form.

Figure 12. Split odd and even index values.

Symmetry 2024, 16, 605 16 of 28

After splitting the values into odd and even indexes, both index values have to be
concatenated separately.

Odd Indexes [δ1] = [1] [3] [5]

Even Indexes [δ2] = [0] [2] [4] [6]

Step 5: After splitting the values into odd and even indexes, the SWJK algorithm is
implemented on odd indexes [δ1].

Step 5.1: All values of odd indexes are first converted to the index character to identify
parallel values of indexes, and then the equivalent of each value is determined, as illustrated
in Figure 13.

Symmetry 2024, 16, x FOR PEER REVIEW 16 of 30

Figure 12. Split odd and even index values.

After splitting the values into odd and even indexes, both index values have to be con-
catenated separately.

Odd Indexes [δ1] = [1] [3] [5]

Even Indexes [δ2] = [0] [2] [4] [6]

Step 5: After splitting the values into odd and even indexes, the SWJK algorithm is
implemented on odd indexes [δ1].

Step 5.1: All values of odd indexes are first converted to the index character to identify
parallel values of indexes, and then the equivalent of each value is determined, as illus-
trated in Figure 13.

Figure 13. Indexes parallel values.

Step 5.2: After obtaining the parallel values, Equation 14 will be implemented in step
5.1. ∮[m n] (s) = σ* mod [x] (14)

Where [m] is the ASCII value of Index [1] and Index [3]. Firstly, the Index [1] ASCII
value will be used in the equation to get the result-1. After that, Index [3] ASCII value will
be used in testing 2 by the equation and get the result-2. Index [m] value will be placed in
“σ.” [n] is the static value that will be the same for Index [m] testing. Index [n] will be placed
in “mod[x].” “s” represents several time tests.

Step 5.2.1: First, Index [1] and Index [5] will be tested and will get the first result
value. ∮[1 5] (1) = (227)* mod [6]

= 3…result (i)

Step 5.2.2: After testing the Index [1] and Index [5], Index [3] and Index [5] will be tested
by using Equation (15), and a second result will be obtained. ∮[3 5] (2) = (2)* mod [6]

= 4
(15)

Step 5.2.2: After getting the two values from Index [1][5] and Index [3][5], both results
values will be converted into 1x2 matrix form.

∯[௡][௠] = ൥∮[ଵ][ହ]∮[ଷ][ହ] ሺ1ሻሺ2ሻ൩
= ቂ34ቃ

Step 6: After obtaining the results from odd indexes [δ1], even indexes will be converted
to 2x2-matrix form.

Figure 13. Indexes parallel values.

Step 5.2: After obtaining the parallel values, Equation (14) will be implemented in step 5.1.∮
[m n] (s) = σ* mod [x] (14)

Where [m] is the ASCII value of Index [1] and Index [3]. Firstly, the Index [1] ASCII
value will be used in the equation to get the result-1. After that, Index [3] ASCII value will
be used in testing 2 by the equation and get the result-2. Index [m] value will be placed in

“σ.” [n] is the static value that will be the same for Index [m] testing. Index [n] will be placed
in “mod[x].” “s” represents several time tests.

Step 5.2.1: First, Index [1] and Index [5] will be tested and will get the first result value.∮
[1 5] (1) = (227)* mod [6]

= 3. . . result (i)

Step 5.2.2: After testing the Index [1] and Index [5], Index [3] and Index [5] will be tested
by using Equation (15), and a second result will be obtained.∮

[3 5] (2) = (2)* mod [6]
= 4

(15)

Step 5.2.2: After getting the two values from Index [1][5] and Index [3][5], both results
values will be converted into 1x2 matrix form.

v [m]
[n] =

[
(
∮
[1][5]∮
[3][5]

)((1)
(2))

]
=

[
3
4

]
Step 6: After obtaining the results from odd indexes [δ1], even indexes will be converted

to 2x2-matrix form. [
δ[2x2]

]
=

[
[i] [j]
[k] [l]

]
=

[
[0] [2]
[4] [6]

]
=

[
[85] [132]
[102] [67]

]

Symmetry 2024, 16, 605 17 of 28

After obtaining the 2x2-matrix values, Matrix
[
δ[2x2]

]
. It can also be represented as

the following: [
δ[2x2]

]
=

∫ [p]
[q]∫ [p]

[q] =
∫ [2]
[2]

Step 7: The values of Step 6
∫ [p]
[q] are summed with step-5.2.2 results

v [m]
[n] by using

Equation (16).
γ[r] =

∫ [p]
[q] +

v [m]
[n]

γ[r] =

[
[85] [132]
[102] [67]

]
+

[
3
4

]
γ[r] =

[
[88] [136]
[105] [71]

] (16)

Step 8: Step-7 results γ[r] are converted into 1x4-matrix form.

γ[r] = [88 136 105 71]

Step 9: Each value will be converted to its corresponding ASCII after being trans-
formed into a 1x4-matrix form, and a key K[j] will be obtained in cipher form, as shown in
Equation (17).

γ[r] = [ê ï û u] (17)

Key K[j] = ê ï û u

4.2. WEDEx-Kerberotic Encryption Algorithm Testing

Step 1: To encrypt the data, a dynamic key K[x] will be taken from the user and
converted into cipher form using the WEDEx-Kerberotic algorithm.

Key K[x] = W@j!h@5

Cipher Key Kj = ê ï û u

Step 2: After getting the key K[x] into cipher form from the SWJK algorithm, named
cipher key K[j], a simple text P[n] has then been taken.

Plaintext P[n] = N@DeEm_78

Step 3: After obtaining the plaintext P[n] and cipher key K[j], as seen in Figure 14, each
character of P[n] and K[j] is changed to its corresponding ASCII character.

Symmetry 2024, 16, x FOR PEER REVIEW 18 of 30

Figure 14. ASCII of plaintext and key.

Step 4: Each value is transformed to an 8-bit binary after being given the ASCII values
for the plaintext P[n] and key K[j], as illustrated in Figure 15.

Figure 15. Binary values of plaintext and SWJK key.

Step 5: After obtaining the binary values, the plaintext P[n] and the SWJK key K[j] are
XORed with each other using an equation “E = P ⊙ K” to increase the data security, as
illustrated in Figure 16.

Figure 16. XOR results.

Step 6: After obtaining the XORed results, the random key values (α, β) have been
obtained from the randomized key mechanism, for which the indexes of the key taken
from the user are determined first.

K[x] = [K0] [K1] [K2] [K3] [K4] [K5] [K6]
= [0] [1] [2] [3] [4] [5] [6]

There is a total of seven indexes K[x]= 7 from [K0] to [K6]. After finding the indexes,
the mid-point value is determined using Equation (18).

[m] = ((K[x] + 1)/2)

= 4
(18)

So, the mid-point Index [m] = 4, and the value of Index [4] is “!”. After finding the mid-
point value [m] of user-defined key K[x], the ASCII value of “!” is determined using a cus-
tomized ASCII table, which is [2].

[!] = [2]

After finding the ASCII value, an 8-bit binary of ASCII value of “2” is determined.

Binary of 2 = [00000010]

After obtaining the 8-bit binary, it is split into two parts. The first four bits are equated to
“α,” while the last four bits are equated to “β.”

Figure 14. ASCII of plaintext and key.

Step 4: Each value is transformed to an 8-bit binary after being given the ASCII values
for the plaintext P[n] and key K[j], as illustrated in Figure 15.

Symmetry 2024, 16, 605 18 of 28

Symmetry 2024, 16, x FOR PEER REVIEW 18 of 30

Figure 14. ASCII of plaintext and key.

Step 4: Each value is transformed to an 8-bit binary after being given the ASCII values
for the plaintext P[n] and key K[j], as illustrated in Figure 15.

Figure 15. Binary values of plaintext and SWJK key.

Step 5: After obtaining the binary values, the plaintext P[n] and the SWJK key K[j] are
XORed with each other using an equation “E = P ⊙ K” to increase the data security, as
illustrated in Figure 16.

Figure 16. XOR results.

Step 6: After obtaining the XORed results, the random key values (α, β) have been
obtained from the randomized key mechanism, for which the indexes of the key taken
from the user are determined first.

K[x] = [K0] [K1] [K2] [K3] [K4] [K5] [K6]
= [0] [1] [2] [3] [4] [5] [6]

There is a total of seven indexes K[x]= 7 from [K0] to [K6]. After finding the indexes,
the mid-point value is determined using Equation (18).

[m] = ((K[x] + 1)/2)

= 4
(18)

So, the mid-point Index [m] = 4, and the value of Index [4] is “!”. After finding the mid-
point value [m] of user-defined key K[x], the ASCII value of “!” is determined using a cus-
tomized ASCII table, which is [2].

[!] = [2]

After finding the ASCII value, an 8-bit binary of ASCII value of “2” is determined.

Binary of 2 = [00000010]

After obtaining the 8-bit binary, it is split into two parts. The first four bits are equated to
“α,” while the last four bits are equated to “β.”

Figure 15. Binary values of plaintext and SWJK key.

Step 5: After obtaining the binary values, the plaintext P[n] and the SWJK key K[j] are
XORed with each other using an equation “E = P ⊙ K” to increase the data security, as
illustrated in Figure 16.

Symmetry 2024, 16, x FOR PEER REVIEW 18 of 30

Figure 14. ASCII of plaintext and key.

Step 4: Each value is transformed to an 8-bit binary after being given the ASCII values
for the plaintext P[n] and key K[j], as illustrated in Figure 15.

Figure 15. Binary values of plaintext and SWJK key.

Step 5: After obtaining the binary values, the plaintext P[n] and the SWJK key K[j] are
XORed with each other using an equation “E = P ⊙ K” to increase the data security, as
illustrated in Figure 16.

Figure 16. XOR results.

Step 6: After obtaining the XORed results, the random key values (α, β) have been
obtained from the randomized key mechanism, for which the indexes of the key taken
from the user are determined first.

K[x] = [K0] [K1] [K2] [K3] [K4] [K5] [K6]
= [0] [1] [2] [3] [4] [5] [6]

There is a total of seven indexes K[x]= 7 from [K0] to [K6]. After finding the indexes,
the mid-point value is determined using Equation (18).

[m] = ((K[x] + 1)/2)

= 4
(18)

So, the mid-point Index [m] = 4, and the value of Index [4] is “!”. After finding the mid-
point value [m] of user-defined key K[x], the ASCII value of “!” is determined using a cus-
tomized ASCII table, which is [2].

[!] = [2]

After finding the ASCII value, an 8-bit binary of ASCII value of “2” is determined.

Binary of 2 = [00000010]

After obtaining the 8-bit binary, it is split into two parts. The first four bits are equated to
“α,” while the last four bits are equated to “β.”

Figure 16. XOR results.

Step 6: After obtaining the XORed results, the random key values (α, β) have been
obtained from the randomized key mechanism, for which the indexes of the key taken from
the user are determined first.

K[x] = [K0] [K1] [K2] [K3] [K4] [K5] [K6]
= [0] [1] [2] [3] [4] [5] [6]

There is a total of seven indexes K[x]= 7 from [K0] to [K6]. After finding the indexes,
the mid-point value is determined using Equation (18).

[m] = ((K[x] + 1)/2)
= 4

(18)

So, the mid-point Index [m] = 4, and the value of Index [4] is “!”. After finding the
mid-point value [m] of user-defined key K[x], the ASCII value of “!” is determined using a
customized ASCII table, which is [2].

[!] = [2]

After finding the ASCII value, an 8-bit binary of ASCII value of “2” is determined.

Binary of 2 = [00000010]

After obtaining the 8-bit binary, it is split into two parts. The first four bits are equated to
“α,” while the last four bits are equated to “β.”

α = 0000

β = 0010

Step 7: After getting the random seed (α, β) values, random seed “α” is concatenated to
the beginning of the XORed result [X], while Random Seed “β” is concatenated to the end of
the XORed result [X], as illustrated in Figure 17.

Symmetry 2024, 16, x FOR PEER REVIEW 19 of 30

α = 0000

β = 0010

Step 7: After getting the random seed (α, β) values, random seed “α” is concatenated to
the beginning of the XORed result [X], while Random Seed “β” is concatenated to the end
of the XORed result [X], as illustrated in Figure 17.

Figure 17. Random seed concatenation results.

Step 8: After concatenating the random seed values, the bit appending mechanism is im-
plemented in step 7. In the bit appending mechanism, the 4 bits of the random seed “ α “ have
been concatenated with the following 4 bits to form a pair of 8 bits. Similarly, an 8-bit pair
is made by merging the previous four binary bits and the following 4. Each value will be
linked using the bit-appending mechanism, as illustrated in Figure 18. If an attacker tam-
pers with the values, then due to changing the values, the original text will be changed
into a text that is entirely different from the original text.

Figure 18. Bit appending results.

Due to the random seed technique, the amount of encrypted text produced will be
more than the original text, and each value will be linked to the others. The attacker will
attempt to use the encryption technique on each cipher value while attempting to decode
the data, but the characters of the cipher values will not have any link with the plaintext
character.

Step 9: The 8-bit values obtained by the bit appending mechanism are transformed to
decimal form, as illustrated in Figure 19.

Figure 19. Decimal values.

Step 10: As demonstrated in Figure 20, after the different decimal values are collected,
all values are swapped out for the following three values to separate the encrypted data
from the original data, which is carried out using the formula D = D + 3 to the step-9 dec-
imal values.

Figure 20. Shifted value result.

Step 11: As seen in Figure 21, all decimal values are changed to identical ASCII.

Figure 21. ASCII value of each decimal.

Figure 17. Random seed concatenation results.

Symmetry 2024, 16, 605 19 of 28

Step 8: After concatenating the random seed values, the bit appending mechanism is
implemented in step 7. In the bit appending mechanism, the 4 bits of the random seed “ α “
have been concatenated with the following 4 bits to form a pair of 8 bits. Similarly, an 8-bit
pair is made by merging the previous four binary bits and the following 4. Each value will
be linked using the bit-appending mechanism, as illustrated in Figure 18. If an attacker
tampers with the values, then due to changing the values, the original text will be changed
into a text that is entirely different from the original text.

Symmetry 2024, 16, x FOR PEER REVIEW 19 of 30

α = 0000

β = 0010

Step 7: After getting the random seed (α, β) values, random seed “α” is concatenated to
the beginning of the XORed result [X], while Random Seed “β” is concatenated to the end
of the XORed result [X], as illustrated in Figure 17.

Figure 17. Random seed concatenation results.

Step 8: After concatenating the random seed values, the bit appending mechanism is im-
plemented in step 7. In the bit appending mechanism, the 4 bits of the random seed “ α “ have
been concatenated with the following 4 bits to form a pair of 8 bits. Similarly, an 8-bit pair
is made by merging the previous four binary bits and the following 4. Each value will be
linked using the bit-appending mechanism, as illustrated in Figure 18. If an attacker tam-
pers with the values, then due to changing the values, the original text will be changed
into a text that is entirely different from the original text.

Figure 18. Bit appending results.

Due to the random seed technique, the amount of encrypted text produced will be
more than the original text, and each value will be linked to the others. The attacker will
attempt to use the encryption technique on each cipher value while attempting to decode
the data, but the characters of the cipher values will not have any link with the plaintext
character.

Step 9: The 8-bit values obtained by the bit appending mechanism are transformed to
decimal form, as illustrated in Figure 19.

Figure 19. Decimal values.

Step 10: As demonstrated in Figure 20, after the different decimal values are collected,
all values are swapped out for the following three values to separate the encrypted data
from the original data, which is carried out using the formula D = D + 3 to the step-9 dec-
imal values.

Figure 20. Shifted value result.

Step 11: As seen in Figure 21, all decimal values are changed to identical ASCII.

Figure 21. ASCII value of each decimal.

Figure 18. Bit appending results.

Due to the random seed technique, the amount of encrypted text produced will be
more than the original text, and each value will be linked to the others. The attacker
will attempt to use the encryption technique on each cipher value while attempting to
decode the data, but the characters of the cipher values will not have any link with the
plaintext character.

Step 9: The 8-bit values obtained by the bit appending mechanism are transformed to
decimal form, as illustrated in Figure 19.

Symmetry 2024, 16, x FOR PEER REVIEW 19 of 30

α = 0000

β = 0010

Step 7: After getting the random seed (α, β) values, random seed “α” is concatenated to
the beginning of the XORed result [X], while Random Seed “β” is concatenated to the end
of the XORed result [X], as illustrated in Figure 17.

Figure 17. Random seed concatenation results.

Step 8: After concatenating the random seed values, the bit appending mechanism is im-
plemented in step 7. In the bit appending mechanism, the 4 bits of the random seed “ α “ have
been concatenated with the following 4 bits to form a pair of 8 bits. Similarly, an 8-bit pair
is made by merging the previous four binary bits and the following 4. Each value will be
linked using the bit-appending mechanism, as illustrated in Figure 18. If an attacker tam-
pers with the values, then due to changing the values, the original text will be changed
into a text that is entirely different from the original text.

Figure 18. Bit appending results.

Due to the random seed technique, the amount of encrypted text produced will be
more than the original text, and each value will be linked to the others. The attacker will
attempt to use the encryption technique on each cipher value while attempting to decode
the data, but the characters of the cipher values will not have any link with the plaintext
character.

Step 9: The 8-bit values obtained by the bit appending mechanism are transformed to
decimal form, as illustrated in Figure 19.

Figure 19. Decimal values.

Step 10: As demonstrated in Figure 20, after the different decimal values are collected,
all values are swapped out for the following three values to separate the encrypted data
from the original data, which is carried out using the formula D = D + 3 to the step-9 dec-
imal values.

Figure 20. Shifted value result.

Step 11: As seen in Figure 21, all decimal values are changed to identical ASCII.

Figure 21. ASCII value of each decimal.

Figure 19. Decimal values.

Step 10: As demonstrated in Figure 20, after the different decimal values are collected,
all values are swapped out for the following three values to separate the encrypted data
from the original data, which is carried out using the formula D = D + 3 to the step-9
decimal values.

Symmetry 2024, 16, x FOR PEER REVIEW 19 of 30

α = 0000

β = 0010

Step 7: After getting the random seed (α, β) values, random seed “α” is concatenated to
the beginning of the XORed result [X], while Random Seed “β” is concatenated to the end
of the XORed result [X], as illustrated in Figure 17.

Figure 17. Random seed concatenation results.

Step 8: After concatenating the random seed values, the bit appending mechanism is im-
plemented in step 7. In the bit appending mechanism, the 4 bits of the random seed “ α “ have
been concatenated with the following 4 bits to form a pair of 8 bits. Similarly, an 8-bit pair
is made by merging the previous four binary bits and the following 4. Each value will be
linked using the bit-appending mechanism, as illustrated in Figure 18. If an attacker tam-
pers with the values, then due to changing the values, the original text will be changed
into a text that is entirely different from the original text.

Figure 18. Bit appending results.

Due to the random seed technique, the amount of encrypted text produced will be
more than the original text, and each value will be linked to the others. The attacker will
attempt to use the encryption technique on each cipher value while attempting to decode
the data, but the characters of the cipher values will not have any link with the plaintext
character.

Step 9: The 8-bit values obtained by the bit appending mechanism are transformed to
decimal form, as illustrated in Figure 19.

Figure 19. Decimal values.

Step 10: As demonstrated in Figure 20, after the different decimal values are collected,
all values are swapped out for the following three values to separate the encrypted data
from the original data, which is carried out using the formula D = D + 3 to the step-9 dec-
imal values.

Figure 20. Shifted value result.

Step 11: As seen in Figure 21, all decimal values are changed to identical ASCII.

Figure 21. ASCII value of each decimal.

Figure 20. Shifted value result.

Step 11: As seen in Figure 21, all decimal values are changed to identical ASCII.

Symmetry 2024, 16, x FOR PEER REVIEW 19 of 30

α = 0000

β = 0010

Step 7: After getting the random seed (α, β) values, random seed “α” is concatenated to
the beginning of the XORed result [X], while Random Seed “β” is concatenated to the end
of the XORed result [X], as illustrated in Figure 17.

Figure 17. Random seed concatenation results.

Step 8: After concatenating the random seed values, the bit appending mechanism is im-
plemented in step 7. In the bit appending mechanism, the 4 bits of the random seed “ α “ have
been concatenated with the following 4 bits to form a pair of 8 bits. Similarly, an 8-bit pair
is made by merging the previous four binary bits and the following 4. Each value will be
linked using the bit-appending mechanism, as illustrated in Figure 18. If an attacker tam-
pers with the values, then due to changing the values, the original text will be changed
into a text that is entirely different from the original text.

Figure 18. Bit appending results.

Due to the random seed technique, the amount of encrypted text produced will be
more than the original text, and each value will be linked to the others. The attacker will
attempt to use the encryption technique on each cipher value while attempting to decode
the data, but the characters of the cipher values will not have any link with the plaintext
character.

Step 9: The 8-bit values obtained by the bit appending mechanism are transformed to
decimal form, as illustrated in Figure 19.

Figure 19. Decimal values.

Step 10: As demonstrated in Figure 20, after the different decimal values are collected,
all values are swapped out for the following three values to separate the encrypted data
from the original data, which is carried out using the formula D = D + 3 to the step-9 dec-
imal values.

Figure 20. Shifted value result.

Step 11: As seen in Figure 21, all decimal values are changed to identical ASCII.

Figure 21. ASCII value of each decimal. Figure 21. ASCII value of each decimal.

Step 12: After acquiring various ASCII values, all values are concatenated to create
encrypted text.

Ciphertext [C] = ₤EUR EUR ? Bn¯Ne]

4.3. WEDEx-Kerberotic Decryption Algorithm Testing

The data are decrypted using various procedures and methods, converting the Cipher-
text to plaintext.

Step 1: A ciphertext [C] is taken to decrypt the data.

Ciphertext [C] = ₤Ä? Bn¯Ne]

Step 2: Following the ciphertext [C] collection, each character is converted into corre-
sponding ASCII using a customized ASCII table, as illustrated in Figure 22.

Symmetry 2024, 16, 605 20 of 28

Symmetry 2024, 16, x FOR PEER REVIEW 20 of 30

Step 12: After acquiring various ASCII values, all values are concatenated to create
encrypted text.

Ciphertext [C] = ┐₤EUR EUR ? Bn¯Ne]

4.3. WEDEx-Kerberotic Decryption Algorithm Testing
The data are decrypted using various procedures and methods, converting the Ci-

phertext to plaintext.
Step 1: A ciphertext [C] is taken to decrypt the data.

Ciphertext [C] = ┐₤Ä? Bn¯Ne]

Step 2: Following the ciphertext [C] collection, each character is converted into corre-
sponding ASCII using a customized ASCII table, as illustrated in Figure 22.

Figure 22. ASCII of each ciphertext.

Step 3: After acquiring the different ASCII values, the actual values are produced by
applying a bit-shifting method [Y] to them.

Y = D − 3

Decimal values are replaced by previous third index values with the help of [Y], as il-
lustrated in Figure 23.

Figure 23. Values shifting.

Step 4: Each value acquired by the values shifting technique is transformed to an 8-
bit binary, as demonstrated in Figure 24.

Figure 24. Binary of each decimal.

Step 5: After obtaining the 8-bit binary values, a bit-elimination mechanism [G] is ap-
plied to eliminate the random seed [G] values, as illustrated in Figure 25.

G = α ┬ E ┬ β

Figure 25. Random seed elimination.

Step 6: After eliminating the random seed values, the SWJK key K[j] is taken, which is
converted to ASCII and converted to binary form, as illustrated in Figure 26.

Figure 22. ASCII of each ciphertext.

Step 3: After acquiring the different ASCII values, the actual values are produced by
applying a bit-shifting method [Y] to them.

Y = D − 3

Decimal values are replaced by previous third index values with the help of [Y], as
illustrated in Figure 23.

Symmetry 2024, 16, x FOR PEER REVIEW 20 of 30

Step 12: After acquiring various ASCII values, all values are concatenated to create
encrypted text.

Ciphertext [C] = ┐₤EUR EUR ? Bn¯Ne]

4.3. WEDEx-Kerberotic Decryption Algorithm Testing
The data are decrypted using various procedures and methods, converting the Ci-

phertext to plaintext.
Step 1: A ciphertext [C] is taken to decrypt the data.

Ciphertext [C] = ┐₤Ä? Bn¯Ne]

Step 2: Following the ciphertext [C] collection, each character is converted into corre-
sponding ASCII using a customized ASCII table, as illustrated in Figure 22.

Figure 22. ASCII of each ciphertext.

Step 3: After acquiring the different ASCII values, the actual values are produced by
applying a bit-shifting method [Y] to them.

Y = D − 3

Decimal values are replaced by previous third index values with the help of [Y], as il-
lustrated in Figure 23.

Figure 23. Values shifting.

Step 4: Each value acquired by the values shifting technique is transformed to an 8-
bit binary, as demonstrated in Figure 24.

Figure 24. Binary of each decimal.

Step 5: After obtaining the 8-bit binary values, a bit-elimination mechanism [G] is ap-
plied to eliminate the random seed [G] values, as illustrated in Figure 25.

G = α ┬ E ┬ β

Figure 25. Random seed elimination.

Step 6: After eliminating the random seed values, the SWJK key K[j] is taken, which is
converted to ASCII and converted to binary form, as illustrated in Figure 26.

Figure 23. Values shifting.

Step 4: Each value acquired by the values shifting technique is transformed to an 8-bit
binary, as demonstrated in Figure 24.

Symmetry 2024, 16, x FOR PEER REVIEW 20 of 30

Step 12: After acquiring various ASCII values, all values are concatenated to create
encrypted text.

Ciphertext [C] = ┐₤EUR EUR ? Bn¯Ne]

4.3. WEDEx-Kerberotic Decryption Algorithm Testing
The data are decrypted using various procedures and methods, converting the Ci-

phertext to plaintext.
Step 1: A ciphertext [C] is taken to decrypt the data.

Ciphertext [C] = ┐₤Ä? Bn¯Ne]

Step 2: Following the ciphertext [C] collection, each character is converted into corre-
sponding ASCII using a customized ASCII table, as illustrated in Figure 22.

Figure 22. ASCII of each ciphertext.

Step 3: After acquiring the different ASCII values, the actual values are produced by
applying a bit-shifting method [Y] to them.

Y = D − 3

Decimal values are replaced by previous third index values with the help of [Y], as il-
lustrated in Figure 23.

Figure 23. Values shifting.

Step 4: Each value acquired by the values shifting technique is transformed to an 8-
bit binary, as demonstrated in Figure 24.

Figure 24. Binary of each decimal.

Step 5: After obtaining the 8-bit binary values, a bit-elimination mechanism [G] is ap-
plied to eliminate the random seed [G] values, as illustrated in Figure 25.

G = α ┬ E ┬ β

Figure 25. Random seed elimination.

Step 6: After eliminating the random seed values, the SWJK key K[j] is taken, which is
converted to ASCII and converted to binary form, as illustrated in Figure 26.

Figure 24. Binary of each decimal.

Step 5: After obtaining the 8-bit binary values, a bit-elimination mechanism [G] is applied
to eliminate the random seed [G] values, as illustrated in Figure 25.

G = α E β

Symmetry 2024, 16, x FOR PEER REVIEW 20 of 30

Step 12: After acquiring various ASCII values, all values are concatenated to create
encrypted text.

Ciphertext [C] = ┐₤EUR EUR ? Bn¯Ne]

4.3. WEDEx-Kerberotic Decryption Algorithm Testing
The data are decrypted using various procedures and methods, converting the Ci-

phertext to plaintext.
Step 1: A ciphertext [C] is taken to decrypt the data.

Ciphertext [C] = ┐₤Ä? Bn¯Ne]

Step 2: Following the ciphertext [C] collection, each character is converted into corre-
sponding ASCII using a customized ASCII table, as illustrated in Figure 22.

Figure 22. ASCII of each ciphertext.

Step 3: After acquiring the different ASCII values, the actual values are produced by
applying a bit-shifting method [Y] to them.

Y = D − 3

Decimal values are replaced by previous third index values with the help of [Y], as il-
lustrated in Figure 23.

Figure 23. Values shifting.

Step 4: Each value acquired by the values shifting technique is transformed to an 8-
bit binary, as demonstrated in Figure 24.

Figure 24. Binary of each decimal.

Step 5: After obtaining the 8-bit binary values, a bit-elimination mechanism [G] is ap-
plied to eliminate the random seed [G] values, as illustrated in Figure 25.

G = α ┬ E ┬ β

Figure 25. Random seed elimination.

Step 6: After eliminating the random seed values, the SWJK key K[j] is taken, which is
converted to ASCII and converted to binary form, as illustrated in Figure 26.

Figure 25. Random seed elimination.

Step 6: After eliminating the random seed values, the SWJK key K[j] is taken, which is
converted to ASCII and converted to binary form, as illustrated in Figure 26.

Symmetry 2024, 16, x FOR PEER REVIEW 21 of 30

Figure 26. Binary values of SWJK key.

Step 7: Following acquiring the binary values, key K[j] and text [G] are XORed to pro-
duce a binary form text, as illustrated in Figure 27.

Figure 27. XOR results of key and text.

Step 8: Different decimal values [E] are obtained by creating 8-bit pairs of the bit values
obtained from the XORed result, as illustrated in Figure 28.

Figure 28. A decimal value of each binary pair.

Step 9: After getting the various decimal [E] values, all the values are concatenated,
and a plaintext [E] is obtained.

[] @ _ 78Plain Text E N DeEm=

4.4. Text Encryption Testing
A tool has been created to evaluate the algorithm’s effectiveness. User authenticity is

verified before the data may be encrypted, for which a user login mechanism is estab-
lished. Data encryption will be available upon user authentication, as illustrated in Figure
29.

Figure 29. Tool encryption result.

After the user authentication, the data are encrypted using the WEDEx-Kerberotic
system, which first inserts the user-defined key before inserting the plaintext, as illus-
trated in Figure 29. A secure ciphertext and a SWJK key are acquired once the plaintext
and user-defined key have been provided, and they will be used to decode the data. The
data are encrypted using a separate key and will be decrypted using a different key.

Figure 26. Binary values of SWJK key.

Step 7: Following acquiring the binary values, key K[j] and text [G] are XORed to
produce a binary form text, as illustrated in Figure 27.

Symmetry 2024, 16, x FOR PEER REVIEW 21 of 30

Figure 26. Binary values of SWJK key.

Step 7: Following acquiring the binary values, key K[j] and text [G] are XORed to pro-
duce a binary form text, as illustrated in Figure 27.

Figure 27. XOR results of key and text.

Step 8: Different decimal values [E] are obtained by creating 8-bit pairs of the bit values
obtained from the XORed result, as illustrated in Figure 28.

Figure 28. A decimal value of each binary pair.

Step 9: After getting the various decimal [E] values, all the values are concatenated,
and a plaintext [E] is obtained.

[] @ _ 78Plain Text E N DeEm=

4.4. Text Encryption Testing
A tool has been created to evaluate the algorithm’s effectiveness. User authenticity is

verified before the data may be encrypted, for which a user login mechanism is estab-
lished. Data encryption will be available upon user authentication, as illustrated in Figure
29.

Figure 29. Tool encryption result.

After the user authentication, the data are encrypted using the WEDEx-Kerberotic
system, which first inserts the user-defined key before inserting the plaintext, as illus-
trated in Figure 29. A secure ciphertext and a SWJK key are acquired once the plaintext
and user-defined key have been provided, and they will be used to decode the data. The
data are encrypted using a separate key and will be decrypted using a different key.

Figure 27. XOR results of key and text.

Step 8: Different decimal values [E] are obtained by creating 8-bit pairs of the bit values
obtained from the XORed result, as illustrated in Figure 28.

Symmetry 2024, 16, 605 21 of 28

Symmetry 2024, 16, x FOR PEER REVIEW 21 of 30

Figure 26. Binary values of SWJK key.

Step 7: Following acquiring the binary values, key K[j] and text [G] are XORed to pro-
duce a binary form text, as illustrated in Figure 27.

Figure 27. XOR results of key and text.

Step 8: Different decimal values [E] are obtained by creating 8-bit pairs of the bit values
obtained from the XORed result, as illustrated in Figure 28.

Figure 28. A decimal value of each binary pair.

Step 9: After getting the various decimal [E] values, all the values are concatenated,
and a plaintext [E] is obtained.

[] @ _ 78Plain Text E N DeEm=

4.4. Text Encryption Testing
A tool has been created to evaluate the algorithm’s effectiveness. User authenticity is

verified before the data may be encrypted, for which a user login mechanism is estab-
lished. Data encryption will be available upon user authentication, as illustrated in Figure
29.

Figure 29. Tool encryption result.

After the user authentication, the data are encrypted using the WEDEx-Kerberotic
system, which first inserts the user-defined key before inserting the plaintext, as illus-
trated in Figure 29. A secure ciphertext and a SWJK key are acquired once the plaintext
and user-defined key have been provided, and they will be used to decode the data. The
data are encrypted using a separate key and will be decrypted using a different key.

Figure 28. A decimal value of each binary pair.

Step 9: After getting the various decimal [E] values, all the values are concatenated,
and a plaintext [E] is obtained.

Plain Text [E] = N@DeEm_78

4.4. Text Encryption Testing

A tool has been created to evaluate the algorithm’s effectiveness. User authenticity is
verified before the data may be encrypted, for which a user login mechanism is established.
Data encryption will be available upon user authentication, as illustrated in Figure 29.

Symmetry 2024, 16, x FOR PEER REVIEW 21 of 30

Figure 26. Binary values of SWJK key.

Step 7: Following acquiring the binary values, key K[j] and text [G] are XORed to pro-
duce a binary form text, as illustrated in Figure 27.

Figure 27. XOR results of key and text.

Step 8: Different decimal values [E] are obtained by creating 8-bit pairs of the bit values
obtained from the XORed result, as illustrated in Figure 28.

Figure 28. A decimal value of each binary pair.

Step 9: After getting the various decimal [E] values, all the values are concatenated,
and a plaintext [E] is obtained.

[] @ _ 78Plain Text E N DeEm=

4.4. Text Encryption Testing
A tool has been created to evaluate the algorithm’s effectiveness. User authenticity is

verified before the data may be encrypted, for which a user login mechanism is estab-
lished. Data encryption will be available upon user authentication, as illustrated in Figure
29.

Figure 29. Tool encryption result.

After the user authentication, the data are encrypted using the WEDEx-Kerberotic
system, which first inserts the user-defined key before inserting the plaintext, as illus-
trated in Figure 29. A secure ciphertext and a SWJK key are acquired once the plaintext
and user-defined key have been provided, and they will be used to decode the data. The
data are encrypted using a separate key and will be decrypted using a different key.

Figure 29. Tool encryption result.

After the user authentication, the data are encrypted using the WEDEx-Kerberotic
system, which first inserts the user-defined key before inserting the plaintext, as illustrated
in Figure 29. A secure ciphertext and a SWJK key are acquired once the plaintext and
user-defined key have been provided, and they will be used to decode the data. The data
are encrypted using a separate key and will be decrypted using a different key.

4.5. Text Decryption Testing

The data must be decrypted using a WEDEx-Kerberotic decryption tool, which requires
the encryption key. Data may be decrypted only if the incoming key matches the Kerberos
database system key. If the key matches, the ciphertext will be entered, and the arriving key
will be applied to the ciphertext regardless of whether the ciphertext is linked to the key.
As illustrated by Figure 30, legal information may be acquired by linking the ciphertext
and the key.

Symmetry 2024, 16, x FOR PEER REVIEW 22 of 30

4.5. Text Decryption Testing
The data must be decrypted using a WEDEx-Kerberotic decryption tool, which re-

quires the encryption key. Data may be decrypted only if the incoming key matches the
Kerberos database system key. If the key matches, the ciphertext will be entered, and the
arriving key will be applied to the ciphertext regardless of whether the ciphertext is linked
to the key. As illustrated by Figure 30, legal information may be acquired by linking the
ciphertext and the key.

Figure 30. Authentic key implementation result.

If the existing key matches the database key, but the input ciphertext does not match
the ciphertext key, then a plaintext will be obtained that is neither original nor authentic,
as illustrated in Figure 31.

Figure 31. Inauthentic key implementation result.

Data security will be divided into two phases when an algorithm like this is utilized.
The first phase is based on key matching, while the second is based on cryptographic al-
gorithms. Data stored in the cloud may be protected against any number of threats using
such an algorithm.

4.6. Testing Results
Table 2 displays different results obtained after the development of the tool. Firstly,

various simple texts are taken that are represented with [P], and the length of the plaintext
is determined. Plaintext length is represented with P[n]. After obtaining the plaintext, var-
ious user-defined keys are obtained, represented by [K], and then the length of the user-
defined key K[x] is determined. The reason for finding the key length used on different
plaintexts is to compare the lengths when the plaintext and key are applied to the algo-
rithm and to find out how much difference there is between the original length and the
length obtained from the algorithm. When a user-defined key [K] is applied to the SWJK
algorithm, cipher keys of different lengths are obtained, denoted by length K[j]. The length
of the cipher key is much less than the length of the user-defined key, up to 40%. This
means that when the user-defined key is applied to the SWJK algorithm. The SWJK algo-
rithm will reduce the length of the user-defined key [K]. When the user gets a key, it can-
not be guessed or retrieved using snatching mechanisms like cryptanalysis. After obtain-
ing the different cipher keys, the key is applied to the plaintext [P], and the different ci-
phertext is obtained. The length of plaintext [P] is less than that of ciphertext [N]. This
means that when we implement plaintext in the proposed algorithm, the length obtained
by the proposed algorithm will also change, and the original length will be different from
the ciphertext length. When the length of the plaintext is different from the ciphertext and

Figure 30. Authentic key implementation result.

If the existing key matches the database key, but the input ciphertext does not match
the ciphertext key, then a plaintext will be obtained that is neither original nor authentic, as
illustrated in Figure 31.

Symmetry 2024, 16, 605 22 of 28

Symmetry 2024, 16, x FOR PEER REVIEW 22 of 30

4.5. Text Decryption Testing
The data must be decrypted using a WEDEx-Kerberotic decryption tool, which re-

quires the encryption key. Data may be decrypted only if the incoming key matches the
Kerberos database system key. If the key matches, the ciphertext will be entered, and the
arriving key will be applied to the ciphertext regardless of whether the ciphertext is linked
to the key. As illustrated by Figure 30, legal information may be acquired by linking the
ciphertext and the key.

Figure 30. Authentic key implementation result.

If the existing key matches the database key, but the input ciphertext does not match
the ciphertext key, then a plaintext will be obtained that is neither original nor authentic,
as illustrated in Figure 31.

Figure 31. Inauthentic key implementation result.

Data security will be divided into two phases when an algorithm like this is utilized.
The first phase is based on key matching, while the second is based on cryptographic al-
gorithms. Data stored in the cloud may be protected against any number of threats using
such an algorithm.

4.6. Testing Results
Table 2 displays different results obtained after the development of the tool. Firstly,

various simple texts are taken that are represented with [P], and the length of the plaintext
is determined. Plaintext length is represented with P[n]. After obtaining the plaintext, var-
ious user-defined keys are obtained, represented by [K], and then the length of the user-
defined key K[x] is determined. The reason for finding the key length used on different
plaintexts is to compare the lengths when the plaintext and key are applied to the algo-
rithm and to find out how much difference there is between the original length and the
length obtained from the algorithm. When a user-defined key [K] is applied to the SWJK
algorithm, cipher keys of different lengths are obtained, denoted by length K[j]. The length
of the cipher key is much less than the length of the user-defined key, up to 40%. This
means that when the user-defined key is applied to the SWJK algorithm. The SWJK algo-
rithm will reduce the length of the user-defined key [K]. When the user gets a key, it can-
not be guessed or retrieved using snatching mechanisms like cryptanalysis. After obtain-
ing the different cipher keys, the key is applied to the plaintext [P], and the different ci-
phertext is obtained. The length of plaintext [P] is less than that of ciphertext [N]. This
means that when we implement plaintext in the proposed algorithm, the length obtained
by the proposed algorithm will also change, and the original length will be different from
the ciphertext length. When the length of the plaintext is different from the ciphertext and

Figure 31. Inauthentic key implementation result.

Data security will be divided into two phases when an algorithm like this is utilized.
The first phase is based on key matching, while the second is based on cryptographic
algorithms. Data stored in the cloud may be protected against any number of threats using
such an algorithm.

4.6. Testing Results

Table 2 displays different results obtained after the development of the tool. Firstly,
various simple texts are taken that are represented with [P], and the length of the plaintext is
determined. Plaintext length is represented with P[n]. After obtaining the plaintext, various
user-defined keys are obtained, represented by [K], and then the length of the user-defined
key K[x] is determined. The reason for finding the key length used on different plaintexts is
to compare the lengths when the plaintext and key are applied to the algorithm and to find
out how much difference there is between the original length and the length obtained from
the algorithm. When a user-defined key [K] is applied to the SWJK algorithm, cipher keys
of different lengths are obtained, denoted by length K[j]. The length of the cipher key is
much less than the length of the user-defined key, up to 40%. This means that when the user-
defined key is applied to the SWJK algorithm. The SWJK algorithm will reduce the length
of the user-defined key [K]. When the user gets a key, it cannot be guessed or retrieved
using snatching mechanisms like cryptanalysis. After obtaining the different cipher keys,
the key is applied to the plaintext [P], and the different ciphertext is obtained. The length
of plaintext [P] is less than that of ciphertext [N]. This means that when we implement
plaintext in the proposed algorithm, the length obtained by the proposed algorithm will
also change, and the original length will be different from the ciphertext length. When the
length of the plaintext is different from the ciphertext and the length of the user-defined
key is also different from the cipher key, it means that it is a better innovation, and this
framework can be used to protect data.

Table 2. All testing results.

Original Text Proposed Algorithm Results

Testing Plaintext [P] Plaintext
Length P[n]

User-Defined
Key [K]

User-Defined
Key Length

K[x]
Cipher Key Cipher Key

Length K[j] Ciphertext [C] Ciphertext
Length C[n]

When the proposed algorithm is used for data security, it will have two significant
advantages. The first advantage is that the length of the plaintext will differ from that of the
ciphertext. When any snatching algorithm is applied to the ciphertext, a value parallel to

Symmetry 2024, 16, 605 23 of 28

each cipher value will be completely irrelevant. The second advantage is that the proposed
algorithm will significantly reduce the length of the original key, and the resulting cipher
key will be completely unrelated to the original key. When key snatching or guessing is
carried out using snatching techniques like cryptanalysis, the attacker gets keys that have
no relation to the proposed algorithm key. When the proposed paper algorithm is used for
cloud data security, no matter how efficiently the attacker develops the algorithm, it will be
impossible to decrypt the data and the key.

4.7. Cryptanalysis

A cryptanalysis method has been used to determine the novelty of the proposed algo-
rithm, which first used “Cryptanalysis by Plaintext and Ciphertext” and then “Key Crypt-
analysis”.

4.7.1. Plaintext and Ciphertext Cryptanalysis

The efficacy of the proposed method is evaluated by cryptanalysis of plaintext and
ciphertext, where the lengths of plaintext P[n] and ciphertext [C] are first ascertained. The
key is accessible using the cryptanalysis approach when the plaintext and ciphertext have
the same length. If the sizes of both are not the same, it is impossible to implement any
cryptanalysis method, and the key cannot be anticipated. If both lengths are the same, it is
easy to estimate the key accurately.

The suggested technique has been applied to these values, as illustrated in Figure 32,
and various key results have been achieved, as illustrated in Table 3. The cryptanalysis of
plaintext and ciphertext uses distinct plaintext values.

Symmetry 2024, 16, x FOR PEER REVIEW 24 of 30

Figure 32. Plaintext and ciphertext cryptanalysis.

Table 3. Results of plaintext and ciphertext cryptanalysis.

Sr# Plaintext
Text

Length
P[n]

Ciphertext
Length

[C]

Length
Equaliza-

tion
(P[n], [C])

Cryptanaly-
sis Algorithm

Key Predic-
tion Possibil-

ities

1
Th!s Research

@rticle is WriT-
Ten bY Z@hra

41 42 T ≠ X No No

2 mY_b@ck B0ne !s
mY POWeR

24 25 T ≠ X No No

3
@ Secure

Crypt0logy
P@per

25 26 T ≠ X No No

4 W@j!h@ Z@hRa 12 13 T ≠ X No No

The length of the ciphertext [C] and plaintext P[n] have been determined after ob-
taining different results. The length of the plaintext and the ciphertext cannot be identical
since the size of the ciphertext exceeds the length of the plaintext owing to the implemen-
tation of the suggested method. If the sizes differ, neither the key prediction nor the crypt-
analysis procedure may be used. The length of the plaintext and the encrypted text must
match to forecast the key.

4.7.2. Key Cryptanalysis
A cryptanalysis algorithm called the Kasiski test is implemented to generate the key

from the data. The Kasiski test, as shown in Figure 33, may assist in obtaining the Kky,
and the snatching algorithm is employed.

Figure 33. Ciphertext cryptanalysis.

A cipher key K[j] and user-defined key K[x] are first taken to get the key from the Kasiski
test, and then all the values in the ciphertext used repeatedly in the ciphertext are found.
After determining the repeatable values, the index of each repeatable value is indexed.
Table 4 shows the results of applying the Kasiski length method to the indexation of the
repeated value, by which the distance from the first value to the xth value is determined.
Distance is represented by “y.” After finding the distance, GCD (greatest common divi-
sion) is implemented on “y.” The value obtained from GCD is considered the key length.
As per cryptanalysis, key length can be possible when the cipher and original key lengths

Figure 32. Plaintext and ciphertext cryptanalysis.

Table 3. Results of plaintext and ciphertext cryptanalysis.

Sr# Plaintext Text Length
P[n]

Ciphertext Length
[C]

Length
Equalization

(P[n], [C])

Cryptanalysis
Algorithm

Key
Prediction

Possibilities

1
Th!s Research

@rticle is WriTTen
bY Z@hra

41 42 T ̸= X No No

2 mY_b@ck B0ne !s
mY POWeR 24 25 T ̸= X No No

3 @ Secure
Crypt0logy P@per 25 26 T ̸= X No No

4 W@j!h@ Z@hRa 12 13 T ̸= X No No

The length of the ciphertext [C] and plaintext P[n] have been determined after obtain-
ing different results. The length of the plaintext and the ciphertext cannot be identical since
the size of the ciphertext exceeds the length of the plaintext owing to the implementation
of the suggested method. If the sizes differ, neither the key prediction nor the cryptanalysis
procedure may be used. The length of the plaintext and the encrypted text must match to
forecast the key.

Symmetry 2024, 16, 605 24 of 28

4.7.2. Key Cryptanalysis

A cryptanalysis algorithm called the Kasiski test is implemented to generate the key
from the data. The Kasiski test, as shown in Figure 33, may assist in obtaining the Kky, and
the snatching algorithm is employed.

Symmetry 2024, 16, x FOR PEER REVIEW 24 of 30

Figure 32. Plaintext and ciphertext cryptanalysis.

Table 3. Results of plaintext and ciphertext cryptanalysis.

Sr# Plaintext
Text

Length
P[n]

Ciphertext
Length

[C]

Length
Equaliza-

tion
(P[n], [C])

Cryptanaly-
sis Algorithm

Key Predic-
tion Possibil-

ities

1
Th!s Research

@rticle is WriT-
Ten bY Z@hra

41 42 T ≠ X No No

2 mY_b@ck B0ne !s
mY POWeR

24 25 T ≠ X No No

3
@ Secure

Crypt0logy
P@per

25 26 T ≠ X No No

4 W@j!h@ Z@hRa 12 13 T ≠ X No No

The length of the ciphertext [C] and plaintext P[n] have been determined after ob-
taining different results. The length of the plaintext and the ciphertext cannot be identical
since the size of the ciphertext exceeds the length of the plaintext owing to the implemen-
tation of the suggested method. If the sizes differ, neither the key prediction nor the crypt-
analysis procedure may be used. The length of the plaintext and the encrypted text must
match to forecast the key.

4.7.2. Key Cryptanalysis
A cryptanalysis algorithm called the Kasiski test is implemented to generate the key

from the data. The Kasiski test, as shown in Figure 33, may assist in obtaining the Kky,
and the snatching algorithm is employed.

Figure 33. Ciphertext cryptanalysis.

A cipher key K[j] and user-defined key K[x] are first taken to get the key from the Kasiski
test, and then all the values in the ciphertext used repeatedly in the ciphertext are found.
After determining the repeatable values, the index of each repeatable value is indexed.
Table 4 shows the results of applying the Kasiski length method to the indexation of the
repeated value, by which the distance from the first value to the xth value is determined.
Distance is represented by “y.” After finding the distance, GCD (greatest common divi-
sion) is implemented on “y.” The value obtained from GCD is considered the key length.
As per cryptanalysis, key length can be possible when the cipher and original key lengths

Figure 33. Ciphertext cryptanalysis.

A cipher key K[j] and user-defined key K[x] are first taken to get the key from the Kasiski
test, and then all the values in the ciphertext used repeatedly in the ciphertext are found.
After determining the repeatable values, the index of each repeatable value is indexed.
Table 4 shows the results of applying the Kasiski length method to the indexation of the
repeated value, by which the distance from the first value to the xth value is determined.
Distance is represented by “y.” After finding the distance, GCD (greatest common division)
is implemented on “y.” The value obtained from GCD is considered the key length. As per
cryptanalysis, key length can be possible when the cipher and original key lengths are
the same. According to the SWJK algorithm, the length of the cipher and original keys is
different.

Table 4. Cryptanalysis of ciphertext.

Proposed Algorithm Kasiski Test

Testing User-Defined
Key Length K[x]

Cipherkey
Length K[j]

Repeatable
Values Distance

[y]

GCD
Possibilities

Length
Equalization
(K[x], K[j])

Index of
Coincidence
Algorithm

Key
Identification

1 7 4 2 Not V ̸= K No No
2 10 7 4 Not V ̸= K No No
3 12 7 4 Yes V ̸= K No No
4 8 5 3 Not V ̸= K No No

An index of coincidence can be implemented if the key length and ciphertext length
are equal. Key identification is impossible if the key and ciphertext lengths are unequal.
Favorable cases and possible cases are identified in the index of coincidence. Favorable
cases mean the prediction of equal random numbers, whereas total cases refer to the number
of feasible key length calculations. The ciphertexts generated by the proposed approach are
all entirely distinct from the input. Because a technique was used to obtain the ciphertext,
replacing the original values with other values and linking all the words together, if a
value is repeated repeatedly, it does not mean that the key prediction is possible. The
key can only be derived from the ciphertext when each value is replaced with an ASCII
value. The originality of the technique provided in this paper is that it is impossible to
exploit when the values are modified, no matter how proficiently the attacker creates a
cryptanalysis program.

4.8. Comparative Cost Analysis

A WEDEx-Kerberotic system has been developed to secure data from attackers. The
novelty of the proposed algorithm is that the key and data are encrypted simultaneously.
The cipher key is obtained using the SWJK algorithm. Each encrypted ciphertext value
obtained from the proposed algorithm is interconnected. Tampering with any single value
can affect the structure of the entire ciphertext. The key obtained from each text is unique,
but its use is limited and can only be used on that text. Despite using techniques like
cryptanalysis, decrypting the ciphertext obtained from the proposed algorithm will not
be easy.

Symmetry 2024, 16, 605 25 of 28

The proposed tool has been implemented on multiple servers to evaluate the algo-
rithm’s efficacy, as illustrated in Table 5. Testing is performed across various operating
systems (OS) on each server. The initial stage involved finding the lengths of the plaintext,
key, and ciphertext. After this, the memory allocation of plain and encrypted text is deter-
mined. After determining memory allocation, the next step involves calculating the time
allocation required for the encryption and decryption of the data.

Table 5. Cost analysis.

Performance Space Complexity Time Complexity

Servers O.S Plaintext
Length

Cipher Key
Length

Ciphertext
Length

Plaintext
Memory

Allocation

Ciphertext
Memory

Allocation

Data
Encryption
Time (sec)

Data
Decryption
Time (sec)

1 MsWindow 7 41 5 42 30.17 KB 32.27 KB 10.35 12.41
2 MsWindow 8 24 5 25 28.52 KB 30.12 KB 07.21 08.12
3 MsWindow 8 25 9 25 30.17 KB 32.81 KB 10.24 22.85
4 MsWindow 10 12 3 13 21.14 KB 23.55 KB 04.58 05.11
5 MsWindow 10 37 6 38 27.40 KB 29.57 KB 09.37 11.19
6 MsWindow 10 26 4 27 24.43 KB 26.35 KB 08.53 10.14
7 MsWindow 11 65 4 66 40.31 KB 42.48 KB 13.25 15.12
8 MsWindow 11 47 5 48 32.49 KB 34.29 KB 11.19 13.45

5. Comparative Analysis

Various academics have devised unique algorithms to keep sensitive information safe.
Researchers reviewed the literature and debated the most effective methods. A hybrid
algorithm was created by academics who tweaked existing algorithms.

M. A. Al-Shabi [17] reviewed cryptographic algorithms, compared their methodolo-
gies, and found that symmetric algorithms are more secure and reliable than asymmetric
ones. This research compared the algorithms, and the best strategies were presented. How-
ever, instead of using the best techniques for cloud data security, a safe algorithm was
not constructed.

Musa et al. [18] devised a Hill cipher technique to secure data against man-in-the-
middle attacks that transformed plaintext to ciphertext using a standard ASCII table. This
paper’s issue is data decryption employing the user-defined key and Hill cipher method.

Hossaim et al. [19] used three data security techniques to create a ciphertext using
three static keys. This paper’s issue is that each key must use the same technique to decrypt
data. Key use is hard to memorize. Instead of three keys, one safe key may protect data.

In Paper [20], the attacker may easily access data after cryptanalyzing the key. The re-
searchers secured the data using a static key on plaintext. Instead of using a key, researchers
should build a key-securing method and apply it to the Vigenère cipher technique to get
a ciphertext.

In [21], the researchers made alterations to a Hill cipher algorithm and created a
modified Hill cipher chain method. The main objective of this modification was to encode
only the main key. The problem of this paper is that the security of the primary key alone
is not enough unless the key is protected as well as the data.

Tan et al. [22] examined Ceaser and Vigenère encryption algorithms to protect data
and created a hybrid algorithm by combining the best methods. To protect the data, a
static key was applied to the Ceaser cipher algorithm to get a cipher result, which was then
applied to the Vigenère cipher using the same key to get a ciphertext. Instead of applying
multiple algorithms’ outputs on each other, an efficient and trustworthy method might
boost data security, which is this paper’s challenge.

The Novelty of Proposed Work

The proposed paper algorithm can be used to protect data from attackers and can
also help users to keep data safe. In papers [18–22], the researchers developed several
security algorithms in which the data were encrypted and decrypted using a single key, as
shown in Table 6, and whether the key was static or dynamic. No article has developed
such an algorithm to simultaneously protect key and text data. The data are encrypted and

Symmetry 2024, 16, 605 26 of 28

decrypted in the proposed work using a cipher key. Each user-defined key generates a
cipher key that can only be used for that text. When the key is additionally protected, data
security can be further increased. When data security is performed using a customized
ASCII table instead of a standard ASCII table, which is only done in the proposed work,
it will be difficult for an attacker to discover the parallel indexes of each ciphertext. It is
not enough to create a new algorithm using best practices from several publications to
protect data. Cloud data cannot be secured unless a method is devised to encrypt both
the ciphertext and the key simultaneously. Just as the ciphertext algorithm must be secure
to protect the data, the key used on the ciphertext is also essential to be secure. Once
an attacker has access to a user-defined key, the attacker attempts to spoof that key on
any connected data. When the key used in each data is different and is a combination
of different characters, key accessibility will be impossible, nor can one key be used on
another data, which can be a complete and reliable security mechanism for cloud security.

Table 6. Comparative analysis.

Sr# 1 2 3 4 5 Proposed
Work

Reference No. [18] [19] [20] [21] [22]

Used Keys No Static Static Static Dynamic Cipher key

Key
Generating
Mechanism

No No No No
generated key

from Hill
matrix

SWJK
algorithm

Encryption
Time No No No No No Yes

Decryption
time No No No No No Yes

ASCII table Standard Standard Standard Standard Standard Customized

Proposed
Algorithm

Hill cipher
algorithm

Merge Caesar
cipher, Stream

cipher, and
Playfair

Modified
Vigenère

cipher
algorithm

Modified Hill
cipher

algorithm and
developed
Hill cipher

chain
algorithm

Radix-64 Bit
and Hill
matrix

WEDEx-
Kerberotic

system

Novelty

Prevent data
from man-in-
the-middle

attacks

Secured data
with three

different keys

Prevent the
key from

cryptanalysis
attacks

Provided
security to

primary key

Twice
ciphertext
than the

actual text

Cipher key,
data authenti-
cation system,

data
encryption by

WEDEx-
Kerberotic

system

Gaps

The algorithm
did not use a
key and can

be easily
decrypt

Difficulty in
implementing
the same key

on the
algorithm

where the key
is required

Secure key
can prevent

the cloud
from

cryptanalysis
attacks

Only primary
key security is
not sufficient

for data
encryption.

Cryptanalysis
possibility on

Hill matrix
algorithm

Identified all
existing

problems

Proposed
Paper

Solutions

Used SWJK
Cipher key,
not easy to

decrypt

Secure data
with a single

cipher key

Cipher key
generate from

SWJK
algorithm

Secure key
and data at

the same time.

Cryptanalysis
is not possible

Solved all
problems

When an attacker attempts to steal data, the attacker’s initial step is to get the key, for
which the attacker uses snatching methods like cryptanalysis. In this article, the key has
been secured with the help of the SWJK method, the objective of which is to obtain a key
that had no connection to the original key and to reduce the length of the cipher key by two
times from the length of the original key. After securing the key, the data are encrypted,
for which the WEDEx-Kerberotic system is developed. The purpose of that is to provide
authenticity to the cipher data. When an attacker receives the cipher data, the attacker
tries to perform pattern-matching attacks on the data. Data security can be increased if
the validity of the key is checked before applying the keys to the ciphertext because the
keys can be applied to the encrypted data only when the key is valid. When the incoming

Symmetry 2024, 16, 605 27 of 28

key is the same as the KSS key, the key is automatically applied to the ciphertext, whether
the incoming key is valid for that ciphertext or not. Data may be confidential when such a
technique is used for cloud data; no matter how efficient the algorithm is, the security of
the data cannot be broken, which is the novelty of the proposed algorithm.

6. Conclusions

After developing the WEDEx-Kerberotic framework, it is determined that when the
proposed framework is used to secure cloud data, all user-defined keys and data can be
secured simultaneously. The length of the ciphertext obtained by the algorithm is less than
that of the original plaintext, which is more than 10%. The user-defined key is secured by
applying the SWJK algorithm to it. The length of the key obtained by the SWJK algorithm
is less than 40% of the original key and is a combination of different letters, symbols,
and numbers. When the cipher key is much shorter than the original key and the cipher
key is composed of a combination of different characters, it will be impossible for an
attacker to access it. Cryptanalysis is applied to different cipher keys to determine the key’s
authenticity. It is determined that no snatching techniques, such as cryptanalysis, can be
implemented on the key obtained from the proposed algorithm, nor can accessing the key
be possible. When the proposed algorithm is used to secure the cloud data, the key can
be secured along with the data. When an attacker tries to attack the data, they can neither
access the key nor retrieve the data in its original form, which can be a secure algorithm for
cloud data.

In the future, a semi-supervised clustering algorithm will be developed to secure the
data. This algorithm will be used to assess the authenticity of the users. It will transmit the
incoming user packets to label and unlabeled clustering based on authenticity and apply a
security mechanism. After that, we will also work on game theory for more robust analysis
and security probabilistic testing.

Author Contributions: S.W.Z., conceptualization; M.N., methodology; A.A. (Ali Arshad), investiga-
tion and supervision; S.R., review; W.A., editing; M.A.B., software; A.A. (Amerah Alabrah), funding
and editing. All authors have read and agreed to the published version of the manuscript.

Funding: This research was supported by the Researchers Supporting Project number (RSP2024R476),
King Saud University, Riyadh, Saudi Arabia.

Data Availability Statement: Data are contained within the article.

Acknowledgments: This research was supported by the NASTP Institute of Information Technology,
National University of Technology and King Saud University.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Gundu, S.R.; Panem, C.; Vijaylaxmi, J. A Glance View on Cloud Infrastructures Security and Solutions. Conversational Artificial

Intelligence; Wiley: Hoboken, NJ, USA, 2024; pp. 1–15. [CrossRef]
2. Pratyush, K.; Prasad, V.K.; Mehta, R.; Bhavsar, M. A Secure Mechanism for Safeguarding Cloud Infrastructure. In Proceedings of

the International Conference on Advancements in Smart Computing and Information Security, Rajkot, India, 1–2 December 2023;
Springer Nature: Cham, Switzerland, 2022; pp. 144–158.

3. Alazaidah, R.; Al-Shaikh, A.; Al-Mousa, M.R.; Khafajah, H.; Samara, G.; Alzyoud, M.; Al-Shanableh, N.; Almatarneh, S. Website
phishing detection using machine learning techniques. J. Stat. Appl. Probab. 2024, 13, 119–129.

4. Jangjou, M.; Sohrabi, M.K. A comprehensive survey on security challenges in different network layers in cloud computing. Arch.
Comput. Methods Eng. 2022, 29, 3587–3608. [CrossRef]

5. Arunkumar, M.; Ashokkumar, K. A review on cloud computing security challenges, attacks and its countermeasures. AIP Conf.
Proc. 2024, 3037, 020047.

6. Jimmy, F.N.U. Cyber security Vulnerabilities and Remediation Through Cloud Security Tools. J. Artif. Intell. Gen. Sci. (JAIGS)
ISSN 2024, 3006, 196–233.

7. Zargar, S.T.; Joshi, J.; Tipper, D. A survey of defense mechanisms against distributed denial of service (DDOS) flooding attacks.
IEEE Commun. Surv. Tutor. 2013, 15, 2046–2069. [CrossRef]

https://doi.org/10.1002/9781394200801.ch1
https://doi.org/10.1007/s11831-022-09708-9
https://doi.org/10.1109/SURV.2013.031413.00127

Symmetry 2024, 16, 605 28 of 28

8. Gu, Y.; Li, K.; Guo, Z.; Wang, Y. Semi-supervised K-means DDoS detection method using hybrid feature selection algorithm. IEEE
Access 2019, 7, 64351–64365. [CrossRef]

9. Abdulhamid, S.M.; Shuaib, M.; Osho, O. Comparative Analysis of Classification Algorithms for Email Spam Detection. Int. J.
Comput. Netw. Inf. Secur. 2018, 1, 60–67. [CrossRef]

10. Mohammed, C.M.; Zeebaree, S.R. Sufficient comparison among cloud computing services: IaaS, PaaS, and SaaS: A review. Int. J.
Sci. Bus. 2021, 5, 17–30.

11. Ali, M.; Jung, L.T.; Sodhro, A.H.; Laghari, A.A.; Belhaouari, S.B.; Gillani, Z. A Confidentiality-based data Classification-as-a-
Service (C2aaS) for cloud security. Alex. Eng. J. 2023, 64, 749–760. [CrossRef]

12. Butt, U.A.; Amin, R.; Mehmood, M.; Aldabbas, H.; Alharbi, M.T.; Albaqami, N. Cloud Security Threats and Solutions: A Survey.
Wirel. Pers. Commun. 2023, 128, 387–413. [CrossRef]

13. Aoudni, Y.; Donald, C.; Farouk, A.; Sahay, K.B.; Babu, D.V.; Tripathi, V.; Dhabliya, D. Cloud security based attack detection using
transductive learning integrated with Hidden Markov Model. Pattern Recognit. Lett. 2022, 157, 16–26. [CrossRef]

14. Palanisamy, C.; Kumaresan, T.; Varalakshmi, S. Combined techniques for detecting email spam using negative selection and
particle swarm optimization. Int. J. Adv. Res. Trends Eng. Technol. 2016, 3, 1102.

15. Upadhyay, D.; Zaman, M.; Joshi, R.; Sampalli, S. An efficient key management and multi-layered security framework for SCADA
systems. IEEE Trans. Netw. Serv. Manag. 2021, 19, 642–660. [CrossRef]

16. Newman, S. Under the radar: The danger of stealthy DDoS attacks. Netw. Secur. 2019, 2, 18–19. [CrossRef]
17. Al-Shabi, M.A. A Survey on Symmetric and Asymmetric Cryptography Algorithms in information Security. Int. J. Sci. Res. Publ.

(IJSRP) 2019, 9, 576–589. [CrossRef]
18. Musa, A.; Mahmood, A. Client-side cryptography based security for cloud computing system. In Proceedings of the 2021

International Conference on Artificial Intelligence and Smart Systems (ICAIS), Coimbatore, India, 25–27 March 2021; pp. 594–600.
19. Hossain, M.E. Enhancing the security of caesar cipher algorithm by designing a hybrid cryptography system. Int. J. Comput. Appl.

2021, 183, 55–57. [CrossRef]
20. Akanksha, D.; Samreen, R.; Niharika, G.S.; Shruthi, A.; Kiran, M.J.; Venkatramulu, S. A hybrid cryptosystem based on modified

vigenere cipher and polybius cipher. EPRA Int. J. Res. Dev. 2022, 7, 2455–7838.
21. Sun, H.; Grishman, R. Lexicalized dependency paths based supervised learning for relation extraction. Comput. Syst. Sci. Eng.

2022, 43, 861–870. [CrossRef]
22. Tan, C.M.S.; Arada, G.P.; Abad, A.C.; Magsino, E.R. A hybrid encryption and decryption algorithm using caesar and vigenere

cipher. J. Phys. Conf. Ser. 2021, 1997, 012021. [CrossRef]
23. Arshad, A.; Nadeem, M.; Riaz, S.; Zahra, S.; Dutta, A.; Alzaid, Z.; Alabdan, R.; Almutairi, B.; Alaybani, S. Hill Matrix and Radix-64

Bit Algorithm to Preserve Data Confidentiality. Comput. Mater. Contin. 2023, 75, 3065–3089. [CrossRef]
24. Singh, V.; Pandey, S.K. Revisiting cloud security threats: Replay attack. In Proceedings of the 2018 4th International Conference

on Computing Communication and Automation (ICCCA), Greater Noida, India, 14–15 December 2018; pp. 1–6.
25. Tadapaneni, N.R. Cloud computing security challenges. Int. J. Innov. Eng. Res. Technol. 2020, 7, 1–6.
26. Zaman, A.; Safarinejadian, B.; Birk, W. Security Analysis and Fault Detection Against Stealthy Replay Attacks. Int. J. Control 2022,

95, 1562–1575. [CrossRef]
27. Thirumavalavasethurayar, P.; Ravi, T. Implementation of Replay Attack in Controller Area Network Bus using Universal

Verification Methodology. In Proceedings of the 2021 International Conference on Artificial Intelligence and Smart Systems
(ICAIS), Coimbatore, India, 25–27 March 2021; pp. 1142–1146. [CrossRef]

28. Nadeem, M.; Arshad, A.; Riaz, S.; Band, S.S.; Mosavi, A. Intercept the Cloud Network From Brute Force and DDoS Attacks via
Intrusion Detection and Prevention System. IEEE Access 2021, 9, 152300–152309. [CrossRef]

29. Bentil, F.; Lartey, I. Cloud Cryptography—A Security Aspect. Int. J. Eng. Res. Technol. (IJERT) 2021, 10, 2278-0181.
30. Supiyanto; Mandowen, S. Advanced hill cipher algorithm for security image data with the involutory key matrix. J. Phys. Conf.

Ser. 2021, 1899, 012116. [CrossRef]
31. Elsaeidy, A.; Jamalipour, A.; Munasinghe, K. A Hybrid Deep Learning Approach for Replay and DDoS Attack Detection in a

Smart City. IEEE Access 2021, 9, 154864–154875. [CrossRef]
32. Nadeem, M.; Arshad, A.; Riaz, S.; Zahra, S.; Dutta, A.; Almotairi, S. A Secure Architecture to Protect the Network from Replay

Attacks during Client-to-Client Data Transmission. Appl. Sci. 2022, 12, 8143. [CrossRef]
33. Bharath, K.P.; Kumar, M.R. New Replay Attack Detection Using Iterative Adaptive Inverse Filtering and High Frequency Band.

Expert Syst. Appl. 2022, 195, 116597. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1109/ACCESS.2019.2917532
https://doi.org/10.5815/ijcnis.2018.01.07
https://doi.org/10.1016/j.aej.2022.10.056
https://doi.org/10.1007/s11277-022-09960-z
https://doi.org/10.1016/j.patrec.2022.02.012
https://doi.org/10.1109/TNSM.2021.3104531
https://doi.org/10.1016/S1353-4858(19)30025-X
https://doi.org/10.29322/IJSRP.9.03.2019.p8779
https://doi.org/10.5120/ijca2021921585
https://doi.org/10.32604/csse.2022.030759
https://doi.org/10.1088/1742-6596/1997/1/012021
https://doi.org/10.32604/cmc.2023.035695
https://doi.org/10.1080/00207179.2020.1862917
https://doi.org/10.1109/ICAIS50930.2021.9395871
https://doi.org/10.1109/ACCESS.2021.3126535
https://doi.org/10.1088/1742-6596/1899/1/012116
https://doi.org/10.1109/ACCESS.2021.3128701
https://doi.org/10.3390/app12168143
https://doi.org/10.1016/j.eswa.2022.116597

	Introduction
	Cryptography
	Problem Formulation
	Proposed Framework

	Related Work
	Proposed Algorithm
	Customized ASCII Table
	Kerberotic System
	WEDEx-Kerberotic Data Encryption System
	WEDEx-Kerberotic Data Decryption System

	Testing
	SWJK Key Testing
	WEDEx-Kerberotic Encryption Algorithm Testing
	WEDEx-Kerberotic Decryption Algorithm Testing
	Text Encryption Testing
	Text Decryption Testing
	Testing Results
	Cryptanalysis
	Plaintext and Ciphertext Cryptanalysis
	Key Cryptanalysis

	Comparative Cost Analysis

	Comparative Analysis
	Conclusions
	References

