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Abstract: The examination of new (3 + 1)-dimensional wave equations is undertaken in this study.
Initially, the identification of the Lie symmetries of the model is carried out through the utilization
of the Lie symmetry approach. The commutator and adjoint table of the symmetries are presented.
Subsequently, the model under discussion is transformed into an ordinary differential equation using
these symmetries. The construction of several bright, kink, and dark solitons for the suggested
equation is then achieved through the utilization of the new auxiliary equation method. Subsequently,
an analysis of the dynamical nature of the model is conducted, encompassing various angles such as
bifurcation, chaos, and sensitivity. Bifurcation occurs at critical points within a dynamical system,
accompanied by the application of an outward force, which unveils the emergence of chaotic phe-
nomena. Two-dimensional plots, time plots, multistability, and Lyapunov exponents are presented to
illustrate these chaotic behaviors. Furthermore, the sensitivity of the investigated model is executed
utilizing the Runge–Kutta method. This analysis confirms that the stability of the solution is mini-
mally affected by small changes in initial conditions. The attained outcomes show the effectiveness
of the presented methods in evaluating solitons of multiple nonlinear models.

Keywords: extended (3 + 1)-dimensional wave equation; Lie symmetry method; soliton solutions;
bifurcation; chaos; multistability; sensitivity

1. Introduction

In the present age of technological advancements, significant progress has been ana-
lyzed on the subject of solitons. They play a key role in transferring data over extended
distances through fiber optics. Solitons also matter significantly as they are pivotal for the
advancement of computer systems’ computing power, while they present a wide variety
of applications. Such applications cover image processing, data analysis, neurology, and
fluids, among other fields [1–3]. As a result, experts have actively explored the evolu-
tion of soliton solutions for nonlinear partial differential equations (NLPDEs). Various
effective methods have been employed to obtain soliton solutions for NLPDEs, including
the Darboux transform [4], Hirota’s approach [5], the Painlevé test [6], the sub-equation
method [7], the unified approach [8], the bilinear approach [9], and multiple techniques
discussed in [10].

Among these approaches, Lie analysis stands out as one of the systematic approaches
for deriving closed-form solutions to NLPDEs. In recent decades, the application of Lie sym-
metries has been widespread, extending to numerous instances in both mathematics and
engineering [11]. Upon conducting Lie analysis on nonlinear models, symmetry reductions
and group-invariant solutions become accessible. These resultant symmetries frequently
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prove instrumental in diminishing both the number of independent variables in PDEs
and the order of an ordinary differential equation (ODE). The academic community has
demonstrated significant interest in the exploration of symmetries, leading to a substantial
body of noteworthy research in this field. In their work, Kumar et al. [11] applied the Lie
approach to examine the generalized Kadomtsev Petviashvili (KP) equation, while the
authors in reference [12] scrutinized the Oskolkov model using Lie analysis and extracted
several soliton structures.

Substantial investigations have previously explored the behavior of solitons, utilizing
various nonlinear frameworks like the Sakovich equation [13], Schrödinger equation [14],
and Zakharov–Kuznetsov modified equal-width equation [15]. The integrable equations
in (3 + 1) dimensions have been the subject of increased research attention lately. These
equations play a key role in elucidating the physics behind numerous scientific and engi-
neering phenomena. Various nonlinear extended equations in (3 + 1) dimensions, including
the Korteweg–de Vries (KdV) equation, modified KP equation, and others, have been
formulated in response to this growing interest.

Akinyemi [16] examined the equation in (2 + 1) dimensions:

AΥxt + aΥxx + b(Υ2)xx + cΥxxxx + dΥyy = 0, (1)

and its extended version, comprising two additional linear terms:

AΥxt + aΥxx + b(Υ2)xx + cΥxxxx + dΥyy + γ1Υty + γ2Υtt = 0, (2)

Here, the constants A, a, b, c, d, γ1, and γ2 in the given context are unrestricted real
values. It is worth highlighting that when A = γ1 = d = 0, Equation (2) simplifies to the
Boussinesq equation:

Υtt + aΥxx + b(Υ2)xx + cΥxxxx = 0. (3)

Equations (1) and (2) have been demonstrated to exhibit Painlevé integrability, and
their multiple solitons have also been obtained [16]. In the ongoing study, our intention is
to address an extended version of Equation (1) [17]:

Υxt + aΥxx + b(Υ2)xx + cΥxxxx + dΥyy + eΥxy + hΥxz + kΥyz + mΥzz = 0, (4)

where Υ = Υ(x, y, z, t). It is evident that Equation (4) is constructed by introducing four
additional linear terms, specifically, eΥxy, hΥxz, kΥyz, and mΥzz, to Equation (1). Further-
more, the coefficients a, b, c, d, e, h, k, and m are random real values. In their study [17], the
authors investigated the integrability criteria for the discussed models (4) through the use
of the Painlevé test. The study concluded by analyzing a set of lump solutions for the
suggested equation.

This study deals with the use of the new auxiliary equation (NAE) method [12,18] in
order to analyze as well as to generate soliton structures for the considered model. It is
worth mentioning here that the methodology discussed in this work has not been applied
in prior research to address Equation (4). Through the adoption of this novel approach,
the obtained results manifest into different forms, such as exponential, trigonometric,
hyperbolic, and rational functions. Additionally, the findings are depicted graphically
using three-dimensional, two-dimensional, and density plots, thereby improving the clarity
of the results. The applications of dynamical systems are diverse, covering fields such as
biology, engineering, and economics [19].

In general, scholars have demonstrated a growing interest in investigating many
aspects of dynamical systems, including bifurcation analysis, chaos, and sensitivity. Bifur-
cation studies how an orbit varies with respect to different parameters. The majority of
continuous dynamical systems using differential equations (DEs) have parameters. It is
possible for a little change in a parameter to have a big effect on the response. It is a qualita-
tive examination of the planar dynamical system that takes place for distinct values of the
physical parameters that are present in the system. Equilibria, periodic orbits, and other
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invariant sets typically experience changes in their local stability characteristics during a
bifurcation.(Please revise this part to reduce duplication.) It has various applications in
different fields such as climate science, ecology, economics, and finance. In deterministic
nonlinear systems that behave irregularly and erratically, chaos can also arise. Numerous
researchers have studied the chaos and bifurcation phenomena within planar systems. For
instance, Kazmi et al. [20] reported the soliton solutions and examined the dynamics of
bifurcation and chaos in the q-deformed Sinh–Gordon model. Similarly, Rafiq et al. [21]
investigated the qualitative nature of shallow water equations, uncovering multiwave
solitons. Additionally, Hosseini et al. [22] analyzed the dynamic characteristics of the
Schrödinger equation. The chaotic phenomena of the suggested equation is analyzed
through the presentation of two-dimensional plots, time plots, and Lyapunov exponents
analysis. Furthermore, a sensitivity [23] of the system has been conducted employing the
Runge–Kutta (RK) method.

In this work, we an explored extended integrable wave equation (EIWE) (4) from three
distinct viewpoints:

• Initially, the Lie approach is utilized to identify translational symmetries. Subsequently,
leveraging these symmetries, the model undergoes a transformation into an ODE.
The solution to the resulting ODE is obtained through the application of the NAE
approach, facilitating the examination of soliton structures.

• Secondly, it is essential to explore the parameter-dependent analysis of the studied sys-
tem through the lenses of bifurcation and chaos. A detailed explanation of bifurcation
for the undisturbed dynamic system is provided, illustrated via phase plots. Addition-
ally, it explores chaotic tendencies in the perturbed dynamical system employing the
phase plot, time plot, and Lyapunov exponents tool.

• Lastly, we examine the sensitivity of the considered model under various initial
conditions. Slight modifications to the initial values can lead to a subtle change in the
outcome of the system. Therefore, our observation suggests that the suggested system
exhibits sensitivity, though not to an extreme extent.

The structure of the manuscript is as follows: In Section 2, we identify the Lie sym-
metries governing the equation and transform the model into an ODE using the extracted
symmetries. The analytical solution of the model and results obtained from the analysis are
discussed in Section 3. A comprehensive investigation of the dynamic characteristics of
the proposed equation, utilizing phase portraits of bifurcation, is conducted in Section 4.
Chaotic phenomena are explored in Section 5. Section 6 is dedicated to a discussion on the
multistability analysis of the system. Sensitivity analysis is covered in Section 7. Finally,
the conclusion is provided in the last section.

2. Lie Symmetries

Lie analysis focuses on discerning transformations that maintain the integrity of a
given DE. These symmetries are often derived from Lie operators, which collectively form a
Lie algebra [24,25]. The application of these operators to the DE allows for the identification
of symmetries that uphold its inherent structure. Extracting symmetries and reducing the
dimensions of the PDE involves the following key steps:

Step 1: Identify classical Lie point symmetries for the suggested model.
Step 2: Construct an algebra (in our case, an abelian algebra) based on the identified

symmetries.
Step 3: Determine similarity variables corresponding to each symmetry.
Step 4: Utilize the obtained symmetries to reduce the PDE to an ODE.
Step 5: Derive solutions in the form of traveling waves from the resulting ODE.
Let us examine a group of infinitesimal transformations characterized by a single

parameter in Lie theory.
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x∗ = x + ϵΨ1(x, y, z, t, Υ) +O(ϵ2),

y∗ = y + ϵΨ2(x, y, z, t, Υ) +O(ϵ2),

z∗ = z + ϵΨ3(x, y, z, t, Υ) +O(ϵ2),

t∗ = t + ϵΨ4(x, y, z, t, Υ) +O(ϵ2),

Υ∗ = Υ + ϵΘ(x, y, z, t, Υ) +O(ϵ2),

where group parameter ϵ ≪ 1 and Ψ1, Ψ2, Ψ3, Ψ4, and Θ are the coefficient functions. An
infinitesimal generator associated with the aforementioned Lie group can be expressed
as follows:

F = Ψ1(x, y, z, t, Υ)
∂

∂x
+ Ψ2(x, y, z, t, Υ)

∂

∂y
+ Ψ3(x, y, z, t, Υ)

∂

∂z
+ Ψ4(x, y, z, t, Υ)

∂

∂t
+ Θ(x, y, z, t, Υ)

∂

∂Υ
.

The invariance condition for Equation (4) with F becomes

Pr(4)F
(

Υxt + aΥxx + b(Υ2)xx + cΥxxxx + dΥyy + eΥxy + hΥxz + kΥyz + mΥzz

)
|Eq.(4)=0= 0, (5)

where Pr(4)F is the fourth prolongation of F , defined as{
Pr(4)F = F + Θx ∂

∂Υx
+ Θxt ∂

∂Υxt
+ Θxx ∂

∂Υxx
+ Θyy ∂

∂Υyy
+ Θxy ∂

∂Υxy
+ Θxz ∂

∂Υxz
+ Θyz ∂

∂Υyz
+

Θzz ∂
∂Υzz

+ Θxxxx ∂
∂Υxxxx

,
(6)

where

Θx = Dx(Θ)− ΥxDx(Ψ1)− ΥyDx(Ψ2)− ΥzDx(Ψ3)− ΥtDx(Ψ4),
Θxt = Dt(Θx)− ΥtxDt(Ψ1)− ΥtyDt(Ψ2)− ΥtzDt(Ψ3)− ΥttDt(Ψ4),
Θxx = Dx(Θx)− ΥxxDx(Ψ1)− ΥxyDx(Ψ2)− ΥxzDx(Ψ3)− ΥxtDx(Ψ4),
Θyy = Dy(Θy)− ΥxyDy(Ψ1)− ΥyyDy(Ψ2)− ΥyzDy(Ψ3)− ΥytDy(Ψ4),
Θxy = Dy(Θx)− ΥxyDy(Ψ1)− ΥyyDy(Ψ2)− ΥyzDy(Ψ3)− ΥytDy(Ψ4),
Θxz = Dz(Θx)− ΥxzDz(Ψ1)− ΥyzDz(Ψ2)− ΥzzDz(Ψ3)− ΥtzDz(Ψ4),
Θyz = Dz(Θy)− ΥxzDz(Ψ1)− ΥyzDz(Ψ2)− ΥzzDz(Ψ3)− ΥtzDz(Ψ4),
Θzz = Dz(Θz)− ΥxzDz(Ψ1)− ΥyzDz(Ψ2)− ΥzzDz(Ψ3)− ΥztDz(Ψ4),
Θxxxx = Dx(Θxxx)− ΥxxxxDx(Ψ1)− ΥxxxyDx(Ψ2)− ΥxxxzDx(Ψ3)− ΥxxxtDx(Ψ4),

(7)

Here Dx, Dy, Dz, and Dt are total derivatives with respect to x, y, z, and t; it can
written as 

Dx = ∂
∂x + Υx

∂
∂Υ + Υxx

∂
∂Υx

+ Υxy
∂

∂Υy
+ Υxz

∂
∂Υz

+ Υxt
∂

∂Υt
,

Dy = ∂
∂y + Υy

∂
∂Υ + Υxy

∂
∂Υx

+ Υyy
∂

∂Υy
+ Υyz

∂
∂Υz

+ Υyt
∂

∂Υt
,

Dz =
∂
∂z + Υz

∂
∂Υ + Υxz

∂
∂Υx

+ Υyz
∂

∂Υy
+ Υzz

∂
∂Υz

+ Υzt
∂

∂Υt
,

Dt =
∂
∂t + Υt

∂
∂Υ + Υxt

∂
∂Υx

+ Υyt
∂

∂Υy
+ Υzt

∂
∂Υz

+ Υtt
∂

∂Υt
.

Combining system (7) and Equation (6) into Equation (5) produces a set of equations
for determination. Solving this system results in the derivation of the following symmetries
for Equation (4):
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F1 = Dx, F2 = Dy, F3 = Dz, F4 = Dt, F5 = G′
1(t)DΥ + 2bG1(t)Dx,

F6 = (2dht−ekt−2dz+ky)
4dm−k2 Dx + tDz, F7 = (2emt−hkt+kz−2my)

4dm−k2 Dx + tDy,

F8 = (ez−hy)
k Dx +

(2dz−ky)
k Dy +

(kz−2my)
k Dz, F9 = G′

2(t)zDΥ

− 2(4mG2(t)dh−4mG2(t)zd−G2(t)hk2+2mG2(t)yk+G′
2(t)k

2z−2mG′
2(t)yk)b

4dm−k2 Dx + (
∫
(−2G2(t)bk)dt)Dy − 4G2(t)bmDz,

F10 = ΥDΥ − 3
2 tDt − (8adkmt−2ak3t−2dh2kt−2e2kmt+2ehk2t−8demz+2dhkz+8dhmy+4dkmx+ek2z+2ekmy−3hk2y−k3x)

k(4dm−k2)
Dx

+ 2(dz−ky)
k Dy − 2my

k Dz, F11 = G′
3(t)yDΥ + 1

4dm−k2

(
4G′

3(t)bdkz − 2G′
3(t)bk2y − 4G3(t)bkdz + 8G3(t)bdmy

+4
( ∫

− 2b(2kG′
3(t)dh−2kG′

3(t)dz−k2G′
3(t)e+k2G′

3(t)y+2G′′
3 (t)dkz−G′′

3 (t)k
2y+4G3(t)dem−2G3dhk)

4dm−k2

)
dt
)
md −

( ∫
−2

2b(2kG′
3(t)dh−2kG′

3(t)dz−k2G′
3(t)e+k2G′

3(t)y+2G′′
3 (t)dkz−G′′

3 (t)k
2y+4G3(t)dem−2G3dhk)

4dm−k2

)
dt
)
k2
)
Dx

+(
∫
(−4G3(t)bd)dt)Dy − 2G3(t)bkDz.

• Commutator table:
[Fi,Fj] F1 F2 F3 F4
F1 0 0 0 0
F2 0 0 0 0
F3 0 0 0 0
F4 0 0 0 0

where [Fi,Fj] = Fi(Fj)−Fj(Fi), i = 1, 2, 3, 4.

• Adjoint table:
∗ F1 F2 F3 F4
F1 F1 F2 F3 F4
F2 F1 F2 F3 F4
F3 F1 F2 F3 F4
F4 F1 F2 F3 F4

where ∗ = Ad(εFi,Fj) = Fj − ε[Fi,Fj] +
ε2

2 [Fi, [Fi,Fj]]−, . . . .

Traveling Wave Structures

One can notice that the set of F1,F2,F3,F4 forms an abelian subalgebra. Our objective
is to identify the traveling wave structures in the given model, which are associated with
translational symmetries of the form:

Υ =
(

β1
∂

∂x
+ β2

∂

∂y
+ β3

∂

∂z
)
+ µ

∂

∂t
.

Through the application of the above linear combination denoted as the Υ of symme-
tries, we establish the transformation in the following manner:

Υ(x, y, z, t) = Γ(ζ), ζ = (β1x + β2y + β3z) + µt. (8)

Here, Γ(ζ) and µ represent the characteristics of the traveling wave, specifically re-
ferring to its shape and velocity. Additionally, β1, β2, β3 serve as random parameters.
Upon substituting the expression from Equation (8) into Equation (4), we obtain the result-
ing equation:

(cβ4
1)Γ

(4) + (β1µ + aβ2
1 + dβ2

2 + eβ1β2 + hβ1β3 + kβ2β3 + mβ2
3)Γ

′′ + 2bβ2
1ΓΓ′′ + 2bβ2

1(Γ
′)2 = 0. (9)
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By integrating Equation (9) twice with respect to ζ, and setting the integration constants
to zero, we obtain

(cβ4
1)Γ

′′ + (β1µ + aβ2
1 + dβ2

2 + eβ1β2 + hβ1β3 + kβ2β3 + mβ2
3)Γ + bβ2

1Γ2 = 0. (10)

3. Analytical Solutions

In the following section, we examine the soliton solutions of Equation (4) by employing
the NAE approach [12,18]. This approach encompasses an initial solution that can be
expressed as follows:

Γ(ζ) =
j

∑
i=0

κiΛiΩ(ζ), (11)

where κi is a random real parameter such that κj ̸= 0. The positive integer j serves as
the balancing number, determined through the principle of homogeneous balance. This
principle entails balancing the highest order derivative with the nonlinear term in the ODEs.
By setting the terms Γ′′ and Γ2 equal in Equation (10) as 2j = j + 2, it yields j = 2. Utilizing
this approach for j = 2, the initial solution becomes

Γ(ζ) = κ0 + κ1ΛΩ(ζ) + κ2Λ2Ω(ζ). (12)

Here, κ0, κ1, and κ2 are arbitrary parameters to be determined. Additionally, an
auxiliary function Ω = Ω(ζ) is introduced, which satisfies the following ODE:

Ω′(ζ) =
1

ln(Λ)

(
αΛ−Ω(ζ) + ω + ρΛΩ(ζ)

)
. (13)

In this context, α, ρ, and ω represent arbitrary constants. Upon substituting the values
from Equations (12) and (13) into Equation (10) and equating the coefficients of ΛΩ(ξ) to
zero, a set of equations is obtained. Solving this system, with the assistance of software such
as Mathematica, yields solutions for κ0, κ1, κ2, and a. The obtained solutions are as follows:

κ0 =
−6cβ2

1ρα
b , κ1 =

−6cβ2
1ρω

b , κ2 =
−6cβ2

1ρ2

b ,

a =
−dβ2

2−µβ1−eβ1β2−hβ1β3−kβ2β3−cω2β4
1+4cραβ4

1−mβ2
3

β2
1

.

By substituting the aforementioned values into Equation (12) and applying the trans-
formation outlined in Equation (8), we derive the solutions for Equation (4).

• Type 1: For ρ ̸= 0 and ω2 − 4ρα < 0, we have

Υ1,1(x, y, z, t) = −6cβ2
1ρα

b − 6cβ2
1ρω
b

(
−ω
2ρ +

√
4αρ−ω2

2ρ tan
(√

4αρ−ω2

2 ζ

))
− 6cβ2

1ρ2

b

(
−ω
2ρ +

√
4αρ−ω2

2ρ tan
(√

4αρ−ω2

2 ζ

))2

.

Υ1,2(x, y, z, t) = −6cβ2
1ρα

b − 6cβ2
1ρω
b

(
−ω
2ρ −

√
4αρ−ω2

2ρ cot
(√

4αρ−ω2

2 ζ

))
− 6cβ2

1ρ2

b

(
−ω
2ρ −

√
4αρ−ω2

2ρ cot
(√

4αρ−ω2

2 ζ

))2

.

(14)
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• Type 2: For ρ ̸= 0 and ω2 − 4ρα > 0, we have

Υ2,1(x, y, z, t) = −6cβ2
1ρα

b − 6cβ2
1ρω
b

(
−ω
2ρ −

√
ω2−4αρ

2ρ tanh
(√

ω2−4αρ
2 ζ

))
− 6cβ2

1ρ2

b

(
−ω
2ρ −

√
ω2−4αρ

2ρ tanh
(√

ω2−4αρ
2 ζ

))2

.

Υ2,2(x, y, z, t) = −6cβ2
1ρα

b − 6cβ2
1ρω
b

(
−ω
2ρ −

√
ω2−4αρ

2ρ coth
(√

ω2−4αρ
2 ζ

))
− 6cβ2

1ρ2

b

(
−ω
2ρ −

√
ω2−4αρ

2ρ coth
(√

ω2−4αρ
2 ζ

))2

.

(15)

• Type 3: For ρ ̸= 0, ρ = −α, and ω2 − α2 < 0, we have

Υ3,1(x, y, z, t) = −6cβ2
1ρα

b − 6cβ2
1ρω
b

(
−ω

ρ +

√
−(ω2−α2)

ρ tan
(√

−(ω2−α2)
2 ζ

))
− 6cβ2

1ρ2

b

(
−ω

ρ +

√
−(ω2−α2)

ρ tan
(√

−(ω2−α2)
2 ζ

))2

.

Υ3,2(x, y, z, t) = −6cβ2
1ρα

b − 6cβ2
1ρω
b

(
−ω

ρ +

√
−(ω2−α2)

ρ cot
(√

−(ω2−α2)
2 ζ

))
− 6cβ2

1ρ2

b

(
−ω

ρ +

√
−(ω2−α2)

ρ cot
(√

−(ω2−α2)
2 ζ

))2

.

(16)

• Type 4: For ρ ̸= 0, ρ = −α, and ω2 − α2 > 0, we have

Υ4,1(x, y, z, t) = −6cβ2
1ρα

b − 6cβ2
1ρω
b

(
−ω

ρ +

√
(ω2−α2)

ρ tanh
(√

(ω2−α2)
2 ζ

))
− 6cβ2

1ρ2

b

(
−ω

ρ +

√
(ω2−α2)

ρ tanh
(√

(ω2−α2)
2 ζ

))2

.

Υ4,2(x, y, z, t) = −6cβ2
1ρα

b − 6cβ2
1ρω
b

(
−ω

ρ +

√
(ω2−α2)

ρ coth
(√

(ω2−α2)
2 ζ

))
− 6cβ2

1ρ2

b

(
−ω

ρ +

√
(ω2−α2)

ρ coth
(√

(ω2−α2)
2 ζ

))2

.

(17)

• Type 5: For ρ = α and ω2 − 4α2 < 0, we have

Υ5,1(x, y, z, t) = −6cβ2
1ρα

b − 6cβ2
1ρω
b

(
−ω
2α +

√
4α2−ω2

2α tan
(√

4α2−ω2

2 ζ

))
− 6cβ2

1ρ2

b

(
−ω
2α +

√
4α2−ω2

2α tan
(√

4α2−ω2

2 ζ

))2

.

Υ5,2(x, y, z, t) = −6cβ2
1ρα

b − 6cβ2
1ρω
b

(
−ω
2α −

√
4α2−ω2

2α cot
(√

4α2−ω2

2 ζ

))
− 6cβ2

1ρ2

b

(
−ω
2α −

√
4α2−ω2

2α cot
(√

4α2−ω2

2 ζ

))2

.

(18)
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• Type 6: For ρ=α and ω2 − 4α2 > 0, we have

Υ6,1(x, y, z, t) = −6cβ2
1ρα

b − 6cβ2
1ρω
b

(
−ω
2α −

√
ω2−4α2

2α tanh
(√

ω2−4α2

2 ζ

))
− 6cβ2

1ρ2

b

(
−ω
2α −

√
ω2−4α2

2α tanh
(√

ω2−4α2

2 ζ

))2

.

Υ6,2(x, y, z, t) = −6cβ2
1ρα

b − 6cβ2
1ρω
b

(
−ω
2α −

√
ω2−4α2

2α coth
(√

ω2−4α2

2 ζ

))
− 6cβ2

1ρ2

b

(
−ω
2α −

√
ω2−4α2

2α coth
(√

ω2−4α2

2 ζ

))2

.

(19)

• Type 7: For ω2 = 4ρα, we have

Υ7,1(x, y, z, t) =
−6cβ2

1ρα

b
−

6cβ2
1ρω

b

(
− 2 + ωζ

2ρζ

)
−

6cβ2
1ρ2

b

(
− 2 + ωζ

2ρζ

)2

. (20)

• Type 8: For ρα < 0, ω = 0, and ρ ̸= 0, we have

Υ8,1(x, y, z, t) = −6cβ2
1ρα

b − 6cβ2
1ρω
b

(
−

√
−α
ρ tanh

(
√−αρζ

))
− 6cβ2

1ρ2

b

(
−

√
−α
ρ tanh

(
√−αρζ

))2

.

Υ8,2(x, y, z, t) = −6cβ2
1ρα

b − 6cβ2
1ρω
b

(
−

√
−α
ρ coth

(
√−αρζ

))
− 6cβ2

1ρ2

b

(
−

√
−α
ρ coth

(
√−αρζ

))2

.

(21)

• Type 9: For α = −ρ, ω = 0, we have

Υ9,1(x, y, z, t) =
−6cβ2

1ρα

b
−

6cβ2
1ρω

b

(
− 1 + e−2ρ

1 − e−2ρ
ζ

)
−

6cβ2
1ρ2

b

(
− 1 + e−2ρ

1 − e−2ρ
ζ

)2

. (22)

• Type 10: For ρ = ω = L, α = 0, we have

Υ10,1(x, y, z, t) =
−6cβ2

1ρα

b
−

6cβ2
1ρω

b

(
eLζ

1 − eLζ

)
−

6cβ2
1ρ2

b

(
eLζ

1 − eLζ

)2

. (23)

• Type 11: For ω = α + ρ, we have

Υ11,1(x, y, z, t) =
−6cβ2

1ρα

b
−

6cβ2
1ρω

b

(
− 1 − αe(α−ρ)ζ

1 − ρe(α−ρ)ζ

)
−

6cβ2
1ρ2

b

(
− 1 − αe(α−ρ)ζ

1 − ρe(α−ρ)ζ

)2

. (24)

• Type 12: For ω = −α − ρ, we have

Υ12,1(x, y, z, t) =
−6cβ2

1ρα

b
−

6cβ2
1ρω

b

(
e(−ρ+α)ζ − α

e(−ρ+α)ζ − ρ

)
−

6cβ2
1ρ2

b

(
e(−ρ+α)ζ − α

e(−ρ+α)ζ − ρ

)2

. (25)
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• Type 13: For α = ω = ρ ̸= 0, we have
Υ13,1(x, y, z, t) = −6cβ2

1ρα
b − 6cβ2

1ρω
b

(
1
2

[√
3 tan

(√
3

2 αζ

)
− 1

])
− 6cβ2

1ρ2

b

(
1
2

[√
3 tan

(√
3

2 αζ

)
− 1

])2

.
(26)

• Type 14: For α = 0, we have

Υ14,1(x, y, z, t) =
−6cβ2

1ρα

b
−

6cβ2
1ρω

b

(
ωeωζ

1 − ρeωζ

)
−

6cβ2
1ρ2

b

(
ωeωζ

1 − ρeωζ

)2

. (27)

• Type 15: For ω = α = 0, we have

Υ15,1(x, y, z, t) =
−6cβ2

1ρα

b
−

6cβ2
1ρω

b

(
−1
ρζ

)
−

6cβ2
1ρ2

b

(
−1
ρζ

)2

. (28)

• Type 16: For ω = ρ = 0, we have

Υ16,1(x, y, z, t) =
−6cβ2

1ρα

b
−

6cβ2
1ρω

b

(
αζ

)
−

6cβ2
1ρ2

b

(
αζ

)2

. (29)

• Type 17: For α = ρ, ω = 0, we have

Υ17,1(x, y, z, t) =
−6cβ2

1ρα

b
−

6cβ2
1ρω

b

(
tan(αζ)

)
−

6cβ2
1ρ2

b

(
tan(αζ)

)2

. (30)

• Type 18: For α = ρ = 0, we have

Υ18,1(x, y, z, t) =
−6cβ2

1ρα

b
−

6cβ2
1ρω

b

(
sinh(ωζ) + cosh(ωζ)

)
−

6cβ2
1ρ2

b

(
sinh(ωζ) + cosh(ωζ)

)2

. (31)

• Type 19: For α = ω = L, ρ = 0, we have

Υ19,1(x, y, z, t) =
−6cβ2

1ρα

b
−

6cβ2
1ρω

b

(
eLζ − 1

)
−

6cβ2
1ρ2

b

(
eLζ − 1

)2

. (32)

• Type 20: For ρ = 0, we have

Υ20,1(x, y, z, t) =
−6cβ2

1ρα

b
−

6cβ2
1ρω

b

(
eωζ − p

q

)
−

6cβ2
1ρ2

b

(
eωζ − p

q

)2

. (33)

Graphical Representation

In this part, we analyze a diverse set of acquired solutions, evaluating their unique
features. By investigating the physical structures, we interpret the dynamic nature of these
solutions concerning the EIWE (4). Employing the NAE method, this study generates a
range of soliton structures. To deepen our comprehension of the dynamic wave behavior
exhibited by the acquired solutions, we present graphical depictions in 3D, 2D, and density
plots. Additionally, by employing suitable parameter values, we identify various soliton
structures, including bright, kink, and dark solitons. In Figure 1a, the solution Υ2,1 is
visually presented in three dimensions in the xt-plane, accompanied by its two-dimensional
and density plots. The parameter values for this display are as follows: β1 = 2.4, β2 = 1.2,
β3 = 2.5, µ = 1.5, b = 1, c = 1.5 ω = 0.5, α = 0.1, ρ = −0.3, y = 0.1, and z = 2.
The 3D graph spans the ranges −5 ≤ x ≤ 5 and −5 ≤ t ≤ 5. The 2D plot is between
dependent variable Υ2,1 and independent variable x within the interval −2 ≤ x ≤ 5 at
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various time values as t = 1, 2, 3. In Figure 1b, 3D, density, and 2D visualizations of Υ2,1 are
presented in the xz-plane with the same parameters as in the previous case. The 3D graph
is plotted within the ranges of −5 ≤ x ≤ 5 and −5 ≤ z ≤ 5. The 2D plot illustrates the
relationship between the dependent variable Υ2,1 and the independent variable z within
the interval −7 ≤ z ≤ 5 at x = 1, 2, 3. In Figure 1c, a visualization of the same solution is
presented in the yz-plane. The 3D graph is plotted within the ranges of −5 ≤ y ≤ 5 and
−5 ≤ z ≤ 5. The 2D plot illustrates the relationship between the dependent variable Υ2,1
and the independent variable y within the interval −9 ≤ y ≤ 6 at z = 1, 2, 3. In this context,
the solutions manifest as bright solitons. In nonlinear optics, bright solitons are primary
self-localized patterns found in optical fields within dispersive nonlinear mediums, such as
optical fibers. They manifest as concentrated intensity peaks amid a uniform background.

Moving to Figure 2a, the solution Υ4,1 is depicted in three dimensions in the xy-plane,
along with its 2D and density graphs. The parameter values for this display are as follows:
β1 = 1.4, β2 = 1.2, β3 = 0.5, µ = 1.5, c = 1.5, b = 1, ω = −3, α = −2, ρ = 2, t = 0.1, and
z = 2. The 3D graph spans the ranges −8 ≤ x ≤ 8 and −6 ≤ y ≤ 6. The 2D plot is between
dependent variable Υ4,1 and independent variable x within the interval −5 ≤ x ≤ 2 at
y = 1, 2, 3. In Figure 2b, the 3D, density, and 2D visualizations of Υ4,1 are presented in
the tz-plane with the same parameters as in the previous case. The 3D graph is plotted
within the ranges of −15 ≤ t ≤ 15 and −5 ≤ z ≤ 5. The 2D plot illustrates the relationship
between the dependent variable Υ4,1 and the independent variable t within the interval
−3 ≤ t ≤ 8 at z = 1, 2, 3. In Figure 2c, a visualization of same solution is presented in the
xz-plane. The 3D graph is plotted within the ranges of −6 ≤ x ≤ 6 and −2 ≤ z ≤ 2. The 2D
plot illustrates the relationship between the dependent variable Υ4,1 and the independent
variable z within the interval −25 ≤ z ≤ 12 at x = 1, 2, 3. In this case, the solutions are
displayed as kink solitons. In nonlinear optics, kink waves are propagating waves that rise
or incline from one asymptotic position to another, eventually stabilizing as they extend
to infinity.

Furthermore, in Figure 3a, the solution Υ6,1 is depicted in three dimensions in the
xz-plane, along with its 2D and density graphs. The parameter values for this display
are as follows: β1 = −1, β2 = −1, β3 = −1, µ = −1.5, c = −1.5, b = 1, ω = 3, α = 1,
ρ = 1, t = 0.01, and y = 1. The 3D graph spans the ranges −5 ≤ x ≤ 5 and −5 ≤ z ≤ 5.
The 2D plot is between dependent variable Υ6,1 and independent variable x within the
interval −7 ≤ x ≤ 5 at z = 1, 2, 3. In Figure 3b, the 3D, density, and 2D visualizations
of Υ6,1 are presented in the tz-plane with the same parameters as in the previous case.
The 3D graph is plotted within the ranges of −3 ≤ t ≤ 3 and −3 ≤ z ≤ 3. The 2D
plot illustrates the relationship between the dependent variable Υ6,1 and the independent
variable z within the interval −5 ≤ z ≤ 7 at t = 1, 2, 3. In Figure 3c, a visualization of
the same solution is presented in the xy-plane. The 3D graph is plotted within the ranges
of −2 ≤ x ≤ 2 and −1 ≤ y ≤ 2. The 2D plot illustrates the relationship between the
dependent variable Υ6,1 and the independent variable x within the interval −4.8 ≤ x ≤ 1
at y = 1, 2, 3. In this case, the solutions are displayed as dark solitons. Dark solitons attract
considerable attention in optics due to their stable transmission. In fiber optics, a stable
soliton typically emerges when there is a balance between Kerr nonlinearity and group
velocity dispersion (GVD). Within the anomalous dispersion, solitons manifest as bright
solitons, while in the normal dispersion, they are transmitted as dark solitons. All solutions
exhibit practical applicability in optical communications. Furthermore, these solutions
demonstrate the ability to maintain both their shape and velocity during prolonged travel
over considerable distances.
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(a) y = 0.1, z = 2. (b) t = 0.5, y = 2. (c) x = 0.4, t = 1.

Figure 1. Depiction of the solution Υ2,1 across various planes.
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(a) t = 0.1, z = 2. (b) x = 0.1, y = 2. (c) y = 2, t = 0.1.

Figure 2. Depiction of the solution Υ4,1 across various planes.
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(a) t = 0.01, y = 1. (b) x = 0.3, y = 1. (c) t = 0.04, z = 1.

Figure 3. Depiction of the solution Υ6,1 across various planes.

4. Bifurcation Phenomena

In the current section, we analyze Equation (4) within the framework of bifurcation
analysis [20–22]. Upon employing the Galilean transformation to Equation (10), we derive
the planar system as follows: 

dΓ
dζ = Z,
dZ
dζ = −σ0Γ − σ1Γ2,

(34)

where σ0 =
(β1µ+aβ2

1+dβ2
2+eβ1β2+hβ1β3+kβ2β3+mβ2

3)

cβ4
1

, σ1 = b
cβ2

1
. The Hamiltonian of (34) is

expressed as follows:

H(Γ, Z) =
Z2

2
+ σ0

Γ2

2
+ σ1

Γ3

3
, (35)
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which satisfies

∂H
∂Γ

= −Z′,
∂H
∂Z

= Γ′.

In practice, Equation (34) defines a two-dimensional system, and the trajectories within
its phase space are governed by the vector field associated with Equation (34). Hence, it is
crucial to analyze different phase portraits of (34) by varying its parameters. Equilibria and
periodic orbits typically experience changes in their local stability characteristics during a
bifurcation. For this reason, we initially pinpoint the critical points Pj(Γ, Z) (where j = 1, 2)
for system (35). These points of equilibrium occur when dΓ

dζ = 0 and dZ
dζ = 0, yielding two

critical points determined by specific parameter values.

P1 = (0, 0),P2 = (
−σ0

σ1
, 0).

Furthermore, the Jacobian of the system will be

J (Γ, Z) =
(

0 1
−σ0 − 2σ1Γ 0

)
(36)

The determinant and trace of (36) at the critical point Pj are indicated by B and T ,
respectively, and these values are provided as follows:

T = trace(J )|Pj = 0, B = det(J )|Pj = σ0 + 2σ1Γ.

The fixed point is classified as a saddle when B < 0, a central point when B > 0 and
T = 0, a cusp when B = 0, and a node if B > 0 and T 2 − 4B > 0.

In the subsequent discussion, we depict symbols used for classifying distinct orbits
within the phase portraits of a planner system (34) as follows:

• A nonlinear periodic trajectory is denoted as NPT(u∗, v∗).
• A nonlinear homoclinic trajectory is denoted as NHT(u∗, v∗).

Here, u∗ and v∗ refer to the total fixed points and the overall separation layers en-
compassed within the trajectory depicted in the phase portrait. This gives rise to various
scenarios as follows:

• Case 1: Let σ0 > 0 and σ1 > 0.
For β1 = β2 = β3 = k = m = c = b = d = µ = 1, a = e = h = −1, σ0 = 1, and σ1 = 1,
system (34) has two fixed points, P1 = (0, 0) and P2 = (−1, 0). In this case, P1 is
center and P2 is saddle. These points are presented in Figure 4a.

• Case 2: Let σ0 < 0 and σ1 < 0.
For β1 = β2 = β3 = k = m = c = d = 1, µ = a = b = e = h = −1, σ0 = −1, and
σ1 = −1, system (34) has two fixed points, P1 = (0, 0) and P2 = (−1, 0). In this case,
P1 is saddle and P2 is center. These points are presented in Figure 4b.

• Case 3: Let σ0 < 0 and σ1 > 0.
For β1 = β2 = β3 = k = b = m = c = d = 1, µ = a = e = h = −1, σ0 = −1, and
σ1 = 1, system (34) has fixed points as P1 = (0, 0) and P2 = (1, 0). In this case, P1 is
saddle and P2 is center. These points are presented in Figure 5a.

• Case 4: Let σ0 > 0 and σ1 < 0.
For β1 = β2 = β3 = k = m = c = d = µ = 1, b = a = e = h = −1, σ0 = 1, and
σ1 = −1, system (34) has fixed points as P1 = (0, 0) and P2 = (1, 0). In this case, P1 is
center and P2 is saddle. These points are presented in Figure 5b.

• Case 5: Let σ0 = 0 and σ1 > 0.
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For β1 = β2 = β3 = k = b = c = d = µ = h = 1, m = −2, a = e = −1, σ0 = 0,
and σ1 = 1, system (34) has only one fixed point as P1 = (0, 0). In this case, P1 is a
cuspidal point, and it is presented in Figure 6a.

• Case 6: Let σ0 = 0 and σ1 < 0.
For β1 = β2 = β3 = k = c = d = µ = h = 1, m = −2, b = a = e = −1, σ0 = 0, and
σ1 = −1, system (34) has only one fixed point as P1 = (0, 0). In this case, P1 is a
cuspidal point, and it is presented in Figure 6b.

(a) (b)

Figure 4. Phase plots for (34), when (a) σ0 > 0 and σ1 > 0, and (b) σ0 < 0 and σ1 < 0.

(a) (b)

Figure 5. Phase plots for (34), when (a) σ0 < 0 and σ1 > 0, and (b) σ0 > 0 and σ1 < 0.
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(a) (b)

Figure 6. Phase plots for (34), when (a) σ0 = 0 and σ1 > 0, and (b) σ0 = 0 and σ1 < 0.

5. Chaotic Phenomena

In this section, we introduce an outward periodic force into system (34) to examine
the dynamics of both quasi-periodic and chaotic phenomena [20–22]. The modified system
can be expressed in the following manner:

dΓ
dζ = Z,
dZ
dζ = −σ0Γ − σ1Γ2 + δ0 cos(G),
dG
dζ = φ,

(37)

The above system is autonomous with G = φζ. In the modified system (37), the
perturbing force is characterized by two components referred to as δ0 and φ. In this context,
δ0 represents the intensity, while φ signifies the frequency of the perturbed term introduced
into the system (34). We have systematically examined and illustrated the chaotic dynamics
of (37) through diverse tools, including phase plots, time plots, and Lyapunov exponents.
To delve deeper into this issue, we examine the impact of both the intensity δ0 and the
frequency φ. We keep all other parameters constant at σ0 = 3.5 and σ1 = 1 during
our analysis.

In Figure 7, a two-dimensional plot and a time plot are presented, deliberately opt-
ing for small values for both intensity and frequency, specifically, assigning δ0 = 0.05
and φ = 0.02. Under these chosen parameter values, periodic behavior is observed in
system (37). Subsequently, a slight increment is made to these parameters, setting them
to δ0 = 0.8 and φ = π. During this adjustment, the system (37) experiences a subtle
disturbance and transitions into a quasi-periodic state, as visually depicted in Figure 8.
Continuing the analysis, the intensity is further elevated to δ0 = 3.8, and the frequency of
the perturbing force is increased to φ = 2π. In this scenario, system (37) displays increased
irregularity, revealing a quasi-periodic and chaotic nature, as illustrated in Figure 9. Moving
forward, the intensity and frequency are set to δ0 = 8.5 and φ = 3π. With these increased
factors, system (37) demonstrates heightened randomness, unveiling a chaotic nature, as
presented in Figure 10.
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(a) Phase plot. (b) Time plot.

Figure 7. Detection of chaotic phenomena in the perturbed system (37).

(a) Phase plot. (b) Time plot.

Figure 8. Detection of chaotic phenomena in the perturbed system (37).

The Lyapunov exponent is employed to assess the rate at which nearby trajectories
diverge within a dynamical system. It is a scalar metric that signifies the level of chaos
within the system. A positive Lyapunov exponent denotes chaotic behavior, while a
negative value indicates stability. A higher Lyapunov exponent value corresponds to a more
chaotic system, showcasing a faster separation of neighboring trajectories. Subsequently,
we visually represent the evolution of these exponents over time to gain insights into the
dynamics of the system (37). In Figure 11, we illustrate the Lyapunov exponents obtained
against the temporal evolution, aiming to identify the chaotic behavior of the modified
dynamical system with the parameters σ0 = 3.5, σ1 = 1, δ0 = 8.5, φ = 3π and initial
condition (0.5, 0.5, 0.5).
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(a) Phase plot. (b) Time plot.

Figure 9. Detection of chaotic phenomena in the perturbed system (37).

(a) Phase plot. (b) Time plot.

Figure 10. Detection of chaotic phenomena in the perturbed system (37).

Figure 11. Detection of chaotic phenomena in the system (37) via Lyapunov exponent.
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6. Multistability

In the current part, our primary emphasis is on investigating the potential presence
of multistability [20] within (37). When the system undergoes perturbation, it demon-
strates a compelling ability to exhibit multistability. This suggests that it can display
the simultaneous coexistence of various dynamic patterns, depending on specific param-
eter configurations and distinct initial conditions. These dynamic patterns encompass
periodicity, quasi-periodicity, and chaos.

To visually depict this phenomenon of multistability, we refer to Figure 12, which
illustrates the diverse responses of the system to varying initial values. In Figure 12a the red
plot, corresponding to initial values (0.4, 0.3, 0), reveals a periodic nature. Meanwhile, the
blue and green plots simultaneously demonstrate quasi-periodic behavior for initial values
(−0.5, 0.1, 0) and (−0.03, 0.4, 0). In Figure 12b, the red plot indicates periodic behavior for
(−0.5, −0.03, 0), while the blue and green plots exhibit chaotic phenomena at (−0.4, −0.3, 0)
and (−0.03, 0.4, 0).

(a) Multistability analysis. (b) Multistability analysis.

Figure 12. Detection of chaos for the system (37) through multistability analysis with σ0 = 3.5, σ1 = 1,
δ0 = 8.5, and φ = 3π.

7. Sensitivity Analysis

In this section, we investigate how the suggested equation responds to changes
in initial conditions [22,23]. To evaluate the sensitivity of the model, we analyze three
distinct sets of initial conditions. The first set, represented by the green curve, corre-
sponds to (Γ, Z) = (0.01, 0.01); the second set, illustrated by the red curve, corresponds to
(Γ, Z) = (0.05, 0.03); and the third set, indicated by the pink curve, involves (Γ, Z) = (0.4, 0.08).
In Figure 13a, two solutions are observed: one for the initial condition (Γ, Z) = (0.01, 0.01)
in green and the other for (Γ, Z) = (0.05, 0.03) in red. Likewise, in Figure 13b, we present
two solutions: (Γ, Z) = (0.01, 0.01) in green and (Γ, Z) = (0.4, 0.08) in pink. Figure 13c also
displays two solutions: (Γ, Z) = (0.05, 0.03) in red and (Γ, Z) = (0.4, 0.08) in pink.

We conducted a comparative analysis using different initial values, specifically (0.01,
0.01), (0.05, 0.03), and (0.4, 0.08), as shown in Figure 13d. It is apparent that even slight
modifications in the initial conditions can result in subtle shifts in the outcomes of a dynamic
system. Therefore, we conclude that the proposed system demonstrates little sensitivity.
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(a) (b)

(c) (d)

Figure 13. Sensitivity analysis across various initial values. (a) Sensitivity analysis of the system
(34) for initial values (Γ, Z) = (0.01, 0.01) in green and (Γ, Z) = (0.05, 0.03) in red. (b) Sensitivity
analysis of the system (34) for initial values (Γ, Z) = (0.01, 0.01) in green and (Γ, Z) = (0.4, 0.08)
in pink. (c) Sensitivity analysis of the system (34) for initial values (Γ, Z) = (0.05, 0.03) in
red and (Γ, Z) = (0.4, 0.08) in pink. (d) Sensitivity analysis of the system (34) for initial values
(Γ, Z) = (0.01, 0.01) in green, (Γ, Z) = (0.05, 0.03) in red, and (Γ, Z) = (0.4, 0.08) in pink.

8. Conclusions

In summary, this study investigated the extended integrable wave equation, a widely
utilized concept in physics, engineering, and diverse scientific disciplines. Our primary
concern was to comprehensively analyze this equation, exploring various aspects including
the extraction of Lie symmetries; solitons; an analysis of the phenomena of bifurcation;
chaos; and an analysis of the sensitive nature of the suggested equation. Initially, the
identification of the translational symmetries of the model was carried out through the
utilization of the Lie approach. Then, the NAE method was applied to elucidate the
soliton dynamics, and subsequent visualizations of the solutions were created utilizing
Mathematica software, including three-dimensional, two-dimensional, and density plots.

Subsequently, an analysis of the dynamical nature of the model was conducted, en-
compassing various angles such as bifurcation, chaos, and sensitivity. The bifurcation
phenomenon was analyzed at critical points within a dynamical system, accompanied by
the application of an outward force, which unveiled the emergence of chaotic phenom-
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ena. Two-dimensional plots, time plots, multistability, and Lyapunov exponents were
presented to illustrate these chaotic trajectories as depicted in Figures 7–12. Furthermore,
the sensitivity of the investigated model was executed utilizing the RK4 method. This
analysis confirms that the stability of the solution is minimally affected by small changes in
initial conditions. The outcomes of our investigation constitute a significant addition to
the domain, offering new perspectives on the relevance and applicability of the extended
water equation. Going beyond the confines of soliton theory, our findings contribute to a
more comprehensive exploration of dynamical systems.
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