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Abstract: The purpose of the article is to elucidate the conditions and mechanism of crystallization
of W-Fe oxide minerals with a pyrochlore-type structure (formerly ferritungstite, now elsmoreite
group minerals) based on (1) a study of representative samples of secondary tungsten minerals from
the oxidation zone of the Grantcharitsa tungsten deposit (Bulgaria) and (2) laboratory experiments
under conditions suggested by the study of natural samples. It has been shown that crystallization
of W-Fe pyrochlores occurs easily and effectively when treating WO3·xFe2O3·nH2O compounds
(meymacite and tungstite) with W-Fe-containing solutions with pH 2.5–6.5 (70 ◦C); at the same time,
direct crystallization (direct low-temperature hydrothermal synthesis) of these phases from aqueous
solutions is unlikely. The crystallization of W-Fe pyrochlores under natural and laboratory conditions
occurs through the oriented attachment of their nanocrystals to the {111} faces of growing crystals.
The nucleation of such nanocrystals occurs in the bulk of the solution as a result of the interaction of
the W-Fe solution with the W-(Fe) oxide hydrate precursor. The Fe/W ratio in the resulting W-Fe
pyrochlore phase depends on the Fe/W ratio in the solution and precursor, as well as on the pH of
the solution.

Keywords: W-Fe pyrochlore; elsmoreite group; W-Fe oxide hydrate precursor; meymacite; tungstite;
particle attachment crystallization; platy and octahedral crystals

1. Introduction

Hydrous W-Fe oxides with a pyrochlore-type structure occur in nature as secondary
tungsten minerals resulting from the alteration of scheelite and minerals of the wolframite
series and belong to the elsmoreite group of the pyrochlore supergroup of minerals with
the general formula A2−mB2X6−wY1−n [1]. In the formula of the elsmoreite group, A
is a vacancy, H2O, or a large 8-coordinated cation with a radius of ~1.0 Å (Na+, Ca2+,
Pb2+, Bi3+); B is a 6-coordinated high field-strength cation (W6+) and Fe3+ and Al3+; X
is O2− and OH−; Y is a vacancy, H2O, OH−, and a very large (>>1.0 Å) monovalent
cation (K+, Cs+) [1–3]. To date, the elsmoreite group of minerals includes the follow-
ing: (1) hydrokenoelsmoreite (formerly known as ferritungstite and alumotungstite until
2010; discredited), which is the most common representative of the elsmoreite group
and has a variable composition—from pure tungsten oxide hydrate □2W2O6·H2O [4]
to varieties with dominant H2O and vacancies at the Y and A sites, respectively, but
with a significant presence of other cations at the A, B, X, and Y sites giving the formula
(□,Na+,Ca2+,Pb2+,Bi3+,H2O)Σ2(W,Fe3+,Al)Σ2(O,OH)Σ6(H2O,□,K,Cs,)Σ1, [1]; (2) hydroxyke-
noelsmoreite, (□,Pb2+,Ca2+,Na+,K+,Ba2+)Σ2(W,Fe3+,Al)Σ2(O,OH)Σ6(OH), with dominant
OH and vacancies in the Y and A sites, respectively [3]; and (3) hydroplumboelsmoreite
(formerly jixianite), (Pb1□1)Σ2(W1.33Fe3+

0.67)Σ2O6(H2O) with dominant H2O and Pb at the
Y and A sites, respectively [5].

Minerals 2024, 14, 422. https://doi.org/10.3390/min14040422 https://www.mdpi.com/journal/minerals

https://doi.org/10.3390/min14040422
https://doi.org/10.3390/min14040422
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/minerals
https://www.mdpi.com
https://doi.org/10.3390/min14040422
https://www.mdpi.com/journal/minerals
https://www.mdpi.com/article/10.3390/min14040422?type=check_update&version=1


Minerals 2024, 14, 422 2 of 19

Minerals of the elsmoreite group are quite typical products of supergene processes in
the oxidation zones of tungsten and tungsten-containing deposits, although they can also
form as products of hydrothermal alteration of primary tungsten minerals [6]. Data on the
chemical composition and structure of this group of minerals have long been controversial
due to the very small size of the crystals, the presence of fine mixtures with other secondary
minerals, and the state of analytical methods used in the past.

The mineral hydrokenoelsmoreite was first described under the name “ferritungstite”
by W.T. Schaller in 1911 for tungstic ocher resulting from the oxidation of wolframite in the
Germania tungsten mine in the State of Washington, USA [7]. The mineral was described as
platy hexagonal crystals of “a hydrous ferric tungstate” with a formula Fe2O3·WO3·6H2O
(Fe/W = 2). A later study of the original Schaller sample [8], interpreted by [9], showed that
Schaller ferritungstite is rather a mixture of ferritungstite and jarosite and that the atomic
Fe/W ratio of ferritungstite is <2. The use of electron probe microanalysis to study minerals
of the elsmoreite group, particularly in articles published in the last 30 years, shows that
the Fe/W or (Fe + Al)/W atomic ratios in these minerals are significantly less than unity. If
we exclude the unique composition of hydrokenoelmorite □2W2O6·H2O described in [4],
then, according to most researchers [2,3,5,10–14] the ratio (Fe + Al)/W is not strictly fixed
and varies within the range of 0.27–0.51.

Van Tassel [15] was the first to point out that the structure of hydrokenoelsmoreite
(ferritungstite) belongs to a pyrochlore-type structure. This finding was conclusively con-
firmed by single-crystal X-ray diffraction of a mineral from Kalsas Mountain, Yukon,
performed by [2]. According to [13], hydrokenoelsmoreite occurs in two polytypes:
hydrokenoelsmoreite-3C (S.G. Fd-3m) and hydrokenoelsmoreite-6R (S.G. R-3). The struc-
tures of other members of the elsmoreite group are described within the space groups
Fd-3m (hydroplumboelsmoreite) [5] and R-3 (hydroxykenoelsmoreite) [3].

The conditions and mechanism of crystallization of minerals of the elsmoreite group
still remain practically unstudied. It is well known that the minerals of this group are
formed as a result of the alteration of primary tungsten minerals. But at what stage of the
alteration of primary minerals and, in general, at what stage of the geochemical evolution
of tungsten (for example, in the oxidation zone of ore deposits) the elsmoreite group of
minerals is formed is not completely clear.

Minerals of the elsmoreite group can occur as incrustations and fillings both in the
cavities of primary minerals, such as ferberite [2,6,15], and outside the location of primary
minerals, for example, in cavities in quartz [4]. In these incrustations, in addition to the
elsmoreite group, other secondary tungsten minerals are often present, which makes it
difficult to determine the sequence of formation of secondary tungsten minerals. Cases
of direct replacement of primary tungsten minerals by minerals of the elsmoreite group
of minerals are very rare. In these cases, questions arise as to whether the described
mineral belongs to the elsmoreite group and whether direct replacement of the primary
mineral actually occurs. Matsubara [10] describes the direct replacement of scheelite by
dense aggregates of hydrokenoelsmoreite (ferritungstite). But, the 12% water content
reported in this paper is atypically high for ferritungstite, which is close to that of the
amorphous mineral meymacite. The microtexture of this replacement also corresponds to
the replacement of scheelite with iron-containing meymacite [16]. Sahama [6] described
pseudomorphs of platy ferritungstite after scheelite, which, however, correspond more to
the filling of a cavity after the dissolution of scheelite than to its direct replacement.

There is evidence that the minerals of the elsmoreite group are not formed directly
during the destruction of the primary minerals but at a later stage at the expense of ear-
lier alteration products. Among such earlier products of alteration of primary tungsten
minerals and precursors of minerals of the elsmoreite group are Fe and Mn containing hy-
drotungstite WO3·2H2O replacing hübnerite [11]; anthoinite AlWO3(OH)3 and mpororoite
Al2O(WO4)2·6H2O pseudomorphically replacing scheelite [14]; meymacite WO3·2H2O and
Fe-containing meymacite WO3·xFe2O3·nH2O replacing scheelite [15,16].
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Some data on the possible conditions of crystallization of minerals of the elsmoreite
group can be derived from the conditions of synthesis of artificial tungsten pyrochlores.
Synthetic tungsten-based pyrochlore oxides have long been the focus of scientific interest
due to their promising electrochemical properties for use in electrochemical devices (lithium
batteries and electrochromic windows) [17] and for photocatalytic applications in energy
(solar water splitting) and environmental protection (purification) [18,19]. Among the meth-
ods used for the synthesis of tungsten pyrochlores (solid-phase synthesis, hydrothermal
synthesis, solvothermal synthesis, coprecipitation + annealing, etc.), hydrothermal synthe-
sis (usually at temperatures > 100 ◦C) is more consistent with the natural conditions for the
formation of elsmoreite group minerals. The pH = 3 of solutions used in the direct synthesis
at 155 ◦C of the artificial hydrokenoelsmoreite analog □2W2O6·H2O [20] is sometimes cited
as a likely pH parameter for the formation of natural hydrokenoelsmoreite. As far as we
know and according to [9], the first documented attempts, although unsuccessful, to obtain
hydrokenoelsmoreite (ferritungstite) in laboratory conditions were made by Graf D.L. in
his Master’s Thesis (1947). It is assumed that as a basis for his research, the author used the
chemical composition of ferritungstite proposed by Schaller [7].

The present work aims to elucidate the conditions and mechanism of crystallization of
W-Fe minerals of the elsmoreite group based on (1) the detailed examination of representa-
tive samples of secondary tungsten minerals from the oxidation zone of the Grantcharitsa
tungsten deposit (Bulgaria) and (2) laboratory experiments under conditions suggested by
the study of natural samples. All laboratory experiments were performed at 70 ◦C, which
is the lowest temperature for synthesis of tungsten pyrochlore known so far.

The authors believe that the results of this study can be applied to the oxidation zones
of other tungsten deposits. The oxidation zone of the Grantcharitsa tungsten deposit is
considered by the authors as a representative site in which the mineral formation in the
WO3-Fe2O3-H2O system takes place, including the formation of hydrokenoelsmoreite. This
is due to the fact that the primary ore mineralization is represented by a stable association
of pyrite and scheelite in pegmatoid quartz-feldspathic veins, with a subordinate amount of
other ore minerals. The deposit is located in porphyry biotite granites and amphibole-biotite
granodiorites from the so-called “unit 1” (66.79 ± 0.29 Ma) of the composite Rilo-Western
Rhodope batholith [16].

2. Materials and Methods
2.1. Geological Materials

Representative samples taken from the oxidation zone of the Grantcharitsa deposit,
Western Rhodopes Mountains, Bulgaria, were used for the present study. The samples were
selected to more clearly visualize and interpret the relationships between natural W-Fe
pyrochlore–hydrokenoelsmoreite with primary scheelite and other secondary tungsten
minerals and to show the place of hydrokenoelsmoreite in the geochemical evolution of
tungsten in the oxidation zone of the deposit.

2.2. Laboratory Experiments

Iron (III) sulfate hydrate Fe2(SO4)3·xH2O (97%) (x = 6.034 measured by TG analysis)
and sulfuric acid H2SO4 (95%–97%) (reag. Ph. Eur) of Sigma-Aldrich and analytical grade
sodium tungstate dihydrate Na2WO4·2H2O and hydrochloric acid HCl (37%) were used in
laboratory experiments. The reagents were selected to better suit the chemical environment
of the oxidation zone of the W-containing sulfide deposit, in which the presence of Fe,
sulfate ions, and sulfuric acid in supergene solutions is mainly associated with the oxidation
of pyrite.

All experiments were carried out at 70 ◦C in an MTA Kutesz shaker thermostat using
25–50 mL aqueous solutions with a W concentration of 0.05 M, variable Fe concentrations
ensuring an atomic Fe/W ratio of 0–0.5 in solution, and with different pH values. The
choice of the temperature of 70 ◦C was dictated by the low rates of equilibration of the
iso- and heteropolytungstate anions in aqueous solutions at room temperature. At room
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temperature, these equilibria can be reached in hours or weeks, especially in the pH
range (pH < 5) where metatungstate ions are formed [21]. The pH measurements of
the solutions were performed before and after experiments at room temperature using
a Radelkis OP-211/1 digital pH meter and a Thermo Scientific Orion Star A329 portable
pH/conductivity/DO meter.

Two types of experiments were performed as follows: (1) direct hydrothermal synthesis
within a WO3-Fe2O3-H2O system; (2) transformation of solid precursors (WO3·xFe2O3·nH2O,
WO3·H2O) by treating them with W-Fe solutions at different pH.

2.2.1. Direct Hydrothermal Synthesis

The synthesis was conducted for two series of solutions with Fe/W atomic ratios
of 0.1 and 0.5, each series consisting of 8 solutions with different pH values ranging be-
tween 0.5 and 4.0. Preparation of the solutions involved the following steps: (1) dissolving
Fe2(SO4)3·xH2O in deionized water to obtain 50 mL of 0.0132 M or 0.00264 M Fe2(SO4)3
solution; (2) addition of 2.6 mL of 1 M Na2WO4; (3) gradual addition of H2SO4 with a con-
centration of 2 M, 1 M, or 0.5 M to adjust the pH of the solutions with an approximate step
of 0.5. All these operations were carried out at room temperature, using an electromagnetic
stirrer and simultaneously determining the pH of the solution with a pH meter. A part
of the obtained solutions contained white to beige suspensions. Then, sealed flasks with
the solutions were placed in a shaker thermostat at a temperature of 70 ◦C for 400 h. After
the experiments, the pH of all solutions was again measured at room temperature; the
precipitates were filtered and washed with deionized water and acetone and then dried at
50 ◦C.

2.2.2. Treatment of Solid Precursors with W-Fe Solutions

The experiments involved the preparation of a series of precursors:
(a) Amorphous gels of W-Fe oxide hydrate (WO3·xFe2O3·nH2O) (artificial chemical

analogs of meymacite) with different Fe/W atomic ratios (0.10–0.23) using different mo-
lar proportions of Na2WO4, Fe2(SO4)3 and H2SO4 at room temperature (Table S1); and
(b) WO3·H2O (analogs of tungstite—common mineral in the oxidation zones of ore de-
posit [6]) prepared by Freedman’s method [22] at 100 ◦C and via the decomposition of
scheelite with sulfuric acid at 110 ◦C. The experiments involved sequentially performing
the following steps:

(1) Preparation of 25 mL batches of Fe2(SO4)3 + H2SO4 solutions of various concentra-
tions at room temperature. To prepare solutions with a target Fe/W ratio of 0.10, 0.11, 0.3,
and 0.5, the following volumes of 0.05 M Fe2(SO4)3 were used—1.32, 1.45, 3.96, and 6.6 mL,
respectively. To these volumes, the required volumes of 0.1 M H2SO4 were then added, as
determined experimentally (for the planned pH range of 3–7 for a solution of Fe/W = 0.1,
volumes of 0.1 M H2SO4 ranged from 8.5 to 6.5 mL). Deionized water was then added to
make up the solution to 25 mL.

(2) Addition of 1.32 mL 1 M Na2WO4 to each solution in step 1, thereby forming a
series of working solutions with a total tungsten concentration of 0.05 M and varying Fe/W
and pH.

(3) Placing the working solutions in a thermostat at 70 ◦C for 1–5 days (to achieve
equilibria in the solutions); then, the pH of the solution was measured at room temperature.

(4) To the prepared working solutions in step 3, solid precursors were added (about
0.01–0.02 mole of W recalculated to the volume of the solution). For better interaction
with the solutions, all precursors were previously ground in a mortar. Then, the working
solutions with the solid precursors were placed in a thermostat at 70 ◦C for a period of
2–3 weeks. After the experiment, the pH of the solutions was measured at room temper-
ature and filtered, and the solid material was washed with deionized water and dried at
50 ◦C.
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2.3. Methods

Scanning electron microscopy (SEM) and energy dispersive X-ray (EDX) analysis
(ZEISS EVO LS25—EDAX Trident) were applied to investigate the morphology and chem-
ical composition of natural and artificial materials. For this purpose, part of the sample
grains was directly attached to SEM stubs, while another part was embedded in epoxy
resin and then polished, and both types of specimens thus obtained were coated with
carbon. SEM-EDX was performed at an accelerating voltage of 15 kV using an EDAX
SDD Apollo 10 EDS detector and a Genesis V. 6.2. software with ZAF correction method
and hematite (for Fe), scheelite (W), albite (Na), sanidine (K), crocoite (Pb), and anhydrite
(S) as reference standards. A part of the natural W-Fe pyrochlores (hydrokenoelsmoreite)
from the Grantcharitsa deposit was studied by high-resolution TEM at 120 kV using a
transmission electron microscope Philips TEM420. The phase composition of the materials
was examined using powder X-ray diffraction analysis on a PANanalytical EMPYREAN
diffractometer system ((IMC-BAS), Cu anode, 45 V, 40 mA, range 3–100 degrees 2Theta,
step size 2Theta—0.0130).

3. Results
3.1. Formation of Hydrokenoelsmoreite in the Grantcharitsa Deposit
3.1.1. Scheelite Alteration and Role of Meymacite

A thorough examination of samples with scheelite and secondary tungsten minerals
showed that there was not a single case of direct replacement of scheelite with hydroke-
noelsmoreite. In this work, we confirm our earlier conclusion [16] that iron-containing
meymacite WO3·xFe2O3·nH2O (x = 0.12–0.25, n = 1.8–3.9) is the first supergene product
of scheelite alteration and the most common secondary tungsten mineral at the deposit.
The mineral forms partial or complete pseudomorphs after scheelite and often shows
oriented penetration into scheelite crystals (Figure 1a,b). The earliest formed meymacite
has a lower content of iron and water (x ≈ 0.12, n ≈ 1.8), and due to later processes—aging
and interaction with supergene solutions—its chemical composition changes.
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Figure 1. Crystallographically oriented pseudomorphic replacement of scheelite (Sch) by Fe-
containing meymacite (Mym): (a) image in secondary electrons (SE); (b) image in cathode lumi-
nescence (CL).

The mineral has a resinous to glassy luster and a color of varying shades of yellow and
brown—from light-yellow to dark- and black-brown—and according to these characteris-
tics, it corresponds to the first description of meymacite, made in 1874 by A. Carnot [23].
It should be noted that A. Carnot’s meymacite also contained iron, which, however, the
author attributed to mechanical impurities of other minerals. According to [15,23] and the
existing nomenclature, meymacite is considered an amorphous analog of hydrotungstite,
WO3·2H2O. Our investigation [16] showed that meymacite from the Grantcharitsa deposit
actually is a nanocrystalline material, the most ordered parts of which are represented by fil-
amentous nanocrystals 20–25 nm long and 2–3 nm wide with the structure of WO3·1/3H2O
(S.G. Fmm2, a = 7.359 Å, b = 12.513, c = 7.704) [24]. The nanocrystals are elongated in [001]
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direction. The WO3·1/3H2O structure consists of layers of corner-sharing WO6 octahedra
forming six-membered rings characteristic by hexagonal WO3 and hexagonal tungsten
bronzes (HTB). Layers are stacked in the [001] direction, with each layer being displaced by
a/2 relative to the adjacent layer.

The special place and significance of meymacite in the oxidation zone of the Grantchar-
itsa deposit is that it is the precursor of all other minerals, including hydrokenoelsmore-
ite. The possible path and conditions of decomposition and replacement of scheelite by
iron-containing meymacite as well as the possible paths and conditions of alteration of
meymacite in the Grantcharitsa deposit can be inferred using the Eh-pH diagrams for the
W-Ca-Fe-S-K-O-H (Figure 2a) and W-Fe-S-K-O-H (Figure 2b) systems constructed by us
in [16] and modified for this study. The selected activities of the chemical components (Fe,
Ca, S, and K) in aqueous solutions correspond to those in the oxidation zones of the ore
deposits, and the activity for W corresponds to the scheelite solubility [16].
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Figure 2. (a) Pathway of alteration of scheelite and formation of meymacite in Eh-pH diagram of the
W-Ca-Fe-S-K-O-H system (ΣFe—10–4, Ca2+—10–4, ΣS—10–2, K+—10–3; 298 K, 1 atm.). (b) Pathways
of alteration of meymacite in Eh-pH diagram of the W-Fe-S-K-O-H system (according to [16] with
corrections] (ΣFe—10–4, Ca2+—10–4, ΣS—10–2, K+—10–3; W monomeric—10−5; 298 K, 1 atm.).

3.1.2. Meymacite—Hydrokenoelsmoreite Relationships

All other identified secondary tungsten minerals and tungsten-bearing minerals in
the deposit (tungstite, hydrotungstite, hydrokenoelsmoreite, stolzite, supergene scheelite,
W-bearing hematite, and W-bearing goethite) are clearly secondary to meymacite. The
minerals tungstite, hydrotungstite, and hydrokenoelsmoreite are formed at the expense of
meymacite and in place of meymacite while other minerals are not spatially associated with
meymacite. Before its transformation into other secondary minerals, meymacite undergoes
significant changes associated with the aging of the mineral as a natural gel [25]. As a result,
primary glassy meymacite retains a stable glassy base (skeleton) and cavities occupied by
gel aging products, such as spongy aggregates (Figure 3a), which are the most ordered part
of meymacite [16].

It is in these cavities in meymacite that hydrokenoelsmoreite (Figure 3b,c) and another
secondary tungsten mineral—hydrotungstite, WO3·2H2O, stable at <50 ◦C (Figure 3d)—
are formed. Hydrotungstite occurs as bright-yellow aggregates of crystals with a size of
50–60 µm. Hydrokenoelsmoreite occurs as yellow to grey-brownish aggregates of smaller
crystals (5–20 µm) with a strong diamond luster. The conditions for the transformation of
meymacite into these two minerals are fundamentally different, and the Eh-pH diagram
we constructed in Figure 2b can be used to assess these conditions. It follows that the
formation of hydrotungstite (tungstite) occurs as a result of the interaction of sulfuric acid
solutions (pH < 1) with meymacite. The succession of the minerals scheelite—Fe-containing
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meymacite—and hydrotungstite (tungstite) reflects the general tendency of the evolution
of mineral forms of tungsten in the oxidation zone of the Grantscharitsa deposit when the
pH of the supergene solutions decreases. Hydrokenoelsmoreite is out of this tendency.
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hydrotungstite: (a) Meymacite microstructure (cavities, empty or filled by spongy aggregates in
glassy material) as result of aging (polished section); (b) development of hydrokenoelsmoreite after
meymacite—filling the cavities in meymacite (polished section); (c) incrustation of octahedral crystals
of hydrokenoelsmoreite on the walls of cavities in meymacite; (d) development of hydrotungstite,
WO3·2H2O after meymacite (relics of meymacite glassy skeleton are in the center of the image).
Mym—meymacite; Hkm—hydrokenoelsmoreite.

It has been established that meymacite in samples containing hydrokenoelsmoreite
is distinguished by a number of features: (1) the relative volume of cavities in meymacite
increases sharply; in some cases, only skeletal walls 3–5 µm wide are preserved (Figure 3c);
(2) the material becomes very fragile and friable. The formation of hydrokenoelsmoreite
also causes a significant change in the composition of meymacite (Table 1); the contents of
Fe2O3 and H2O increase and those of WO3 decrease (analyses 2 and 4) in comparison with
meymacite without hydrokenoelsmoreite (analysis 1). The latter analysis is related to the
most common variety of meymacite in the Grantcharitsa deposit.

Fragility in combination with the increased content of water indicates increased poros-
ity of meymacite, which, together with an increase in the volume of cavities in the mineral,
indicate that during the crystallization of hydrokenoelsmoreite, meymacite is intensively
dissolved by supergene solutions. This process occurs when the pH of the supergene solu-
tion increases. The field (tungstite + goethite) of the Eh-pH diagram (Figure 2b) can, to a first
approximation, be taken as the conditions for the crystallization of hydrokenoelsmoreite
(pH ≈ 3–4).

A change in the pH regime of supergene solutions may reflect the staged development
of processes in the oxidation zone and is associated mainly with the depletion of sulfides,
the oxidation of which ensures the formation of natural sulfuric acid [26]. The acidity of
supergene solutions is also gradually neutralized as a result of the interaction of sulfuric
acid with scheelite and silicate minerals (quartz, microcline, albite, and biotite), which leads
to a simultaneous increase in the concentration of potassium and sodium. The chemical
composition of the coexisting pairs of meymacite—hydrokenoelsmoreite (Table 1) suggests
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that the supergene solution that caused the formation of hydrokenoelsmoreite contained
Na, K, Ca, W, and Fe.

Table 1. Representative EDX analyses of meymacite and hydrokenoelsmoreite (wt.%) and their
crystal chemical formulas.

№ an. Mineral WO3 Fe2O3 Na2O K2O CaO H2O 1 Fe/W at. Ratio

1 meymacite 79.0 7.9 - - 0.6 12.5 0.29
2 2 meymacite 74.7 9.1 - 0.1 0.3 15.8 0.35
3 2 hydrokenoelsmoreite 81.2 9.3 1.4 1 0.3 6.8 0.33
4 3 meymacite 70.4 10.9 - - 0.1 18.6 0.45
5 3 hydrokenoelsmoreite 79.9 9.5 1.0 1.2 0.2 8.2 0.35

Chemical formulas/crystal chemical formulas
1. WO3·0.145Fe2O3·0.031CaO·2.036H2O

2. WO3·0.177Fe2O3·0.017CaO·0.003K2O·2.722H2O
3. (□1.657Na0.194(H2O)0.126Ca0.023)Σ2(W1.501Fe3+

0.499)Σ2(O4.835(OH)1.165)Σ6((H2O)0.909K0.091)Σ1
4. WO3·0.225Fe2O3·0.006CaO·3.400H2O

5. (□1.402(H2O)0.444Na0.139Ca0.015)Σ2(W1.487Fe3+
0.513)Σ2(O4.741(OH)1.259)Σ6((H2O)0.890K0.110)Σ1

1 The difference between 100% and the sum of the analysis. 2,3 Coexisting pairs meymacite—hydrokenoelsmoreite.

3.1.3. Morphology of Hydrokenoelsmoreite and Peculiarities of Its Surface

Hydrokenoelsmoreite of the Grantcharitsa deposit occurs in the form of well-faceted
octahedral crystals, their twins, and intergrowths according to the spinel law. Besides
dominant octahedral faces {111}, hydrokenoelsmoreite crystals rarely have cube faces
{100}. Individual crystals are rare. The mineral usually occurs in the form of aggregates
of intergrown crystals. The predominant part of the crystals demonstrates a specific
granular (mosaic) structure on their {111} faces (Figure 4a,b). The grains are round or
with hexagonal contours. Their size is ≤1 µm and varies from sample to sample; for
example, it is 0.5–1.0 µm for the sample in Figure 4a and 0.1–0.2 µm for the sample in
Figure 4b. This feature of the crystal faces can serve as an indication that the crystallization
of hydrokenoelsmoreite occurs through the mechanism of “particle attachment” [27] or
“oriented attachment of particles” [28]. This crystallization mechanism has been proposed
for tungsten pyrochlore obtained in hydrothermal treatment experiments at 180 ◦C [29]
and for synthetic tungstite obtained at 100 ◦C [30].
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Figure 4. SEM images of hydrokenoelsmoreite octahedral crystals whose {111} faces demonstrate
granular (mosaic) structure as a result of crystallization by particle attachment [27,28]: (a) octahedral
crystals 10–15 µm in size with surface grains of 0.5–1.0 µm; (b) octahedral crystals 5–9 µm in size
with surface grains of 0.1–0.2 µm.

3.1.4. TEM Study of Hydrokenoelsmoreite

TEM study was used in this study to obtain more detailed information about the
structure of the grains that make up the granular structure on the {111} faces (Figure 4a,b).
A thin fragment of one of such grains, 0.3 µm wide, is shown in Figure 5a. The particle
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is oriented along the [112] direction. The bright-field image in Figure 5a shows the par-
ticle’s inhomogeneity and defect structure in diffraction contrast (visible as a granular
structure). The selected area of the electron diffraction pattern (insert in Figure 5a) confirms
the inhomogeneity of the particle: a part of the spot reflections is arc-shaped; there are
additional extra reflections. Arc-shaped reflections indicate that local areas (domains) in
the particle are rotated relative to each other at an angle of 3–4◦. Of the extra reflections in
the pattern, the most important are those that correspond to the [112] zone. For example,
the experimental pattern demonstrates reflection (1–10), which is forbidden for the space
group Fd-3m.
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Figure 5. TEM study of hydrokenoelsmoreite: (a) Morphology of hydrokenoelsmoreite particle
viewed along [112] (in insert: SAED pattern of the particle from zone [112]; red square contour
outlines the region studied with HR TEM in Figure 5b; (b) HR TEM image of hydrokenoelsmoreite
viewed along [112] showing defect structure of the mineral.

A high-resolution (HR) image of the region in Figure 5a, outlined in red, shows the
defect structure of the particle in phase contrast (Figure 5b). There are areas with well and
hardly pronounced one- and two-dimensional lattice fringes corresponding to d-spacings
0.6 nm (11–1) and 0.37 nm (2–20) of the zone [112] of hydrokenoelsmoreite. Some of the
homogeneous areas (domains) with well-defined one-dimensional lattice fringes with a
d-spacing of 0.37 nm are highlighted in red for a clearer visualization of the defect structure
of the particle. As can be seen, homogenous domains are isometric, have a size of 3–7 nm,
and correspond to the so-called “primary nanoparticles” before their coalescence to form a
larger particle.

The results obtained are fully consistent with the mechanism of crystallization by
particle attachment.

3.2. Preparation of W-Fe Pyrochlores in Laboratory Conditions at 70 ◦C

Two ways of synthesis of W-Fe pyrochlores were checked in the present study: (1) di-
rect synthesis which has long been one of the most widely used methods for the synthesis
of new tungsten oxide compounds [20,31]; (2) treatment of solid precursors with W-Fe
solutions, which follows from the relationships of hydrokenoelsmoreite and meymacite
and their properties at the Grantcharitsa deposit. The latter process actually corresponds to
the metasomatic transformation of meymacite into hydrokenoelsmoreite.

3.2.1. Direct Hydrothermal Synthesis

Direct hydrothermal synthesis in the WO3-Fe2O3-H2O system was carried out for
two series of solutions, with an atomic Fe/W ratio of 0.1 and 0.5 (Figure 6a,b). These atomic
ratios were initially chosen to (1) not exceed the upper limit of Fe/W in natural W-Fe
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pyrochlores (~0.5); (2) to evaluate the possibility of crystallization of W-Fe pyrochlores at
low Fe/W ratios of solutions.
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Figure 6. (a) Dependence of the Fe/W atomic ratio of solid precipitate on the Fe/W atomic ratio and
pH of solutions (all pH measurements were performed at room temperature); (b) XRD patterns of
solid precipitates obtained from solutions with Fe/W = 0.1 and different pH (samples 1, 2, 3, 4, and 5)
and of meymacite from the Grantcharitsa deposit; (04-011-1708) is the reference code of the ICDD
powder diffraction file (PDF) of orthorhombic WO3·0.33H2O.

The experiments performed showed that no sample synthesized in the two series
of experiments contained W-Fe pyrochlores. The resulting materials (gels) are highly
disordered (X-ray amorphous), with the exception of two samples synthesized with a
solution of Fe/W = 0.1 at pH = 0.7 and 1.11, containing a crystalline phase—orthorhombic
WO3·1/3H2O (Fmm2) (Figure 6b). There is a steady increase in the atomic ratio of Fe/W in
gels with an increasing pH of solutions: Fe/Wgel = 0.21–0.77 at pH = 0.59–2.84 for a solution
with Fe/W = 0.5 and Fe/Wgel = 0.11–0.38 at pH 0.70–2.35 for a solution with Fe/W = 0.1
(Figure 6a). At pH > 3.1 for a solution with Fe/W = 0.5 and pH > 2.6 for a solution with
Fe/W = 0.1, no precipitates are formed.

It is noticeable that the XRD patterns of meymacite (Fe/W = 0.29) from the Grantchar-
itsa deposit and gels 3 (Fe/W = 0.17) and 4 (Fe/W = 0.29) are almost identical. The patterns
of natural and artificial materials consist of two pronounced peaks at ~23 and ~47◦ (2θ)
and several broad humps. The first peak of meymacite from the Grantcharitsa is narrower
indicating better crystallinity of the natural material and better correspondence to reflection
(002) of orthorhombic WO3·1/3H2O (Figure 6b).

3.2.2. Treatment of Solid Precursors with W-Fe Solutions

The experiments with the treatment of solid precursors with W-Fe solutions turned
out to be very fruitful and, in our opinion, showed the most realistic path for the formation
of W-Fe pyrochlores in the oxidation zone of deposits. This result is illustrated in Figure 7
by a diagram depicting the pH-concentration dependence of H2SO4 (mol/L) (blue curve)
for a solution with Fe/W = 0.11. It has been established that 24 h at 70 ◦C is sufficient
time to achieve equilibrium in working solutions with Fe/W = 0.11 because, for different
concentrations of H2SO4, the measured pH values of solutions kept in a thermostat for
different durations ≥24 h fall on the same curve. The lower part of the curve is directly
related to Figure 6a, which shows pH ranges with and without precipitation for a solution
of similar composition with Fe/W = 0.1. In essence, experiments involving solid precursor
treatment are the next step in the development of direct hydrothermal synthesis. To
solutions without precipitation (reactive solutions), we added in excess a solid compound
containing W and Fe.
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The obtained curve (Figure 7) is very close to the experimental titration curves for
tungsten solutions [32,33], where the steepest part of the curve corresponds to the formation
of different polytungstate ions. It is with the steepest part of the dependence of pH on the
concentration of H2SO4 (mol/L) (pH ≈ 2.5–6.5) that the formation of W-Fe pyrochlores
in our experiments is associated (Figure 7). It is noteworthy that the pH range of W-
Fe solutions causing the formation of W-Fe pyrochlores is significantly narrower when
using WO3·H2O as a precursor compared to WO3·xFe2O3·nH2O gels. The details of these
experiments are presented below.

• Treatment of amorphous WO3·xFe2O3·nH2O with W-Fe solutions

Figure 8 shows the results of treating an initially amorphous gel with the composition
WO3·0.064Fe2O3·2H2O with W-Fe solutions (Fe/W = 0.11, total W 0.05 mol/L, and pH
3.23–6.34) in thermostat 400 h. The formation of W-Fe pyrochlore occurs in all samples of
the experimental batch.

Of all the experimental solutions, solution 3, whose initial pH1 corresponds to the
upper inflection point of the curve (pH-H2SO4) in Figure 8a, shows the largest decrease in
pH (from pH1 = 6.04 to pH2 = 3.74). Namely, this solution provides the best conditions for
the transformation of the amorphous gel into W-Fe pyrochlore, as evidenced by the XRD
pattern in Figure 8b. The smallest decrease in pH is characteristic of solutions whose initial
pH1 is close to the lower inflection point, where gel precipitation occurs (Figures 7 and 8a).
These solutions provide a weak transformation of the gel into W-Fe pyrochlore (Figure 8b).
The formed W-Fe pyrochlores show an opposite trend in Fe/W variation with pH compared
to that found for the gels (Figure 6a), namely the Fe/W of W-Fe pyrochlores increases from
0.15 to 0.33 at decreasing pH2 from 5.35 to 3.74.

Well-faceted octahedral crystals 8–10 µm in size and their intergrowths according to
the spinel law are more typical for samples with a low degree of conversion of gels into
W-Fe pyrochlores (sample 1 in Figure 8a,b and its SEM image in Figure 9a). For comparison,
Figure 9b shows crystals 1.5–2 µm in size obtained in the experiment with better conversion
of gels into pyrochlore (Figure 8, solution and sample 3).

In addition to crystals with well-developed and smooth {111} faces, in almost all of
the W-Fe pyrochlore samples we obtained, mosaic or grained surfaces of the {111} faces
are observed, very similar to the surfaces of the {111} faces of natural hydrokenoelsmor-
eite samples studied by us (Figure 4), which are the result of crystallization by particle
attachment. All this indicates the uniformity of both the crystallization conditions and the
crystallization mechanism of W-Fe pyrochlores under natural and laboratory conditions.
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Figure 9. Octahedral crystals of W-Fe pyrochlore and their aggregates obtained by treatment of 
amorphous gel (Fe/Wgel = 0.128) with solutions (Fe/Wsol = 0.11): (a) sample and solution 1 in Figure 
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Figure 8. Formation of W-Fe pyrochlore as a result of treatment of amorphous gel (Fe/Wgel = 0.128)
with solutions Fe/Wsol = 0.11 at different pH: (a) Details of the experiments: changes in the pH
of the solutions after the experiments (indicated by arrows; pH1—before experiment; pH2—after
the experiment) and variations in the Fe/W ratio of W-Fe pyrochlore (Fe/WPcl); (b) XRD patterns
of samples 1–4 (also shown in Figure 8a), demonstrating different degrees of conversion of the
amorphous gel into W-Fe pyrochlore depending on the initial pH (pH1) of the working solution;
indexation (sample 3) according to ICDD PDF 04-009-8549 of hydrokenoelsmoreite, W2O6·H2O.
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Figure 9. Octahedral crystals of W-Fe pyrochlore and their aggregates obtained by treatment of
amorphous gel (Fe/Wgel = 0.128) with solutions (Fe/Wsol = 0.11): (a) sample and solution 1 in
Figure 8: Fe/WPcl = 0.33, pH1 = 3.23, pH2 = 2.8; (b) sample and solution 3 in Figure 1: Fe/WPcl = 0.22,
pH1 = 6.04, pH2 = 3.74.

Examples of such a surface of the {111} faces are presented in Figure 10.
In our experiments, in addition to W-Fe pyrochlores forming octahedral crystals,

several samples of platy W-Fe pyrochlores were also obtained. Platy hydrokenoelsmoreite
(ferritungstite) was first described by [7]. Since there is doubt that the author actually
described platy crystals of jarosite, it can be considered that reliable platy crystals of
ferritungstite were first described by Van Tassel [15] and later by Sahama [6]. Platy crystals
of elsmoreite group minerals were later discovered in other deposits of the world [3,13].

Platy crystals of W-Fe pyrochlore were obtained by treating the initial amorphous
gels WO3·xFe2O3·nH2O with Fe/W ≤ 0.16 with a solution (Fe/W = 0, pH1 ≈ 3.2). The
result of such an experiment is shown in Figure 11. It is noteworthy that two gels of similar
composition (Fe/W = 0.16 and 0.20) when interacting with the same solution give different
final products—platy W-Fe pyrochlore (from the gel with Fe/W = 0.16) and octahedral
W-Fe pyrochlore (from the gel with Fe/W = 0.20).
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structure as a result of crystallization by particle attachment [27,28]: (a) granular {111} faces, which
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Figure 11. Platy (left, Fe/WPcl = 0.17) and octahedral (right, Fe/WPcl = 0.28) W-Fe pyrochlores formed
after interaction of solution (Fe/W = 0, pH1 ≈ 3.2) with two precursors with Fe/W = 0.16 and 0.20,
respectively. The octahedral W-Fe pyrochlore on {111} faces exhibited distinct signs of crystallization
by particle attachment.

Analysis of the XRD patterns of the two samples (Figure 11) shows that in addition to
the platy W-Fe pyrochlore, a compound with a hexagonal tungsten bronze (HTB) structure
is also formed from the gel with Fe/W = 0.16. The diffraction peaks of the compound match
well with those of metastable hexagonal WO3 [34] (ICDD PDF 04-007-0979) and sodium
tungstate hydrates NaxWO3+x/2·zH2O [35,36] (ICDD PDF 01-081-0577). Most likely, the
presence of the HTB phase leads to the formation of platy W-Fe pyrochlore. Another
significant difference between the two products is their composition: the Fe/W atomic ratio
in the platy and octahedral W-Fe pyrochlore is 0.17 and 0.28, respectively.

• Treatment of WO3·H2O with W-Fe solutions

The treatment of WO3·H2O as a precursor with W-containing solutions shows the
following:

(i) The interaction of Fe-free W solutions (Fe/W = 0) with WO3·H2O does not lead to
the formation of tungsten pyrochlore (Figure 12, the lower part of the figure; Figure 13a,
XRD patterns 1 and 2). The only processes are dissolution, the formation of a small amount
of tungsten hydrogen oxide, H0.1WO3 (ICDD PDF 00-023-1448), and at pH > 6.5, the
formation of amorphous precipitates followed by complete dissolution.
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(ii) The formation of W-Fe pyrochlore occurs only in the presence of Fe3+ in the work-
ing solution (in our experiments, we used working solutions with a Fe/W ratio of 0.11 and 
0.3). There are clear threshold pH values of working solutions, above which they cause 
the formation of W-Fe pyrochlore: pH = 4.3 for solutions with Fe/W = 0.11 and pH = 5.2 
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(iii) Crystallization of W-Fe pyrochlore upon treatment of WO3·H2O with a W-Fe so-
lution (Fe/W = 0.11) is accompanied by the formation of highly disordered material corre-
sponding to meymacite and gels obtained via direct hydrothermal synthesis (Figure 6b). 

Figure 12. Conditions of crystallization of W-Fe pyrochlores after WO3·H2O (tungstite). Samples 1, 2,
3, and 4 indicated on the graphs were examined using XRD analysis (Figure 13a). SEM images: on
the left—sample 3 (tungstite); on the right—sample 4 (W-Fe pyrochlore).
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Figure 13. XRD patterns of products of treatment of WO3·H2O with W-Fe solutions: (a) Series of
XRD patterns of samples 1–4 in Figure 12. Samples 1 and 2 are after treatment with a solution with
Fe/W = 0. Samples 3 and 4 are after treatment with a solution with Fe/W = 0.11. WO3·H2O with
traces of orthorhombic WO3·0.33H2O obtained via sulfuric acid decomposition of scheelite is used as
a precursor for samples 3 and 4. (b) XRD pattern of precursor (WO3·H2O obtained by the method of
Freedman [22]) and its product—W-Fe pyrochlore and low-crystalline (X-ray amorphous) material
corresponding to natural meymacite.

(ii) The formation of W-Fe pyrochlore occurs only in the presence of Fe3+ in the
working solution (in our experiments, we used working solutions with a Fe/W ratio of 0.11
and 0.3). There are clear threshold pH values of working solutions, above which they cause
the formation of W-Fe pyrochlore: pH = 4.3 for solutions with Fe/W = 0.11 and pH = 5.2
for solutions with Fe/W = 0.3 (Figures 12 and 13a, samples 3 and 4).

(iii) Crystallization of W-Fe pyrochlore upon treatment of WO3·H2O with a W-Fe
solution (Fe/W = 0.11) is accompanied by the formation of highly disordered material cor-
responding to meymacite and gels obtained via direct hydrothermal synthesis (Figure 6b).

3.2.3. Chemical Composition, Crystal Chemistry and Conditions of Crystallization of
W-Fe Pyrochlores

Data on the chemical composition of experimentally obtained W-Fe pyrochlores are
summarized in Figure 14 in the form of the dependence of the Fe/W atomic ratio in
pyrochlore on the pH of solutions, as well as in the form of representative EDX analyses of
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W-Fe pyrochlores and their crystal chemical formulas in Table 2. To plot the experimental
points in the Fe/Wpcl—pH coordinates in Figure 14, we used pH2—pH measured after the
experiment as an approximation to equilibrium. The figure also shows the distribution
areas of octahedral and platy crystals of W-Fe pyrochlore.

The composition of W-Fe pyrochlore is the result of the integrated influence of several
factors: the composition of the precursor, and the composition and pH of the aqueous
solution. Depending on the weight of each of these factors, we conditionally divided all
synthesized pyrochlores into four groups (I–IV).

Group I includes W-Fe pyrochlores obtained using WO3·H2O as a precursor. This
group is characterized by a similar composition (Fe/W = 0.11–0.08) and relative indepen-
dence from all the factors specified above. Important for this group is the presence of Fe3+

in the solution.
Group II includes W-Fe pyrochlores obtained by treating various precursors with

Fe/W from 0.06 to 0.20 with almost the same solution (Fe/W = 0, pH2 ≈ 2.7–2.8). This
group shows a very strong dependence on the composition of the precursor.

Groups III and IV show dependence on all factors, but mainly on Fe/W and pH of the
aqueous solution. These two groups are characterized by a clear increase in the Fe/W of
pyrochlore with decreasing pH (Figure 14). According to the data for the two solutions we
used with Fe/W equal to 0.11 and 0.5, respectively, with increasing Fe/W of the solution,
the dependence of the pyrochlore composition on the pH of the solution decreases. It seems
that these two groups correspond well to (Fe + Al)/W atomic rations of natural members
of the elsmoreite group minerals.
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Table 2. Representative EDX analyses of W-Fe pyrochlores obtained by treatment of precursors with 
Fe/W = 0–0.23 by a solution with Fe/W = 0.11 at different pH (wt.%, polished samples). 

№ an. Fe/W Precursor pH1 pH2 WO3 Fe2O3 Na2O H2O 1 Fe/W at. Ratio 
1 0.13 3.23 2.80 80.16 9.01 3.14 7.69 0.33 
2 0.13 4.24 3.20 80.41 7.58 4.07 7.94 0.28 
3 0.13 6.04 3.74 80.63 6.11 5.15 8.1 0.22 
4 0.13 6.34 5.35 82.45 4.28 5.29 7.98 0.15 
5 0.23 2.86 2.73 78.36 8.93 3.68 9.03 0.33 
6 0.23 5.14 4.21 80.03 6.19 6.07 7.71 0.23 
7 0.23 6.65 6.62 79.0 7.23 6.27 7.50 0.27 
8 0 6.26 5.51 86.9 3.2 5.71 4.21 0.11 
9 0 6.26 6.04 87.45 2.46 5.38 4.71 0.08 

Crystal chemical formulas/nomenclature names 
1. (□1.213Na0.442(H2O)0.345)Σ2(W1.508Fe3+0.492)Σ2(O4.967(OH)1.033)Σ6(H2O)/Hydrokenoelsmoreite 
2. (□0.757Na0.595(H2O)0.648)Σ2(W1.570Fe3+0.430)Σ2(O5.306(OH)0.694)Σ6(H2O)/Hydrokenoelsmoreite 

3. ((H2O)0.969Na0.783□0.248)Σ2(W1.639Fe3+0.361)Σ2(O5.700(OH)0.300)Σ6(H2O)/“Hydroelsmoreite” 
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Figure 14. Composition distribution (in terms of Fe/W atomic ratio) of artificial W-Fe pyrochlores
depending on pH, aqueous solution composition, and precursor composition. The groups separated
(I–IV) reflect the weight of these factors. Distribution of various morphological types of W-Fe
pyrochlore–octahedral and platy.

In addition to WO3 and Fe2O3, the W-Fe pyrochlores we obtained also contain Na2O
and H2O (Table 2). The presence of Na2O was expected since sodium tungstate dihydrate
Na2WO4·2H2O was used to prepare tungstate solutions. The incorporation of Na into the
structure of the W-Fe pyrochlores obtained by us is not associated with the incorporation of
Fe into the W positions and charge compensation. The Na2O content in W-Fe pyrochlores
increases with increasing pH while the Fe2O3 content decreases. The H2O content in the
W-Fe pyrochlores was estimated as the difference between 100% and the sum of the analysis
and this content was then used for the calculation of crystal chemical formulas. According
to the calculated crystal chemical formulas and according to the existing nomenclature
of the pyrochlore supergroup of minerals [1] obtained by us, W-Fe pyrochlores can be
classified as hydrokenoelsmoreite (analyses 1 and 2 in Table 2), “hydroelsmoreite” (anal-
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yses 3–6), and “hydronatroelsmoreite” (analyses 7–9). The names “hydroelsmorite” and
“hydronatroelsmorite” are put in quotation marks because minerals under these names
have not yet been found.

Table 2. Representative EDX analyses of W-Fe pyrochlores obtained by treatment of precursors with
Fe/W = 0–0.23 by a solution with Fe/W = 0.11 at different pH (wt.%, polished samples).

№ an. Fe/W Precursor pH1 pH2 WO3 Fe2O3 Na2O H2O 1 Fe/W at. Ratio

1 0.13 3.23 2.80 80.16 9.01 3.14 7.69 0.33
2 0.13 4.24 3.20 80.41 7.58 4.07 7.94 0.28
3 0.13 6.04 3.74 80.63 6.11 5.15 8.1 0.22
4 0.13 6.34 5.35 82.45 4.28 5.29 7.98 0.15
5 0.23 2.86 2.73 78.36 8.93 3.68 9.03 0.33
6 0.23 5.14 4.21 80.03 6.19 6.07 7.71 0.23
7 0.23 6.65 6.62 79.0 7.23 6.27 7.50 0.27
8 0 6.26 5.51 86.9 3.2 5.71 4.21 0.11
9 0 6.26 6.04 87.45 2.46 5.38 4.71 0.08

Crystal chemical formulas/nomenclature names
1. (□1.213Na0.442(H2O)0.345)Σ2(W1.508Fe3+

0.492)Σ2(O4.967(OH)1.033)Σ6(H2O)/Hydrokenoelsmoreite
2. (□0.757Na0.595(H2O)0.648)Σ2(W1.570Fe3+

0.430)Σ2(O5.306(OH)0.694)Σ6(H2O)/Hydrokenoelsmoreite
3. ((H2O)0.969Na0.783□0.248)Σ2(W1.639Fe3+

0.361)Σ2(O5.700(OH)0.300)Σ6(H2O)/“Hydroelsmoreite”
4. ((H2O)1.166Na0.834)Σ2(W1.738Fe3+

0.262)Σ2(O6.000)Σ6((H2O)0.952(OH)0.048)Σ1/“Hydroelsmoreite”
5. ((H2O)0.744□0.728Na0.528)Σ2(W1.502Fe3+

0.498)Σ2(O5.033(OH)0.967)Σ6(H2O)/“Hydroelsmoreite”
6. ((H2O)0.938Na0.927□0.135)Σ2(W1.633Fe3+

0.367)Σ2(O5.827(OH)0.173)Σ6(H2O)/“Hydroelsmoreite”
7. (Na0.938(H2O)0.770□0.292)Σ2(W1.580Fe3+

0.420)Σ2(O5.679(OH)0.321)Σ6(H2O)/“Hydronatroelsmoreite”
8. (Na0.889□0.829(H2O)0.282)Σ2(W1.807Fe3+

0.193)Σ2(O6.000)Σ6((H2O)0.689(OH)0.311)Σ1/“Hydronatroelsmoreite”
9. (Na0.848□0.673(H2O)0.479)Σ2(W1.849Fe3+

0.151)Σ2(O6.000)Σ6((H2O)0.605(OH)0.395)Σ1/“Hydronatroelsmoreite”
1 The difference between 100% and the sum of the analysis.

The calculated unit cell parameters (for S.G. Fd-3m) of the resulting W-Fe pyrochlores
range from 10.28 to 10.32 Å, which corresponds to the parameters of natural and artificial
W-Fe pyrochlores.

4. Discussion

Natural materials (secondary minerals from the Grantcharitsa deposit, Bulgaria) and
laboratory experiments show that the treatment (metasomatic alteration) of low-crystalline
compounds such as WO3·xFe2O3·nH2O with an aqueous solution containing W and Fe3+

is an effective and simple method for obtaining artificial W-Fe pyrochlores. In our exper-
iments, there are several sources of the substance for the formation of W-Fe pyrochlore,
which predetermine the mechanism of pyrochlore crystallization:

(1) W and Fe ions in solution. In its pure form, this source of the substance is presented
in group I of pyrochlores in Figure 14 (precursor—WO3·H2O; solutions: Fe/W = 0.11 and
0.3; pH 4.2–6.6; Fe/W pyrochlore = 0.08–0.11). The composition of W-Fe pyrochlore corre-
sponds well to the iron (III) heteropolytungstate ion of the Keggin-type: [Fe3+O4W12O36]5−

(Fe/W = 1/12 = 0.083) [37].
(2) W and Fe from the precursor. Group II of pyrochlores in Figure 14 corresponds

most closely to the influence factor of the precursor composition (at constant pH and
composition of solution).

(3) This source of W and Fe is highly dependent on the pH of the solution. The
source is not obvious, but it is what determines the increase in the Fe/W ratio in py-
rochlores with decreasing pH (groups III and IV in Figure 14). The experiment on direct
hydrothermal synthesis in the WO3-Fe2O3-H2O system (Figure 6a) suggests that this source
is colloidal particles or nanoparticles (W,Fe)(O,OH)3·nH2O (Fe/W = 0.4 for a solution with
Fe/W = 0.11) (Figure 6a). Some of these particles are visible as a suspension.

Combination and interaction of these sources cause the pathway for the crystallization
of W-Fe pyrochlores, including the formation of pyrochlore nanoparticles ~5 nm and
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their further oriented attachment on the growing {111} faces of artificial and natural W-Fe
pyrochlores (Figure 15).
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Figure 15. Model of the mechanism of crystallization of artificial and natural W-Fe pyrochlores by
oriented particle attachment on the growing {111} face.

Experiments conducted with different precursors show some significant differences.
The best results were obtained using WO3·xFe2O3·nH2O gels, which are artificial amor-
phous analogs of meymacite. For WO3·H2O (tungstite), the pH range of the working solu-
tion causing the formation of W-Fe pyrochlore is significantly narrower (Figures 12 and 16).
The reason for this behavior can be sought in the thermodynamics of crystallization and
dissolution of tungstite. There are indications that when WO3·H2O is treated with W-
Fe solutions, an intermediate product is formed—a low-crystalline analog of meymacite
(Figure 13b). It is this product that most likely plays the role of a precursor for the formation
of W-Fe pyrochlore.
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Figure 16. pH-H2SO4 (mol/L) curves for solutions with Fe/W = 0.11 (solid blue line) and Fe/W = 0
(dotted blue line); polytungstate ions are shown for a solution with Fe/W = 0.

In Figure 16, for comparison purposes, two pH-H2SO4 (mol/L) curves are presented—
for Fe/W = 0.11 and Fe/W = 0, respectively.

For the pure tungstate system, the formation of polytungstate ions is described as a pro-
tonation of monomeric ion WO4

2−: p[WO4]2− + qH+ = [WO4
2−]p(H+)q, z = q/p—degree of

protonation [38]. In Figure 16, the vertical red lines corresponding to z show paratungstate
[W12O40(OH)2]10− (z = 1.17) (+protonated forms), metatungstate [H2W12O40]6− (z = 1.50),
and tungstate-Y [W10O32]4− (z = 1.60). Formally, the pH range of solutions with
Fe/W = 0.11, which causes the formation of W-Fe pyrochlores after WO3·xFe2O3·nH2O
gels, almost completely coincides with the range in which paratungstate ions dominate
in solutions with Fe/W = 0. The role of para- and metatungstates in the crystallization of
W-Fe pyrochlore, however, can only be discussed for experiments with Fe/Wsol = 0. This,
for example, is the case of samples with platy W-Fe pyrochlores, containing compounds
with a hexagonal tungsten bronze structure (Figure 11), formed in the pH range 3.2–2.6,
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where both paratungstate and metatungstate ions are present (Figure 16). It is expected
that it is the metatungstate ion that promotes the formation of the hexagonal phase. It
is possible that under such conditions, two secondary tungsten minerals with a mixed
pyrochlore–hexagonal tungsten bronze structure are formed—phyllotungstite [39] and
pittongite [40].

Apparently, low-crystalline minerals such as meymacite play a significant role as a
precursor in the crystallization of elsmoreite group minerals. There are some indications (a
broad peak at the place of (001) reflection of hexagonal WO3 (ICDD PDF 04-007-0979) in
the synchrotron powder pattern) that the mineral pittongite [40] is a product of the alter-
ation of meymacite. Another possible candidate precursor for the formation of elsmoreite
group minerals is anthoinite AlWO3(OH)3. In addition to the formation of pseudomorphs
after scheelite, anthoinite often occurs together with hydrokenoelsmoreite (formal alumo-
tungstite and ferritungstite) [2,6,14].

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/min14040422/s1, Table S1: Preparation of amorphous W-Fe oxide
hydrate gels WO3·xFe2O3·nH2O at room temperature.
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