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Abstract: Petrographic prediction is crucial in identifying target areas and understanding reservoir
lithology in oil and gas exploration. Traditional logging methods often rely on manual interpretation
and experiential judgment, which can introduce subjectivity and constraints due to data quality
and geological variability. To enhance the precision and efficacy of lithology prediction, this study
employed a Savitzky–Golay filter with a symmetric window for anomaly data processing, coupled
with a residual temporal convolutional network (ResTCN) model tasked with completing missing
logging data segments. A comparative analysis against the support vector regression and random
forest regression model revealed that the ResTCN achieves the smallest MAE, at 0.030, and the
highest coefficient of determination, at 0.716, which are indicative of its proximity to the ground
truth. These methodologies significantly enhance the quality of the training data. Subsequently, a
Transformer–long short-term memory (T-LS) model was applied to identify and classify the lithology
of unexplored wells. The input layer of the Transformer model follows an embedding-like principle
for data preprocessing, while the encoding block encompasses multi-head attention, Add & Norm,
and feedforward components, integrating the multi-head attention mechanism. The output layer
interfaces with the LSTM layer through dropout. A performance evaluation of the T-LS model against
established rocky prediction techniques such as logistic regression, k-nearest neighbor, and random
forest demonstrated its superior identification and classification capabilities. Specifically, the T-LS
model achieved a precision of 0.88 and a recall of 0.89 across nine distinct lithology features. A Shapley
analysis of the T-LS model underscored the utility of amalgamating multiple logging data sources for
lithology classification predictions. This advancement partially addresses the challenges associated
with imprecise predictions and limited generalization abilities inherent in traditional machine learning
and deep learning models applied to lithology identification, and it also helps to optimize oil and gas
exploration and development strategies and improve the efficiency of resource extraction.

Keywords: transformer; LSTM; ResTCN; embedding; lithology prediction

1. Introduction

In oil and gas exploration, lithology prediction is crucial for determining potential
investment [1,2]. Forecasting the rock type in the target area assists in constructing the
underground trap structure and predicting oil and gas production. It is important to note
that larger reservoirs can produce a higher return on investment. Traditional methods used
to predict reservoir lithology in oil and gas exploration rely on geology and petrophysics
theories, as well as field geological observations and well logging data analysis [3,4]. While
these methods have achieved some success, they often require manual interpretation
and rely on subjective evaluations, which are limited by factors such as data quality and
geological conditions [5–7]. The development of data processing capabilities has resulted
in the emergence of machine learning and artificial intelligence methods, such as deep
learning models, that aim to improve the accuracy and efficiency of rockiness prediction.
These methods can be integrated into traditional methods to create predictive models that

Symmetry 2024, 16, 616. https://doi.org/10.3390/sym16050616 https://www.mdpi.com/journal/symmetry

https://doi.org/10.3390/sym16050616
https://doi.org/10.3390/sym16050616
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com
https://orcid.org/0009-0007-3071-9365
https://orcid.org/0000-0002-6163-0503
https://doi.org/10.3390/sym16050616
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com/article/10.3390/sym16050616?type=check_update&version=1


Symmetry 2024, 16, 616 2 of 23

combine data from multiple sources, which can better support decision making [8–10].
A “blind well” refers to a well where no prior drilling samples or geological information
have been obtained. It is typically used to test the predictive capabilities of rock properties,
stratigraphic features, or reservoir characteristics. The method for predicting lithology
in blind wells uses deep learning analyses and models well logging data, which enable
the prediction of rock types or lithology even in the absence of core data, enhancing
the accuracy and efficiency of rock prediction. While mud logging provides valuable
lithology information through magma analysis, there are situations where lithology must
be inferred from logging records due to the absence of core samples, as core samples may
not be available or may not have been obtained from some sections of the well due to
various limitations. In these cases, logging data become the primary source for lithologic
interpretation. Moreover, logging data offer continuous measurements across the entire
wellbore, enabling the thorough analysis of lithologic variations. Common types of logging
data include gamma ray, resistivity, sonic, density, neutron, porosity, and permeability
data, which are typically presented as curves on logging charts corresponding to well
depth [11]. Integrating these logging curves allows for a more comprehensive lithologic
characterization, capturing subtle changes that may elude detection through rock chip
analysis alone. The analysis and interpretation of these curves can yield detailed insights
into formation and reservoir characteristics, aiding in well suitability assessments, the
determination of production capacity, the evaluation of hydrocarbon reservoir potential,
and making informed decisions regarding well completion or abandonment.

Traditional logging interpretation methods use traditional geology and physics for
the interpretation and analysis of logging data. There are many traditional log interpre-
tation methods, such as manually viewing and analyzing the morphology, trends, and
interrelationships of logging curves to infer subsurface geologic features. For example, the
resistivity, natural gamma radiation, and sonic velocity are used to understand the type
of rock, hydrocarbon properties, and reservoir characteristics. Furthermore, the rock type,
stratigraphic relationship, and reservoir characteristics can be deduced by observing the
trend of change in different logging curves in the vertical direction, drawing the profiles
of these logging curves, and combining the results with one’s knowledge of stratigraphy.
Traditional logging interpretation methods play an important role in the exploration and
development stages, and with the development of machine learning and automation tech-
nology, these methods are gradually being combined with computer-aided interpretation
to improve efficiency and accuracy. Lithology prediction methods based on logging data
analysis have been an increasingly popular research topic in the oil and gas exploration
field in recent years [12,13]. Researchers have aimed to improve the accuracy of predict-
ing the rock type or lithology in blind wells without core data by combining artificial
intelligence techniques with information from logging data. Machine learning methods ap-
plied to automated logging can reduce exploration costs and improve prediction accuracy
compared to computationally intensive manual logging interpretations. Machine learning
algorithms can automatically process large amounts of logging data, which can significantly
reduce human resource and time costs compared to manual processing. Machine learning
methods can extract valuable features from logging data and identify hidden patterns and
correlations. This helps to speed up the exploration process and improve the prediction
accuracy. Based on the prediction results of machine learning models, decision makers can
make more informed decisions to reduce exploration risks and increase the success rate,
reducing unnecessary trial and error and the waste of resources [4,14–16]. These methods
focus on the identification of optimal features using unsupervised and supervised machine
learning algorithms, as well as the application of automated logging data to achieve reli-
able lithology prediction and subsequent reservoir characterization. With the continuous
updating of deep learning algorithms and the improvement of arithmetic power, more
relevant methods are being used for reservoir lithology prediction. These methods include
the CNN, recurrent neural network, and LSTM network. CNNs are used to extract complex
features from logging data, and LSTM is used to extract vertical spatial relationships from
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its output characteristics. Finally, the mapping relationship between logging data and
lithology type can be established. This model helps in the recognition of the lithology of
complex formations [17]. A semi-supervised deep learning framework has been used with a
closed-loop CNN and virtual logging labels. Closed-loop CNNs have predictive and gener-
ative sub-networks, and this model can be trained directly using seismic attribute data [18].
The spatial and temporal features of the logging data are extracted using a combination of
a CNN and LSTM neural networks. A particle swarm optimization algorithm can also be
used to determine the optimal hyperparameters for predicting log profiles [19]. The analy-
sis must overcome several obstacles when employing conventional deep learning models.
First, log data are often sparse, and the sample distribution is imbalanced. Second, log data
can be influenced by noise, outliers, and other quality issues. Finally, the preprocessing and
cleaning of data must be undertaken to enhance data quality and model robustness. Deep
learning models usually function as black boxes, making it challenging to determine how
they arrive at predictions and decisions. Model interpretability is crucial in well logging.
Deep learning models may perform well on training sets due to the complexity of reservoir
composition, but their ability to generalize to new data may be limited.

To address the above problems, we propose a Transformer- and LSTM-based hy-
brid approach to identify and classify lithology in blind wells. Using the multi-attention
mechanism of the Transformer model and the ability of the LSTM network to capture the
temporal spatial features of the lithology sequence, their combination can effectively learn
the nonlinear relationship between logging curve data and their correlation in the depth
dimension. After numerous experiments, we found that the Transformer–LSTM (T-LS)
model outperformed several commonly used models in lithology prediction. To verify the
model’s generalization ability, we used the T-LS model and random forest (RF) model to
predict the lithology of blind wells without core data in the stratum, which showed that
the T-LS model had a better generalization ability. The main contributions of this study are
as follows:

• A T-LS model is proposed to identify and classify lithology in blind wells. Combining
the advantages of the Transformer model and LSTM network, the model effectively
learns the nonlinear relationships between logging curve data and their correlation in
the depth dimension;

• A nested ResTCN is deployed to address missing data, which can efficiently complete
missing content, thereby ensuring the completeness and accuracy of training data;

• Comparative experiments demonstrate the advantages of the T-LS model in terms of
several evaluation metrics. The results of neighboring blind well experiments further
validate the model’s generalization ability.

In this study, the T-LS hybrid model is proposed for the identification and classification
of lithologies in blind wells. To address the issue of raw logging data quality, this study
employed a Savitzky–Golay filter to remove anomalous data during data preprocessing
and equalize data samples using a genetic algorithm-based sample interpolation method.
This study also employed a nested residual convolutional network (ResTCN) to fill in the
missing signals of some logging data, enabling more complete and accurate training data to
be obtained. These methods effectively solved the data quality problem and improved the
training effect of the model. Through model comparison experiments, it was found that the
T-LS model outperformed other commonly used models in lithology prediction. In order to
verify the generalization ability of the model, this study also predicted the lithology of blind
wells with no core data in the formation and compared its predictions with those of the
RF model. The results show that the T-LS model has a good generalization ability and can
perform well on unknown data. Finally, a Shapley analysis was used for the T-LS model,
and it was concluded that for the multi-sample lithology classification and prediction task,
the more information contained in the logging data and the more eigenvalues they have, the
better the accuracy of the classification and prediction. Methods for the fusion of multiple
logging information can lead to a better understanding of the properties of subsurface rocks
and fluids, the improved assessment of the production capacity and recoverable reserves



Symmetry 2024, 16, 616 4 of 23

in oil and gas reservoirs, an increased optimization of drilling and production decisions,
and a reduction in exploration and development risks.

The rest of this paper is organized as follows. Section 2 focuses on related methods and
techniques, including the ResTCN model, the proposed T-LS model, and Savitzky–Golay
filtering. Section 3 describes the case studies, including data description and processing,
and parameter settings, and discusses the experimental results. Section 4 presents our
conclusions and discusses future work.

2. Methodology
2.1. ResTCN Model

To enhance the accuracy of model prediction, we used the ResTCN model to fill in
the missing data from the raw logging data [20,21]. This improves the model’s robustness
and overfitting resistance while also alleviating the problem of gradient vanishing. The
ResTCN combines the concepts of residual networks and temporal convolutional networks,
allowing it to capture temporal relationships in time-series data. The ResTCN model is
composed of multiple residual blocks, each containing a convolutional layer that extracts
features from the time-series data. Additionally, each block has a residual connection that
adds the original input to its output for information transfer. With the stacking of multiple
residual blocks, the model can learn multiple levels of temporal features. The residual links
enable it to learn residual representations, which are the differences between layer inputs
and outputs. The ResTCN efficiently captures and models long-term dependencies in the
input sequence by propagating residuals through the network.

In assuming that the current output is E(X) and the input of the previous layer is x,
the output, after passing through the residual structure, is F(x) = E(X) + x. The residual is
E(x) = F(X)− x. The output of the current layer is F(x) when x = 0, which is the original
neural network structure. This causes the output of the current neural network layer to be
x, i.e., the cancellation of the current neural network layer when F(x) = 0, and the structure
of the residual unit is shown in Figure 1.

Figure 1. The structure of the residual unit.

Figure 2a shows the ResTCN model structure. Each of the two network blocks receives
data that go through temporal convolutional layers, followed by a fully connected neural
network layer and a residual structure. An input sequence X with length T is input into
the ResTCN. The temporal convolutional layers consist of a set of convolutional kernels,
W1 and b1. The input sequence X is convolved with convolutional kernel W1, and bias b1
is added. The first temporal convolutional layer generates output H1 using an activation
function, such as ReLU, to introduce nonlinearity. Residual connections add connections to
the output H1 of each time convolutional layer through the addition of the input sequence
X to the output H1. This allows information to be jump-connected in the network, helping
to solve the gradient vanishing problem.
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(a) ResTCN model. (b) Residual block.

Figure 2. Architectural descriptions of the ResTCN model and residual block.

Figure 2b displays the structure of a residual block. Residual connectivity in the
ResTCN aids the model in learning dependencies on different timescales, and guarantees
training stability with increasing depth. The residual block’s left side includes causal
inflated convolution, dilated causal conv, a regularization layer weightnorm, tandem
activation function ReLU, and dropout. The model’s right side is concatenated with a
residual link, and such modules are repeated twice. This forms a short-circuit connection,
where the output of the current layer is passed to the next layer and added directly to
the input. The use of residual blocks can improve the training and performance of deep
neural networks by alleviating the problem of gradient vanishing through a direct flow of
information from the input to output.

2.2. Transformer–LSTM Model

The proposed approach for identifying and classifying blind well lithology utilizes the
T-LS model, which merges two distinct neural network architectures: a Transformer and
LSTM. While traditional Transformer models excel in natural language processing tasks,
they may encounter challenges when handling time-series data due to their limitations
in sequence length and long-term dependency modeling. In contrast, a LSTM model,
a classical recurrent neural network, adeptly processes time-series data and efficiently
captures long-term dependencies. The T-LS model endeavors to comprehensively cap-
ture the temporal-spatial features of lithological sequences by leveraging the multi-head
self-attention mechanism of the Transformer alongside the sequence modeling prowess of
LSTM [22,23]. This combination facilitates the effective learning of nonlinear relationships
between logging profile data and their correlations in the depth dimension. In amalga-
mating the strengths of both architectures, the T-LS model offers a robust framework for
lithology classification. Geological exploration data and logging curve sequences are pro-
cessed to delineate different lithology classes, leveraging learned geological features and
patterns to predict lithology labels for each location based on the input sequences. The
lithology classification prediction function is thereby realized. Figure 3 illustrates the struc-
ture of the T-LS model, which consists of five layers corresponding to specific operations.
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Transformer-LSTM model

Embedding

 

m*n
m:step=100
n:sampledcharacteristics=7 

Depth=15 to 25meters

Input
Sequence

Output
LayerLSTM

Input layer

hidden layer

Output layer

Transformer

Positional Encoding

Encode block

Decode block

Softmax

Output probabilities

Linear

Figure 3. The proposed T-LS hybrid model.

The five layers are as follows:

• Input: the input layer is similar to the traditional Transformer. The input sequence is
encoded through the embedding layer to obtain a vector sequence.

• Embedding layer: Traditional machine learning and deep learning models often strug-
gle to accurately identify and generalize lithology due to their inability to properly
link logging curves and depth changes in the data [24,25]. To address this issue, it is
necessary to thoroughly investigate the correlations within the logging data. Schol-
ars have studied logging curve data so as to obtain information on the correlation
between logging curves and changes in depth. Correlation is evident when the depth
interval is between 15 m and 25 m [26,27]. The realization principle of the Transformer
model makes it is suitable for data with sequential relationships. In considering the
differences between the logging dataset and the natural language processing dataset
in terms of data types, quantities, and structures, an embedding-like principle was
adopted to deal with the logging data to transform the time problem into a depth
problem. With reference to the interrelated nature exhibited by the logging data in the
depth interval of 15–25 m, the embedding step length was selected to be 100, and every
15.24 m was taken as a feature matrix, i.e., m = 100, in the embedding-like matrix.
Serial number 0 to 99 is a piece, Serial number 1 to 100 is a piece, and so on. After the
above data manipulation, several matrices composed of continuous depth logging
features can be obtained. After processing through the embedding layer, the data can
be transformed into an m ∗ n matrix, where m is the length of the input sequence, and
n is the embedding dimension.

• Transformer Model: To enhance the accuracy of the deep learning model for lithology
identification and classification in blind wells, we employed the Transformer model
from natural language processing. This model integrates self-attention and attention
mechanisms to discern data features within the current sequence, focusing on informa-
tion from various locations within the input data. Comprising a positional encoding
layer, encoder, and decoder, all interconnected through attention mechanisms, the
Transformer model is adept at processing sequential data. The encoder and decoder
modules are composed of multiple blocks, incorporating a multi-head self-attention
mechanism layer and a point feedforward neural network layer, respectively. The
input sequences undergo processing through the Transformer encoder, leveraging
the self-attention mechanism to extract features and learn sequence element repre-
sentations. This model effectively addresses the challenges associated with poor
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classification conducted by conventional machine learning models that stem from the
heterogeneous nature of subsurface reservoirs and the nonlinear relationships inherent
in logging data. Notably, the model achieves efficient and accurate classification on
blind well datasets. Figure 4 provides a visual representation of the Transformer
model and illustrates its components, including inputs, the encoder, the decoder,
and outputs.

Figure 4. The Transformer model.

• LSTM layer: The LSTM layer processes the sequence data and captures long-term
dependencies, using the output of the transformer encoder as its input. It maintains an
internal memory called the cell state, and has forget, input, and output gates to control
the updating and use of the cell state. This enables it to selectively remember and forget
the information of input sequences, and to better handle long-term dependencies. The
structure of LSTM is shown in Figure 5.
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Figure 5. The structure of LSTM.

• Output layer: For classification and regression tasks, a softmax layer is added after
the LSTM layer. The T-LS model combines the parallel computation and attention
mechanism of the Transformer with the sequence and long-term dependency modeling
capabilities of LSTM.

2.3. Savitzky–Golay

During data acquisition, certain anomalies are generated in the training and testing
datasets, which can have a significant impact on the accuracy of the neural network
model if they are not processed before being entered. It is important to apply a technique
to the datasets to ensure optimal classification accuracy [28,29]. In traditional log data
processing, a smoothing filter is used to remove noise, reduce fluctuations or mutations, and
extract trends and characteristics of the formation. Smoothing filters include the moving
average, median, weighted moving average, Savitzky–Golay, and Gaussian smoothing filter.
We comprehensively compared several filtering methods, and selected Savitzky–Golay
filtering for anomalous data processing [30–32]. The Savitzky–Golay method, developed
by Abraham Savitzky and Marcel J. E. Golay in the 1960s [33], is widely used for data
smoothing and derivation in signal processing and data analysis. The central idea of the
Savitzky–Golay filter is to estimate the smoothed value by fitting a polynomial over the
local neighborhood of the signal. The use of a symmetry window can help to maintain
the symmetry or local symmetry of the signal and reduce the bias introduced during the
fitting process. It helps to extract useful information from noisy data. The method fits a
polynomial function to a small window of neighboring data points, and uses the coefficients
of the polynomial to estimate the smoothed or derived values. This approach is based on
polynomial fitting:

y[n] =
M

∑
i=−M

Cix[n + i], (1)

where y[n] is the filtered output value, x[n] is the current data point of the input signal, and
M is the size of the filtering window. The Savitzky–Golay filter preserves the overall trend
and characteristics of the data and is more effective in smoothing continuous signals.

2.4. Normalization

Logging data may contain curves of varying lengths. To enable a comprehensive
analysis of the multiple measurement curves in the selected dataset, normalization can
be utilized to convert the measurements of different curves into a standard normal distri-
bution with the same scale, allowing comparisons. Logging data collected using various
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instruments often differ significantly in magnitude. If the data are used directly for model
training, indicators with higher values will have a more significant impact on the analysis.
An effective data standardization method can significantly reduce the range of raw data,
ensuring that data values have the same order of magnitude, which balances their roles in
model training [34]. Commonly used normalization methods include Min − Max and the
Z-score [35,36]. We applied Z-score data normalization to the original logging data. The
set of sequences for X was X = {x1, x2, x3, . . . , xn}, from which a new set of sequences was
generated after normalization, Y = {y1, y2, y3, . . . , yn}, with mean 0 and variance 1. The
calculation is as follows:

yi =
xi − x

s
, (2)

where x and s are defined as

x =
1
n

n

∑
i=1

xi and s =

√√√√ 1
n − 1

n

∑
i=1

(xi − x)
2

. (3)

In Equation (3), x and s denote the respective mean and standard deviation of the
original data. The data processed using Z-score normalization conform to a standard
normal distribution, which accelerates gradient descent and training.

2.5. Simulated Genetic-Based Interpolation of Sample Data

Imbalanced categories in training samples can cause a model to misclassify and favor
larger categories, leading to a reduced recognition accuracy [37]. To address this, we
standardized the number of logging data points for each petrophysical phase in each well
using sample data interpolation. This created a standard sample layer tensor for network
model training and testing. To generate new samples from small classes, a simulated
genetic method was employed, which involved calculating the actual distance between
each pair of objects (xi, xj) in the small-category sample:

d(xi, xj) =
√
(xi − xj)

Ts−1(xi − xj), (4)

where s−1 is the covariance matrix, in which the concrete objects were ranked and divided
into two sets, and b1 and b2 were used as biparent nodes to generate new objects. From
each set, we selected one concrete object, xm from b1 and xn from b2, and calculated their
average to create a new object, xnew, for the minority class. The process was repeated
until all instances in both groups were included. If the number of specific objects in the
small-category samples remained significantly less than in the large-category samples, xnew
was utilized as a biparental node in the next generation. This continued until the numbers
of objects in each category were approximately equal.

3. Case Studies
3.1. Data Description

The dataset comprised 10 wells from the Cornwall Grove Gas Field, a natural gas
reservoir situated between Brown County and Nemaha County in eastern Kansas, USA.
The basin is an ancient sedimentary formation primarily composed of Lower Cambrian to
Ordovician rocks. Of the 10 wells, two are missing PE values, and the rest have complete
data. There are 4150 data samples from the 10 wells, including 3232 complete data samples
from 8 of the wells and 918 data samples with missing PE values from 2 of the wells. In the
ResTCN complementation task, the training set and validation set were divided according
to a 7:1 ratio. In the T-LS model lithology prediction classification task, the training set and
validation set were divided according to an 8:2 ratio. Two additional neighboring blind
wells without lithology labels were used as the test set. The reservoir is primarily composed
of sandstone and shale formations. Shale gas refers to the natural gas confined within the
minute pores and fractures of shale formations. Alongside their high gas content, shale
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formations exhibit a notable gas storage capacity. The rock’s low permeability impedes gas
flow, leading to its retention within the shale matrix. The abundance of micro-fractures
and nanopores further enhances the storage capacity by offering supplementary storage
sites for gas molecules. The logging curve data include natural gamma (GR), depth (ILD
log10), rock density (PE), neutron and density porosity (DeltaPHI), mean neutron and
density porosity (PHIND), and two geologically constrained variables: the non-marine
and marine metrics (NM_M) and relative position information (PELPOS). Table 1 shows
example sample data and shows only a very small portion of the dataset.

The logging curve dataset comprises two main lithological classes: sandstone (SS),
including coarse sandstone (CSiS), fine sandstone (FSiS), and marine sand shale (SiSh);
and carbonate rock (MS), including Wacker limestone (WS), dolomite (D), mudstone (MS),
muddy grey grained limestone (PS), and foliated algal tuff (BS). These classes are not
discrete, but gradually merge. Mislabeling may occur among adjacent lithofacies, so it
is important to use these codes accurately. Table 2 provides lithological name abbrevia-
tions and numeric codes. Table 3 shows some of the raw logging data for the two wells,
ALEXANDER D and KIMZEY A, that have missing PE values.

Table 1. Selected datasets from the Cornwall Grove natural gas reservoir in Kansas.

Well Name Depth GR ILD _log10 Delta PHI PHIND PE NM_M RELPOS

STUART 2808 66.276 0.63 3.3 10.65 3.591 1 1
STUART 2808.5 77.252 0.585 6.5 11.95 3.341 1 0.978
STUART 2809 82.899 0.566 9.4 13.6 3.064 1 0.956
STUART 2809.5 80.671 0.593 9.5 13.25 2.977 1 0.933
STUART 2810 75.971 0.638 8.7 12.35 3.02 1 0.911
STUART 2810.5 73.955 0.667 6.9 12.25 3.086 1 0.889

Table 2. Comparison of abbreviations and numerical codes for lithological names.

Lithology Abridge SS CSiS FSiS SiSh MS WS D PS BS

Numeric Code 1 2 3 4 5 6 7 8 9

Table 3. Selected logging datasets with missing PE values.

Facies Fm Well Name Depth GR ILD _log10 Delta PHI PHIND PE NM_M RELPOS

3 A1 SH ALE 2887.5 88.71 0.612 6.7 10.605 / 1 1
3 A1 SH ALE 2888 92.71 0.583 11 12.515 / 1 0.974
3 A1 SH ALE 2888.5 94.54 0.579 12 13.41 / 1 0.949
3 A1 SH ALE 2889 95.31 0.579 11.5 13.75 / 1 0.923
3 A1 SH ALE 2889.5 93.79 0.572 10.3 13.405 / 1 0.897

3.2. Data Preprocessing

The collected logging data have varying curve lengths and anomalies that require data
cleaning. The number of rock samples in the dataset varies, and when the difference is sig-
nificant, this can affect the results of the lithology prediction. Therefore, data preprocessing
is necessary. The logging curve segment was processed using the Savitzky–Golay method
introduced in Section 2.3, which involves using a sliding window, selecting a set of data
points within the window, and estimating the smoothed value at the center of the window
using a least squares polynomial fit. The window is then slid to the next position, and the
fitting process is repeated until the entire data series is covered. Here, the outliers were
handled by adjusting the size of the window; the larger the window, the better the outliers
are handled. However, too large a window can also affect the other data, so it is crucial to
use an appropriate window value. The results are shown in Figure 6, which displays the
difference graph of the effect of one of the logging curve segments in the dataset before
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and after the filtering process. The logging curve segment before filtering is blue, while
the orange curve shows the shape of the curve after processing. The method effectively
removes sharp points on the original curve, resulting in a much smoother curve.

Data preprocessing involves analyzing the sample balance, which is crucial to avoiding
bias in training results. Unbalanced samples can cause the model to learn better for
majority categories, resulting in lower recall and higher misclassification rates for minority
categories. Additionally, common evaluation metrics such as accuracy may be misleading
due to evaluation bias. The model’s tendency to predict the majority category due to
its large sample size may result in high accuracy but poor performance for the minority
category. In addition, the model may learn features associated with the majority category
and ignore those associated with the minority category, leading to a decrease in its ability
to judge the minority category. Overfitting occurs when the model is trained on a limited
number of samples from the minority category, causing it to fail in generalizing to new
samples [38,39].

0 50 100 150 200 250 300
Depth

0

50

100

150

200

250

300

350

GR

before filtering
after filtering

Figure 6. Comparison of logging curves before and after filtering.

To mitigate the aforementioned issues, we generated a histogram illustrating the
distribution of training samples, depicted in Figure 7a. This revealed an imbalance in
sample counts across different lithology categories, with PS, WS, FSiS, and CSiS having
higher sample counts, and D having significantly fewer samples. To address this imbalance,
we employed a sample interpolation method based on genetic algorithms, as outlined in
Section 2.4. This method involved augmenting the existing data samples until a more bal-
anced distribution was achieved, thereby increasing the sample counts for certain lithology
categories. Following the equalization process, the nine lithologies had approximately
5841 samples. Figure 7b illustrates the histogram, showcasing the distribution of training
samples after equalization.
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(a) Original dataset.
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Figure 7. Histograms of the number of training samples.



Symmetry 2024, 16, 616 12 of 23

Interrelationships between sample features are crucial in data analysis and machine
learning, as they can provide valuable information about the structure, relevance, and
importance of the data, and can significantly impact the performance and explanatory
power of the model. The interrelationships between the sample features were analyzed, as
shown in Figure 8. There were discrete relationships between different samples, such as,
GR and ILD _log10, Delta PHI, PHIND, and PE. No obvious signs of multiple covariance
between the features were found, which proves that each of the samples is independent.
If two features covary strongly, covariance likely exists, and so only one feature should
be selected.
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Figure 8. Plots of correlations between sample features.

3.3. Parameter Settings

The following models were involved in this study. The ResTCN accomplished the
task of missing data completion. The T-LS, LR, KNN, DT, RF, GB, LSVM, MSVM, and BNB
models accomplished the task of lithology classification prediction. The hyperparameters
were selected as shown in Table 4.
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Table 4. Model hyperparameter selection.

Model Parameters

ResTCN Discard probability = 0.3, Epoch = 50, Batch size = 128, Learning rate = 0.00001
T-LS Hidden size = 32, Layer = 3, Class = 9, Batch size = 128, Epoch = 50, Learning rate = 0.0001
LR C = 1.0, Iteration = 1000, Penalty = L2

KNN Lea f size = 30, Neighbors = 10
DT Min_lea f = 1, Min_split = 2
RF Min_lea f = 1, Min_split = 2, Estimator = 100
GB Learning rate = 0.1, Loss: deviance, Estimator = 100, Random state = 42

LSVM Cost(c) = 1.0, Kernel: Linear
MSVM Cost(c) = 1.0, Kernel: Radial basis f unction

BNB α = 1.0, Binarize = 0.0

3.3.1. ResTCN Model Hyperparameter Selection

We gathered seismic, logging, and core data from blind wells to create a dataset for
model training and validation. During oil exploration, logging instruments may not ac-
curately detect all logging curve data due to the complexity of the underground reservoir
structure and signal transmission. Using machine learning to complete missing logging
curve data can improve the accuracy of identifying and classifying the lithology of blind
wells. The ResTCN model with selected hyperparameters, including 16 convolution kernels,
a discard probability of 0.3, 64 neurons, and a ReLU activation function with 12 regulariza-
tion, was used to complete the missing data. The model was trained for 50 epochs using
the Adam optimizer with a batch size of 128. The learning rate decay mechanism was
adopted with an initial learning rate of 0.001. The learning rate was multiplied by 0.5 every
10 consecutive epochs if the mean absolute error (MAE) did not decrease, and the minimum
learning rate was set to 0.00001. Table 4 shows the hyperparameter selection.

3.3.2. Transformer–LSTM Model Hyperparameter Selection

The Transformer model requires the logging curve data to be sliced in the depth
direction. To achieve this, the input data were processed using the embedding-like logging
curve data in Figure 4. The final shape of the input data had three parts: the number of
data blocks, the slicing step size m, and the dimension of the input data features. The
sampling step size hyperparameter was set to 100, which corresponds to 100 sampling
points. The feature matrix had a size of 15.24 m. The Transformer model was constructed
using an encoder and padding_mask, and the LSTM network was connected through a
dropout function. The model’s hyperparameters were set as follows: the LSTM layer had
a hidden state of 32 dimensions, and the three-head auto-attention network layer had
Quer_dim and Value_dim of 32 dimensions. The discard probability was set to 0.2 using
sdrop. This was combined with a residual structure that used the ReLU activation function
and introduced l2 regularization and a fully connected layer with a tanh activation function.
The fully connected network layer was wrapped by a TimeDistributed wrapper with a
softmax activation function. The training process involved randomly selecting 128 groups
of training data from the dataset, with a batch size of 128, and repeating this process for
50 training epochs. A cross-entropy loss function was employed, with an initial learning
rate of 0.001. A learning rate decay mechanism was added, and its learning rate was
multiplied by 0.5 when the test set’s loss function value did not decrease for 10 consecutive
times. The minimum learning rate was set to 0.0001.

3.4. Evaluation Metrics

The ResTCN model employed two metrics, the MAE and coefficient of determination
(R2), to measure its capacity to complete missing log curve data. The MAE is the average
absolute difference between the predicted and true values, as shown in Equation (5), where
m is the number of data points, yi is the predicted value, and h(xi) is the true value. All
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data points were given equal weight in the calculation of the MAE. A smaller MAE value
indicates a reduced average discrepancy between the predicted and true values of the
model. R2 shows the proportion of changes in the dependent variable that can be explained
by the independent variable, and is calculated as shown in Equation (6), where m is the
number of data points, yi is the true value, y is the average of the true value, and pi is
the predicted value. A smaller MAE indicates a smaller average difference between the
predicted and true values of the model. R2 expresses the proportion of changes in the
dependent variable that can be explained by the independent variable, and ranges from
0 to 1. In Equation (6), yi is the true value, y is the average of the true value, and pi is the
predicted value. A value closer to 1 indicates a better explanation of the observed data
variability, while a value closer to 0 indicates a poorer explanation.

MAE(X, h) =
1
m

m

∑
i=1

|h(xi)− yi|, (5)

R2 ≡ 1 − ∑m
i=1 (yi − y)2

∑m
i=1 (yi − pi)

2 . (6)

Lithological prediction involves assessing the predictive ability of machine learning
classification algorithms or models using precision, recall, and F1-score. Precision is the
proportion of samples correctly predicted to be in the positive class. Precision measures the
accuracy of a classifier’s positive predictions. High precision indicates that a model makes
fewer errors in predicting negative instances as positive instances, meaning that the model
is more accurate in predicting positive instances. Precision is calculated using Equation (7).
In Table 5, true positive (TP) and false positive (FP) represent the respective numbers of
positive instances that are correctly and incorrectly predicted as positive, and true negative
(TN) and false negative (FN), respectively, represent the number of positive instances that
are correctly and incorrectly predicted as negative.

Precision = TP/(TP + FP), (7)

Recall = TP/(TP + FN). (8)

Table 5. Confusion matrix representation.

Predicted Positive Predicted Negative

Actual Positive TP FN
Actual Negative FP TN

Recall is the proportion of true positives that the classifier correctly identifies. It
measures the rate at which the classifier correctly identifies positive-class samples. A high
recall indicates that the model is better at identifying positive examples. Recall is calculated
using Equation (8). The model’s ability to identify lithology is evaluated based on its
accuracy and completeness, which quantitatively reflect its generalization ability. The
F1-score, which combines precision and recall, is used to balance the trade-off between the
two. A higher F1-score indicates higher precision and recall. It can comprehensively assess
a model’s performance, and is calculated as shown in Equation (9).

F1 = 2 ∗ (Precision ∗ Recall)/(Precision + Recall). (9)

3.5. Experimental Results and Discussion
3.5.1. Discussion of Using the ResTCN Model to Complete Missing Data

The ResTCN model (Section 2.1) was used to complete the logging curves of rock
density PE for wells with missing logging data, i.e., ALEXANDER D and KIMZEY A. The
model was trained, validated, and tested using six of the remaining eight wells for training,
one for validation, and one for testing. After testing, we complemented the density logging
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curves of the rocks in the two missing wells. To demonstrate the accuracy of the ResTCN
model in completing missing logging curves, we conducted comparative experiments
using support vector regression (SVR) and random forest regression (RFR) models, whose
results are presented in Table 6.

Table 6. Experimental results of density comparison of missing rocks.

Model Name MAE R2

SVR 0.0480 0.473
RFR 0.0347 0.667

ResTCN 0.0300 0.716

Among the three models, the ResTCN had the smallest MAE, indicating that its results
were closest to the true values, and the largest R2 value, meaning that it best explained the
variability of the observed data. The ResTCN has been shown to be more effective than
other deep learning models in completing missing logging curve data. After testing the
model, the logging curves for rock density PE were completed for wells with missing data
(ALEXANDER D and KIMZEY A), as shown in Figure 9, where black curves represent the
completed data. The use of the ResTCN model in this study provided several advantages
due to the nested residual structure and fully connected layers of the TCN model. This
allows for the improved extraction of nonlinear relationships between input features, and
the acquisition of correlations between the same features in the depth dimension. Therefore,
the ResTCN model is more effective in completing missing logging curve data.

(a) ALEXANDER. (b) KIMZEY.

Figure 9. Logging curves for ALEXANDER D and KIMZEY complementary PE values.

3.5.2. Comparison of Predictive Modeling of Lithology in Blind Wells

We utilized the logging dataset from the Hugoton and Panoma Fields in Kansas,
USA, following compensation for missing data, as discussed previously. The dataset
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was partitioned into training, validation, and test sets. The training and validation sets
comprised 10 exploration wells from this dataset. The missing density curves in these
wells were filled using the ResTCN model. Among these, eight wells were allocated to the
training set, and two constituted the validation set. The test set comprised two neighboring
blind wells from this dataset, i.e., the STUART and CRAWFORD wells.

We employed the T-LS model (Section 2.2) for blind well lithology classification. To
evaluate our model, we applied a number of machine learning and deep learning models to
the same dataset. These eight models included logistic regression (LR), k-nearest neighbors
(KNN), RF, decision tree (DT), gradient boosting (GB), linear support vector machine
(LSVM), multiclass support vector machine (MSVM), and Bernoulli naive Bayes (BNB)
models. The hyperparameter selection of all models is summarized in Table 4. Precision,
recall, and F1-score were employed to evaluate the lithology prediction capabilities of the
models, with results as shown in Table 7. Based on these results, the RF and T-LS models
demonstrate superior performances in the precision, recall, and F1-score. The T-LS model
outperformed RF across most samples, except for a few rocky samples such as CSiS and
FSiS. The overall evaluation value of the T-LS model is approximately 0.88, which surpasses
that of the RF model, which is at 0.74.

Table 7. Classification and identification evaluation table of nine models for nine lithology types.

Model Appraise Value SS CSiS FSiS SiSh MS WS D PS BS Total

T-LS
Precision 0.93 0.70 0.77 0.97 0.94 0.9 0.95 0.86 0.95 0.88

Recall 0.99 0.73 0.69 0.99 0.96 0.85 0.98 0.81 0.97 0.89

F1-score 0.96 0.72 0.73 0.98 0.95 0.87 0.96 0.83 0.96 0.88

LR

Precision 0.64 0.59 0.69 0.54 0.11 0.46 0.85 0.54 0.82 0.57

Recall 0.62 0.7 0.57 0.54 0.02 0.55 0.55 0.69 0.56 0.58

F1-score 0.63 0.64 0.62 0.54 0.04 0.5 0.67 0.61 0.67 0.57

KNN

Precision 0.65 0.72 0.74 0.72 0.63 0.59 0.93 0.64 0.81 0.69

Recall 0.65 0.76 0.75 0.78 0.63 0.59 0.7 0.61 0.81 0.69

F1-score 0.65 0.74 0.74 0.75 0.63 0.59 0.8 0.63 0.81 0.69

DT

Precision 0.59 0.69 0.66 0.65 0.49 0.63 0.64 0.67 1 0.66

Recall 0.62 0.59 0.78 0.59 0.47 0.63 0.8 0.68 0.84 0.66

F1-score 0.6 0.63 0.72 0.62 0.48 0.63 0.71 0.67 0.92 0.66

RF

Precision 0.84 0.75 0.74 0.75 0.6 0.65 0.94 0.7 0.93 0.74

Recall 0.73 0.8 0.76 0.73 0.56 0.67 0.8 0.69 0.88 0.74

F1-score 0.78 0.78 0.75 0.74 0.58 0.66 0.86 0.69 0.9 0.74

GB

Precision 0.67 0.68 0.72 0.67 0.62 0.58 0.81 0.64 0.94 0.68

Recall 0.65 0.73 0.7 0.65 0.47 0.63 0.65 0.65 0.91 0.68

F1-score 0.66 0.7 0.71 0.66 0.53 0.6 0.72 0.64 0.92 0.67

LSVM

Precision 0.65 0.61 0.67 0.57 0.00 0.44 1 0.54 0.84 0.57

Recall 0.67 0.71 0.55 0.62 0.00 0.61 0.45 0.61 0.66 0.58

F1-score 0.66 0.65 0.61 0.6 0.00 0.51 0.62 0.57 0.74 0.57

MSVM

Precision 0.7 0.65 0.66 0.68 0.33 0.5 1 0.59 1 0.63

Recall 0.6 0.72 0.65 0.62 0.05 0.64 0.65 0.75 0.59 0.63

F1-score 0.65 0.68 0.65 0.65 0.08 0.56 0.79 0.66 0.75 0.62

BNB

Precision 0.5 0.57 0.52 0.39 0.00 0.4 0.47 0.5 0.7 0.48

Recall 0.35 0.45 0.74 0.38 0.00 0.58 0.45 0.54 0.44 0.49

F1-score 0.41 0.5 0.61 0.38 0.00 0.47 0.46 0.52 0.54 0.47
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To visually represent the overall performance and imbalance of the models, we ana-
lyzed them using a categorical confusion matrix heatmap, as depicted in Figure 10, and
through its analysis, it was observed that the models exhibited varying degrees of ef-
fectiveness in the lithology classification of blind wells. LR, LSVM, MSVM, and BNB
demonstrated lower degrees of effectiveness, as evidenced by low the precision, recall, and
F1-scores, particularly for LSVM and BNB, which failed to identify MS lithology altogether.
T-LS and RF showed superior overall identifications, well distinguishing the nine lithology
types, with T-LS performing marginally better than RF. The T-LS model was compared with
traditional machine learning methods and the RF model, with the former proving more ef-
fective. The lithology classification results on ALEXANDER D wells using the T-LS and RF
models are illustrated in Figure 11. Both models demonstrate commendable classification
predictions for the SS, CSIS, FSIS, SISH, and BS lithology types. Notably, for the thinner
SISH layer, RF performed slightly better than T-LS. However, in the classification of MS
and PS lithology types, T-LS outperformed RF. While both models effectively differentiated
sandstones and silicates, there remains room for improvement in the internal differentiation
of these lithologies.

Figure 10. Heat map of confusion matrices for nine models.

In summary, traditional methods often overlook the long-term spatial correlation
between logging curve data and lithology labels, thus missing a crucial foundation for
enhancing lithology classification accuracy. The T-LS model replaces the recurrent neural
network structure with a multi-head self-attention mechanism, enabling a more effective
extraction of the long-term spatial correlation between logging curve data and lithology
labels, which significantly improves its classification effectiveness. To assess the general-
ization ability of the model, two adjacent blind wells, STUART and CRAWFORD, were
selected for evaluation. The results of the blind well lithology prediction using the T-LS and
RF models are depicted in Figure 12. In the comparative experiments detailed in this paper,
the lithology prediction results of the T-LS and RF models for adjacent unmarked blind
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wells exhibit close proximity, particularly in their ability to accurately classify sandstone.
However, for locations where a mixture of several lithology types may be present, the iden-
tification effectiveness of both models was average. Overall, the T-LS model demonstrated
a certain degree of generalization ability, showcasing its potential for application across
diverse geological contexts.

(a) Transformer–LSTM model. (b) Random forest model.

Figure 11. Plots of lithological classification results for ALEXANDER D wells using the T-LS model
and random forest models.

3.5.3. Shapley Analysis of the T-LS Model

The use of Shapley analysis scatter plots can help researchers understand the extent
to which a model contributes to each logging data feature. Figure 13 shows the Shapley
analysis scatter plot for the identification of nine lithology types using the T-LS model,
where the horizontal coordinates indicate the Shapley values, the vertical coordinates
indicate the names of the features, and each point represents a sample instance. The six
features selected were GR, ILD_log10, DeltaPHI, PHIND, PE, and NM_M, and the names
of the nine lithology types are shown in Table 2. A positive Shapley value means that the
feature contributes more positively to the prediction results, while a negative Shapley value
means that it contributes more negatively. The darker the color, the larger the value of the
feature. The lighter the color, the smaller the value of the feature. By observing the change in
color coding, the degree of influence of different feature values on the prediction results can
be understood. Among all the features, NM_M, i.e., terrestrial or marine stratigraphy, has
the greatest influence on lithology prediction, while other features have different influences
on lithology prediction for different categories. For example, for SS formations, PHIND and
DeltaPHI have a greater impact, while for CSIS formations, GR and PHIND have a greater
impact, and DeltaPHI has a smaller impact. In the multi-sample lithology classification
prediction task undertaken as part of the comprehensive analysis, the more information and
feature values contained in the logging data, the better the classification prediction accuracy.
Multi-information fusion logging data analysis can provide a better understanding of the
nature of subsurface rocks and fluids, assess the capacity and recoverable reserves of oil
and gas reservoirs, optimize drilling and production decisions, and reduce exploration and
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development risks by combining data from multiple logging tools. In practical applications,
factors such as logging tool characteristics, data quality, calibration, and alignment must be
considered to ensure the accuracy and reliability of fusion analysis.

(a) Random forest for STUART wells. (b) Transformer–LSTM for STUART wells.

(c) Random forest for CRAWFORD wells. (d) Transformer–LSTM for CRAWFORD wells.

Figure 12. Lithology classification predictions of neighboring unlabeled blind wells using the T-LS
and RF models.
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Figure 13. Shapley analysis scatter plot for the identification of nine lithology types via the
T-LS model.
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4. Conclusions

The prediction of lithology in oil and gas exploration target areas holds paramount
importance for the development of oil and gas resources. Addressing the inherent subjec-
tivity and limitations of traditional logging methods, we proposed a deep learning-based
approach to realize lithology prediction in blind wells. Raw logging data often present
practical challenges such as outliers influenced by noise, variations in raw data from dif-
ferent logging instruments, uneven distribution of logging data samples, and partially
missing data. Initially, the Savitzky–Golay filtering method was employed to mitigate
outliers in logging curves. A comparative analysis with the commonly used SVRs and
RFR methods revealed the superior evaluation performance of the ResTCN in terms of
MAE and R2, demonstrating its efficacy in completing missing data. Eight commonly
used models for lithology classification prediction, including LR, KNN, DT, and RF, were
selected for comparative experiments. Comprehensive evaluation metrics such as the
precision, recall, and F1-score were employed to assess the model performance. Among
the nine models evaluated, T-LS and RF exhibited superior evaluation results. Notably,
in the prediction task encompassing nine rock samples, T-LS outperformed RF for seven
samples, and achieved slightly lower ratings for two samples. The overall rating of the
T-LS model reached 0.88, surpassing the RF model, which reached 0.74.

The comparative experimental results underscore the superior classification predic-
tion of the proposed model compared to traditional methods. The lithology of adjacent
unlabeled blind wells was predicted using the T-LS and RF models, revealing superior per-
formance of the new model in terms of its generalization ability, thereby partially mitigating
the challenges of inaccurate prediction and weak generalization abilities encountered by
traditional machine learning and deep learning models in lithology recognition. Our future
work will focus on improving the T-LS model by incorporating additional features and refin-
ing its architecture, so as to further enhance the lithology prediction accuracy. Additionally,
exploring the integration of advanced data augmentation techniques and domain-specific
knowledge could enhance the model’s robustness and generalization ability across diverse
geological formations.
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Abbreviations
The following abbreviations are used in this manuscript:

T-LS Transformer–Long Short-Term Memory
LSTM Long Short-Term Memory
ResTCN Residual Temporal Convolutional Networks
KNN K-Nearest Neighbor
LR Logistic Regression;
CNN Convolutional Neural Network
SVR Support Vector Regression
MAE Mean Absolute Error
R2 Coefficient of Determination
TP True Positive
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FN False Negative
FP False Positive
TN True Negative
LR Logistic Regression
DT Decision Tree
RBF Random Forest Regression
RF Random Forest
GB Gradient Boosting
LSVM Linear SVM
MSVM Multiclass Support Vector Machine
BNB BernoulliNB
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