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Abstract: The main objective of this article is to classify all finite singleton local rings, which are
associative rings characterized by a unique maximal ideal and a distinguished basis consisting of a
single element. These rings are associated with four positive integer invariants p, n, s, and t, where p
is a prime number. In particular, we aim to classify these rings and count them up to isomorphism
while maintaining the same set of invariants. We have found interesting cases of finite singleton local
rings with orders of p6 and p7 that hold substantial importance in the field of coding theory.
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1. Introduction

In this article, all rings considered are finite, associative (but generally not necessarily
commutative) and have an identity element. One of the main challenges in modern
algebra is the problem of describing and classifying finite rings with small orders. If R
is a finite ring, its additive group can be decomposed as the direct sum of its p-primary
components, denoted as R(p), where p is a prime number, and these components are
pairwise orthogonal ideals. Thus, R can be expressed as the direct sum of the rings R(p). In
the classification of finite rings, it is therefore sufficient to focus on rings with prime-power
order. Consequently, we will consider R to be of this form. In previous studies, all finite
rings of orders p, p2, p3, p4, and p5 were classified up to isomorphism. For orders of p, p2,
and p3, determining these rings is a straightforward exercise. However, for |R| = p4,
a comprehensive list of noncommutative rings was initially compiled in [1,2]. The authors
of those papers specifically restrict themselves to the noncommutative case, as commutative
rings can be seen as a sum of local rings [3]. Furthermore, the classification of finite local
rings when |R| = p5 has already been accomplished by Corbas [4]. To address this problem,
researchers emphasized the significant role of local rings, which are rings that satisfy
the condition that the set of all zero divisors J(R) forms an ideal, R/J(R) = F, where F
represents a field. It has been well-established that any finite local ring is associated with
positive integers p, n, r, m, and k, called its invariants. A natural class that represents the
application of local rings well is the class consisting of chain rings; the radical is principal
J = (π) (see[5,6]).The aim of this paper is to fully classify and enumerate finite singleton
local rings with specific invariants, namely p, n, r, t, and k = 1. The paper focuses on
investigating these local rings and their properties. Additionally, the paper aims to explore
and analyze local rings with specific orders, namely p6 and p7. This study helps to gain a
deeper understanding of the distinctive characteristics and properties exhibited by these
rings and contributes to the broader comprehension of local rings and their applications
across various fields, particularly in coding theory [7–14].

The approach used in the literature relies heavily on the following general state-
ment. Given a finite local ring R, |R| = pmr where R/J(R) = GF(pr) = F, the sequence
R = J0 ⊃ J ⊃ J2 ⊃ . . . is considered. By letting si = dimF Ji/Ji+1, it is established that the
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sum ∑i≥0 si = m. As a consequence, it becomes necessary to consider all possible com-
binations of values s0, s1, s2, s3, and so on for a given number n and to describe the rings
associated with each defined case. The Jacobson radical of a finite ring R is nilpotent,
specifically, Jm = 0. This naturally leads to the requirement of describing local rings with a
nilpotency index of 2, 3, or 4 for the Jacobson radical.

Prior works [1,4] demonstrate the construction of finite local rings where the order is
p5, and these findings played a crucial role in their classification. Recently, Alkhamees and
Alabiad [15] elucidated the structure of finite local rings based on the number k, which is
the number (rank) of distinguished bases of R. They completely established the structure
of finite local rings with a singleton basis.

In this work, we provide a thorough categorization of local rings on a singleton basis,
building upon the findings of our earlier study [15]. With regard to the invariants p, n, r,
and t, we specifically concentrate on finite singleton local rings. To begin, Section 2 of the
paper presents a restatement of key definitions and notations concerning finite local rings.
In Section 3, we construct a generic formula that enables us to compute and classify all
potential singleton local rings with fixed invariants p, n, r, and t. This formula enables us to
systematically determine the characteristics and properties of these rings. By obtaining a full
characterization of these rings, we gain a deeper understanding of their algebraic structure
and behavior. Moreover, in Section 4 of the paper, we present particularly interesting results
concerning local rings of specific orders, specifically those of p6 and p7.

2. Definitions and Notations

In this section, we will discuss some notations and basic facts about finite local rings.
These foundational concepts are essential for understanding the subsequent sections of the
paper. Suppose R is a finite local ring, and let J denote its Jacobson radical. We will rely on
well-established results from the theory of finite rings (see [15–23]).

Firstly, it is well-known that J is the maximal ideal of R. The order of R is |R| = pmr,
where p is a prime number. The order of J is p(m−1)r, and it satisfies the condition Jm = 0.
The characteristic of R is pn, 1 ≤ n ≤ m, and R/J ∼= GF(pr). When m = n, the finite local
ring R is commutative, and its Jacobson radical J is generated by the element p. In this case,
R can be expressed as

R = Zpn [a],

where a has an additive order of pr − 1. The ring R can also be represented as

R ∼= Zpn [x]/(g(x)),

where g(x) is a monic basic polynomial (irreducible modulo p) of degree r over Zpn .
The group of automorphisms Aut(R) of R is a cyclic group of order r. Elements of R can be
uniquely expressed as a sum of terms involving αi ∈ (a) ∪ {0} = {0, a, a2, . . . , apr−1},

γ = α0 + pα1 + p2α2 + · · ·+ pn−1αn−2. (1)

The combination of parameters p, n, and r uniquely determines these rings. For a finite
local ring R with a characteristic of pn (where 1 ≤ n ≤ m), there exists a coefficient subring
S that takes the form GR(pn, r). This subring is identified as the maximum Galois subring
of R. Additionally, if S0 is another coefficient subring of R, there exists an invertible element
x in R such that S0 = xSx−1.

Suppose R is a finite local ring, and let S be its coefficient subring. In this context,
there exist elements π1, π2, . . . , πk in the Jacobson radical J(R) and σ1, σ2, . . . , σk in Aut(S)
such that

R = S ⊕ Sπ1 ⊕ · · · ⊕ Sπk (2)

as S−modules, and πi s = sσi πi for each s in S and for all i = 1, 2, . . ., k. Furthermore,
it is important to note that the automorphisms σ1, σ2, . . . , σk are characterized by R and S.
The set π1, π2, . . . , πk is referred to as a basis of R over S.
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The integers p, n, r, k, and m are known as the invariants of R. Using Equation (2), we
can express the Jacobson radical J(R) as the direct sum

J = pS ⊕ Sπ1 ⊕ · · · ⊕ Sπk.

Let S[x, σ] be the skew polynomial ring over S determined by the automorphism σ,
whose elements are of the form

∑
i

sixi,

where si ∈ S, and the multiplication satisfies the relation xs = σ(s)x for every s in S.
If the elements πi are defined as πi = πi for i = 1, 2, . . . , k − 1, the finite local ring R

becomes a chain ring. In this case, the Jacobson radical J of R is equal to Rπ. Furthermore,
it can be observed that there is a k such that p ∈ Jk. Additionally, there exists an integer t′

satisfying 1 ≤ t′ ≤ k and m = (n − 1)k + t′. Note that

πk = p(u0 + u1π + u2π2 + . . . + uk−1πk−1),

where u0 is a unit. This means π is a root of g(x) (Eisenstein polynomial) as follows:

g(x) = xk − p
k−1

∑
i=0

uixi. (3)

The numbers p, n, r, k, k′, and m are referred to as the invariants of R as follows:

R ∼= S[x, σ]/(g(x), pn−1xt′). (4)

The group of units U(R) of R is decomposed as follows:

U(R) = (a)⊗ H, (5)

where H = 1 + J is called the one group. In the case where R is a chain ring, and letting
π ∈ J \ J2, then

πk = pβh, (6)

where β ∈ (a) = Γ∗(r).
Throughout the manuscript, we will maintain the symbols and notations as speci-

fied above.

3. Classification of Singleton Local Rings

This section aims to fully classify and characterize finite singleton local rings up to
isomorphism with specific invariants. To do so, we first deal with the associated polynomi-
als of such rings. As k = 1, let π belong to the Jacobson radical J(R), and let t represent
the additive order of π (ptπ = 0). Henceforth, let R represent a finite singleton local ring
with p, n, r, and t. Assuming R possesses a singleton basis denoted by {π}, let σ ∈Aut(S).
Moreover, let g(x) be always defined as

g(x) = x2 − pdβh − peβ1h1x, (7)

where β, β1 ∈ Γ∗(r) and h, h1 ∈ 1 + pS. By the results of [15], R has the following structure:

R ∼= S[x, σ]/(g(x), ptx). (8)

Definition 1. If there exists π in TR of R such that π2 = pdβh, we call R a pure singleton, and if
h = 1, then R is said to be a very pure singleton.
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Suppose that p ̸= 2 and e < t, then by completing the square in Equation (7),
g(x) = (x − pes)2 − pqβ2h2, where s ∈ S, and q ≥ min{d, 2e}. Replacing x − pes with
x, and since p ̸= 2, we obtain

g(x) = x2 − pqβ. (9)

Note that if 2e > n and d = n, then g(x) = x2.

Proposition 1. Let p ̸= 2. Then, every commutative singleton local ring is very pure. In particular,
g(x) = x2 if 2e > n and d = n.

Lemma 1. Suppose that R is a local ring with its structure given by (8). Then, n ≥ d ≥ 1 and
t ≥ e ≥ 1.

Proof. Suppose that d = 0. Then, π2 = βh + peβ1h1π, and thus π2 will be a unit that is
a contradiction, since π2 ∈ J. Now, assume that e = 0. This leads to π2 = pdβh + β1h1π,
and so (π − β1h1)π = pdβh. As (π − β1h1) is a unit in R, thus π ∈ (p) = pR, which is
impossible. Thus, each e ≥ 1 and d ≥ 1.

Theorem 1. If r = 1 and n = m − 1, then

R = S[x]/(x2 − pm−2β, ptx). (10)

Proof. Since char(R) = pm−1, then S = Zpm−1 . As | R |= pm and R = S ⊕ Sπ1 ⊕ · · · ⊕ Sπk,
then there is only 1 ≤ i ≤ k such that R = S ⊕ Sπi. This means R is a singleton ring.
As t = m − n = 1, then pπ = 0. Also, d + t ≥ m − 1, which leads to d = m − 2. Thus,

π2 = pm−2β. (11)

Lemma 2. Suppose that R is a singleton local ring.

(i) If g(x) = x2 − pdβh, then σ is of order 2.
(ii) When g(x) = x2 − pdβh − peβ1h1x, then R is commutative.
(iii) In the case when g(x) = x2, then o(σ) divides r.

Proof. (i) Assume that R is a pure singleton local with g(x) = x2 − pβh. As π2a = σ2(a)π2,
then σ2(a) = a. This means that o(σ) = 2. For (ii), direct calculation will lead to σ2(a) = σ(a),
and thus σ = idS. The final claim is proved.

Remark 1. This remark characterizes g(x) based on aforementioned results.

(1) If p ̸= 2, then

g(x) =

{
x2 − pqβ, q ≥ min{d, 2e}
x2, if d = n and e = t or 2e ≥ n.

(2) If p = 2,
g(x) = x2 − 2dh − 2eβh1x.

The following proposition presents a relation between changes of distinguished bases
of R.

Proposition 2. If θ ∈ TR, then

θ =

{
απ, if p ̸= 2,
γπ, if p = 2,

where γ ∈ U(S) and α ∈ Γ∗(r).
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Proof. Suppose that θ ∈ TR, which means that J = pS ⊕ θS. Then, there are a, b ∈ S such
that θ = pa + bπ. As ptθ = 0, then θ = pn−ta + bπ. Conversely, if b ∈ (p), this will lead to
θ ∈ (p), i.e., R = S, which cannot be, as R is a singleton. Thus, b ∈ U(S), the group of units
of S. In the noncommutative case, we apply the same reasoning as in Lemma (1), pn−ta = 0.
Thus, θ = γπ, where b = γ, and by Lemma (2), R is very pure, since p ̸= 2. Therefore,
γ = α ∈ Γ∗(r). Next, we assume that p ̸= 2 and R is commutative,

pqβ′ = θ2 = (pn−ta + bπ)2

= p2n−ta2 − 2pn−tabπ + b2π2

= p2n−ta2 − 2pn−tabπ + b2 pqβ.

Thus, 2pn−tab = 0. Since b and 2 are units in S, pn−ta = 0. Moreover, b2β = β′, and this
gives b = α ∈ (a). Therefore, the result follows. Finally, if p = 2, then θ = b−1(pn−ta′ + π).
Replacing pn−ta′ + π with π gives θ = γπ, where γ = b−1 ∈ U(s).

Theorem 2. Suppose that R and T are two local singleton rings with p, n, r, t, d, and e. Then,
T ∼= R if and only if there exist α ∈ Γ∗(r), ω ∈ 1 + pS, and τ ∈ Aut(S).

(1) If p = 2, 


τ(β1)β′

1
−1 = α2,

τ(h1) = ω2h′1 mod pn−e, if d ≥ e
τ(h) = ω2h′ mod pn−d, otherwise

(R is commutative)

τ(h) = ω f h′ mod pn−d (R is noncommutative),

where x2 − pdh and x2 − pdh′ are the associated polynomials in the noncommutative case,
and g(x) = x2 − 2dh − 2eβh1x and h(x) = x2 − 2dh′ − 2eβ′h′1x are in the commutative
case for R and T, respectively.

(2) If p ̸= 2,

τ(β)β′−1 = α f , and f =

{
2, if R is commutative
p

r
2 + 1, if R is noncommutative,

where x2 − pqβ and x2 − pqβ′ are the associated polynomials of R and T, respectively.

Proof. Suppose T ∼= R, and let ϕ be the isomorphism. First, let p = 2. Thus, when R is
commutative,

2dτ(h)− 2eτ(β)τh1θ = ϕ(π2) = (ϕ(π))2

= α2ω2θ

= α2ω2(2dh′ − 2eβ′h′1θ),

where α ∈ Γ∗(r) and ω ∈ 1 + pS. By comparing sides, we obtain the equations

τ(β) = α2β′,

τ(h) = ω2h′ mod pn−d,

τ(h1) = ω2h′1 mod pn−d.

In the case where R is noncommutative, g(x) = pdh. Thus, in the same way, we conclude that

τ(h) = ω f h′,
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where f = p
r
2 + 1. Next, we suppose that p ̸= 2. By Remark (1), g(x) = x2 − pqβ, and hence

pqτ(β) = ϕ(π2) = (ϕ(π))2

= α2θ2 = pqα2β′.

Thus,
τ(β) = α2β′.

For the converse, assume that there are α ∈ Γ∗(r), ω ∈ 1 + pS, and τ ∈ Aut(S) such
that the relations are satisfied. When R is commutative with p = 2, then τ(β1) = α2β′

1,
peτ(h1) = peω2h′1, and pdτ(h) = pdω2h′. If we consider the correspondence ϕ from R into
T defined by

ϕ(s1 + s2π) = τ(s1) + τ(s2)αωθ,

where s1 and s2 in S, we have to show that ϕ(π2) = (ϕ(π))2. Note that

ϕ(π2) = ϕ(pdh + peβ1h1π) =pdτ(h) + peτ(β1)τ(h1)θ

=pdα2ω2h′ + peα2β′
1ω2h′1θ

=(αω)2
(

pdh′ + peβ′
1h′1θ

)
=(αω)2θ2

=(αωθ)2

=(ϕ(π))2.

Therefore, ϕ is an isomorphism, and R ∼= T. The case in which R is noncommutative with
p = 2 is similar to the previous discussion. Finally, suppose p ̸= 2. In this case, there
are τ and α such that τ(β) = α f β′. Consider the correspondence ϕ : R → T, defined by
ϕ(s1 + s2π) = τ(s1) + τ(s2)αθ. Observe

ϕ(π2) = ϕ(pqβ) =pqτ(β)

=pqα f β′

=(αθ)2

=(ϕ(π))2.

This means that R ∼= T.

Theorem 3. The number of isomorphic classes of finite singleton local rings and of p, n, r, t, d,
and e invariants is

N(p, n, r, t, d, e) =


1
r

(
∑r−1

i=0 (pi − 1, z)
)(

∑r−1
i=0 p(i,r)do−1

)
, if p = 2,

1
r

(
∑r−1

i=0 (pi − 1, z)
)

, if p ̸= 2,

where d0 = min{t0, n − d, n − e} and

z =

{
(pr − 1, f ), if p ̸= 2,
2, if p = 2.

Proof. First, consider p = 2. We use results of Theorem (2). Note that ω ∈ 1 + pS, and
then ω2 ∈ (1 + pS)2. Suppose that (1 + pS)2 = 1 + pt0 S for some t0 ≤ n. Also note that,
when n ≤ 2, t0 = n = 2. This means that the relations τ(h) = ω2h′ and τ(h1) = ω2h′1 can
be reduced to

τ(h) = ω2h′ mod pd0 ,

τ(h1) = ω2h′1 mod pd0 ,
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where d0 = min{t0, n − d, n − e}. Now, identify 1 + pd0 S with (Γ∗(r))d0 and replace
(a)/(a f ) with Zz, where z = (pr − 1, f ). Consider the action of Aut(S) = (ρ) over
Zz × (Γ∗(r))d0−1 defined by

ρi(a, α) = (pia, αpi
).

The above-mentioned relation is an equivalence relation, and Theorem (2) demonstrates
that the number of classes of singleton local rings corresponds to the number of equivalence
classes. The number of elements fixed by ρi is (pi − 1, z)[(pi − 1, pr − 1) + 1]d0−1, but

(pi − 1, z)[(pi − 1, pr − 1) + 1]d0−1 = (pi − 1, z)p(i,r)d0−1.

The Burnside lemma suggests that

N(2, n, r, t, d, e) =
1
r

(
r−1

∑
i=0

(pi − 1, z)

)(
r−1

∑
i=0

p(i,r)do−1

)
.

Secondly, when p ̸= 2, in this case, Aut(S) acts only on the set Zz by the same action.
Similarly, we get

N(p, n, r, t, d, e) =
1
r

(
r−1

∑
i=0

(pi − 1, z)

)
. (12)

Corollary 1. Assume g(x) = x2. Then,

N(p, n, r, t) = r. (13)

Corollary 2. Suppose that g(x) = x2 − peβ1h1x. Then,

N(2, n, r, t, e) =
1
r

(
r−1

∑
i=0

p(i,r)n−e−1

)
. (14)

Remark 2. Note that
1
r

r−1

∑
i=0

(pi − 1, z) = ∑
c|z

ϕ(c)
τ(c)

, (15)

where ϕ is the Euler function, and τ(c) is the order of p in Zc. The last formula has been derived
in [15].

4. Categorizing Singleton Local Rings of Orders p6 and p7

In ring theory, a fundamental technique involves the characterization and classification
of all finite local rings of certain orders and with the same invariant properties. In this
section, we undertake the classification of such rings with a singleton basis of order Pi,
where 1 ⩽ i ⩽ 7. It is worth noting that, compared to chain rings, the classification of
singleton local rings poses a greater challenge. Based on results in the previous section, we
list all local rings of orders pi, where i = 6, 7 up to isomorphism. In what follows, we need
to address the notions

π2 = pdβh + peβ1h1π;
β, β1 ∈ Γ∗(s) and h, h1 ∈ 1 + pS
m ≤ 2n, q ≥ min{d, 2e};
t = m − n, n − t ≤ d ≤ n and 1 ≤ e ≤ t;
2 ≤ l ≤ m; Jl = 0 and Jl−1 ̸= 0;
z = (pr − 1, f ), d0 = min{t0, n − d, n − e}

(∗).
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Next, we will need the following remarks.

Remark 3. The number of very pure singleton local rings with invariants p, n, r, and t (up to
isomorphism) is

N(p, n, r, t, d) =

{
1, if p = 2;
2, if p ̸= 2.

Remark 4. The number of pure singleton local rings (up to isomorphism) is

N(p, n, r, t, d) =

{
1
r ∑r−1

i=0 p(i,r)n−d−1, if p = 2;
1
r ∑r−1

i=0 (pi − 1, z), if p ̸= 2.

4.1. Singleton Local Rings of Order Less than p6

The classification of rings with orders less than p6 has been accomplished using other
methods [1,4]. However, our approach presents a notable distinction, as it offers a more
effective and straightforward means of classifying singleton local rings with the invariants
p, n, r, t, d, and e. Furthermore, the technique proposed in this article exhibits versatility,
as it can be extended to rings of higher orders. This is exemplified in the subsequent
subsections, where we apply the approach to investigate rings of order p6 and p7.

4.1.1. Local Rings of Order p

In this case, n = m = 1, and r = 1. Thus, there is a unique finite local ring Fp that is
not a singleton.

4.1.2. Local Rings of Order p2

Since mr = 2, singleton local rings will occur when m = 2, r = 1 (commutative),
and n = 1. In this case, we have t = m − n = 1. This implies that pπ = 0 and π2 = 0.
Therefore, there is only one singleton local ring satisfying these conditions:

R = Fp[x]/(x2).

4.1.3. Local Rings of Order p3

The only possibility for a singleton local ring with an order of p3 to occur is when
m = 3, n = 2, and r = 1. In this case, we have t = 1, which implies pπ = 0. Furthermore,
we have d = 1 = e = t, and thus π2 = pβh = pβ due to n = 2. As a result, the construction
of R is as follows:

R1
∼= Zp2 [x]/(x2, px),

R2 = Zp2 [x]/(x2 − pβ, px), if p ̸= 2,

R3 = Z22 [x]/(x2 − 2, 2x), if p = 2.

There is only one ring of the form R1 by Corollary (1). Additionally, Remark (3) states that
there are two rings of type R2 and one ring of type R3. It is noteworthy that these rings are
of the chain type.

4.1.4. Local Rings of Order p4

Let R be a finite local ring with |R| = p4. Since mr = 4, then we will consider two
cases. The case when r = 4 and m = 1 will lead to n = 1, and hence R = Fp4 , which is not a
local ring with a singleton basis.

Case a. If r = 1 and m = 4, thus, in this case, n = 2 or 3.
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Case a1. If n = 2, then t = 2, d = 1, 2, and e = 1, 2. Therefore,

R1
∼= Zp2 [x]/(x2),{
R2 ∼= Zp2 [x]/(x2 − pβ),

R3 ∼= Zp2 [x]/(x2 − pβx),
(p ̸= 2)


R4

∼= Z22 [x]/(x2 − 2),
R5 ∼= Z22 [x]/(x2 − 2 − 2x),
R6 ∼= Z22 [x]/(x2 − 2x).

(p = 2)

According to Corollary (1), there is a unique ring of the form R1. Remark (3) indicates
that there are two rings of the form R2, and it is worth noting that R3 ∼= R2 since q = 1.
Furthermore, when p = 2, there are three rings that satisfy the given conditions.

Case a2. When n = 3, then d = 2, 3, and t = 1 = e. Thus,
R1

∼= Zp3 [x]/(x2, px), if d = 3

R2 ∼= Zp3 [x]/(x2 − p2β, px), if d = 2 and p ̸= 2

R3 ∼= Z23 [x]/(x2 − 4, 2x).

There exists a single ring classified as R1, accompanied by two rings classified as R2 and
one ring classified as R3.

Case b. If r = 2, then m = 2. In this case, n = 1. Thus, the local rings are given by{
R1

∼= Fp2 [x]/(x2),

R2 ∼= Fp2 [x, σ]/(x2).

These are the only singleton local rings up to isomorphism.

4.1.5. Local Rings of Order p5

If the order of the ring R is | R |= p5, we can have two possible cases: either r = 5
and m = 1 or r = 1 and m = 5. However, the first case does not result in a singleton ring.
Therefore, we consider the case where m = 5 and n can be either 3 or 4.

Case a: Let us assume n = 3, which implies t = 2. In this case, e can take values of 1
or 2, and d can take values of 1, 2, or 3.

Case a1. Considering the subcase where d = 1, the associated polynomial is given by
g(x) = x2 − pβh − peβ1x. Hence,

R1
∼= Zp3 [x]/(x2 − pβ, p2x) if p ̸= 2,{
R2 ∼= Z23 [x]/(x2 − 2h, 4x),
R3 ∼= Zp3 [x]/(x2 − 2h − 2x, 4x).

(p = 2)

This implies that, according to Remark (4), there are two rings of type R2 and, according to
Theorem (3), there are two rings of type R3 when p = 2. Additionally, Remark (3) suggests
that there are two rings of the R1 form.

Case a2. Now consider the option where d takes the values of 2 or 3. In this case,
the construction and properties of the rings can be further explored and analyzed as follows:

R1
∼= Zp3 [x]/(x2, p2x) if d = 3, e = 2,

R2 ∼= Zp3 [x]/(x2 − p2β, p2x), if p ̸= 2, d = 2, e = 1, 2(q = 2)
R3 ∼= Z23 [x]/(x2 − 4 − 2x, 4x),
R4

∼= Z23 [x]/(x2 − 4, 4x),
R5 ∼= Z23 [x]/(x2 − 2x, 4x).

(p = 2)
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Based on Remark (3), there are two rings of the form R2. Therefore, the number of singleton
local rings when p = 2 is three.

Case b. Let us consider the case when n = 4, which implies t = 1. In this scenario, we
have e = 1, and d can take values of 3 or 4. Therefore, further investigation can be done to
study the construction and properties of the rings in this case.

R1
∼= Zp4 [x]/(x2, px), if d = 4

R2 ∼= Zp4 [x]/(x2 − p3β, px) if d = 3, p ̸= 2,

R3 ∼= Z24 [x]/(x2 − 8, 2x) if d = 3, p = 2,

The class of R2 rings consists of two distinct local rings up to isomorphism. Additionally,
there is one ring each of types R1 and R3.

4.2. Local Rings of Order p6

We are classifying singleton local rings with an order of p6; that is, mr = 6. We explore
various values for r and m.

Case a. Let us assume r = 1. In this instance, the value of n ranges from 3 to 5. Thus,
we consider different values of n.

Case a1. When n = 3, we have t = 3, resulting in values for d of 1, 2, and 3, and values
for e of 1, 2, and 3.

R1
∼= Zp3 [x]/(x2) if d = e = 3,

R2 ∼= Zp3 [x]/(x2 − pβ) if d = 1,

R3 ∼= Zp3 [x]/(x2 − p2β) if d = 2,

R4
∼= Zp3 [x]/(x2 − p2βx) if d = 3,

R5 ∼= Z23 [x]/(x2 − 2h),
R6 ∼= Z23 [x]/(x2 − 2h − 2h1x),
R7 ∼= Z23 [x]/(x2 − 2h − 4x),
R8 ∼= Z23 [x]/(x2 − 4),
R9 ∼= Z23 [x]/(x2 − 4 − 2hx),
R10

∼= Z23 [x]/(x2 − 4 − 4x),
R11

∼= Z23 [x]/(x2 − 2hx)

(p = 2)

Under these conditions, we observe a unique ring of type R1, two rings of type R2 (chain
rings), and two rings of the form R3 ∼= R4. When considering the classification of singleton
local rings with p = 2, we identify a total of 12 distinct rings. Specifically, there are two
copies each of types R5, R6, R7, R9, and R11.

Case a2. Suppose n = 4, which implies t = 2. Consequently, we have values for d of
2, 3, and 4, and values for e of 1 and 2.

R1
∼= Zp4 [x]/(x2, p2x) if d = 4, e = 2,

R2 ∼= Zp4 [x]/(x2 − p2β, p2x) if d = 2, p ̸= 2,

R3 ∼= Zp4 [x]/(x2 − p3β − pβ1x, p2x), if d = 3, e = 1

R4
∼= Zp4 [x]/(x2 − p3β) if d = 3, e = 2,

R5 ∼= Z24 [x]/(x2 − 4h, 4x),
R6 ∼= Z24 [x]/(x2 − 4h − 2x, 4x),
R7 ∼= Z24 [x]/(x2 − 2h, 4x)

(p = 2)
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In this case, we have a unique ring of type R1, two rings each of types R2 and R3 (with
q = 2), and two rings of type R4. Furthermore, when considering p = 2, there are two
copies each of types R5, R6, and R7.

Case a3. We assume n = 5. As the results of Theorem (1), we get

R1
∼= Zp5 [x]/(x2, px), if d = 5,

R2 ∼= Zp5 [x]/(x2 − p4β, px), if d = 4, p ̸= 2,

R3 ∼= Z25 [x]/(x2 − 16, 2x), if d = 4, p = 2.

With these specifications, we find four singleton local rings with the same invariants.
Case b. Now, let us consider the option where r = 2 and m = 3. This implies that

n = 2, resulting in d taking values of 1 and 2, while t and e are both equal to 1. Therefore,

R1
∼= Zp2 [x, σ]/(x2, px), if d = 2

R2 ∼= Zp2 [x, σ]/(x2 − pβ, px), if d = 1, p ̸= 2,

R3 ∼= Z22 [x, σ]/(x2 − 2, 2x), if p = 2.

Based on the previously mentioned results, we find two rings of type R1, two rings of type
R2, and one ring of type R1.

Case c. Let r = 3. Consequently, m = 2, which leads to n = 1. In this case, d = t =
1 = e. As a result, the construction of R is as follows:

R ∼= Zp[x, σi]/(x2), (16)

where i = 1, 2, 3. Thus, we have only three singleton locals of these rings based on Corol-
lary (1).

4.3. Local Rings of Order p7

In this subsection, we examine the scenario where r = 1, indicating commutative rings.
Hence, we consider the case where m = 7, leading to n taking values of 4, 5, 6. Depending
on the specific values of n, we investigate the following cases.

Case a. When n = 4, and since t = 3, we consider different values for d (specifically,
d = 1, 2, 3, 4) and e (specifically, e = 1, 2, 3). Within this case, we further divide it into
subcases based on the values of d.

Case a1. If d = 1, the classification of such rings is as follows:

R1
∼= Zp4 [x]/(x2 − pβ, p3x), if p ̸= 2,

R2 ∼= Z24 [x]/(x2 − 2h − 2h1x, 8x),
R3 ∼= Z24 [x]/(x2 − 2h − 4x, 8x),
R4

∼= Z24 [x]/(x2 − 2h, 8x).

(p = 2)

Based on our findings, there exist two distinct rings of R1. In the case where p = 2, we
observe a total of six classes of these rings, divided into two classes for each type.

Case a2. If d = 2, thus
R1

∼= Zp4 [x]/(x2 − p2β, p3x),

R2 ∼= Zp4 [x]/(x2 − p2β − p2β1x, p3x),

R3 ∼= Zp4 [x]/(x2 − p2β − pβ1h1x, p3x),

(p ̸= 2),


R2 ∼= Z24 [x]/(x2 − 4h, 8x),
R3 ∼= Z24 [x]/(x2 − 4h − 4x, 8x),
R4

∼= Z24 [x]/(x2 − 4h − 2h1x, 8x).

(p = 2)
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Considering these specifications, we identify two classes of rings belonging to type R1. It
should be noted that R1 is isomorphic to both R2 and R3 due to the shared value of q = 2.
Additionally, in the case where p = 2, there are a total of six copies of singleton rings.

Case a3. Letting d = 3, we list all possible singleton local rings:
R1

∼= Zp4 [x]/(x2 − p3β, p3x),

R2 ∼= Zp4 [x]/(x2 − p3β − p2β1x, p3x),

R3 ∼= Zp4 [x]/(x2 − p3β − pβ1h1x, p3x),

(p ̸= 2)


R4

∼= Z24 [x]/(x2 − 8, 8x),
R5 ∼= Z24 [x]/(x2 − 8 − 4x, 8x),
R6 ∼= Z24 [x]/(x2 − 8 − 2hx, 8x).

(p = 2)

As p ̸= 2, there are two rings of type R1. There are two rings of the form R3. Note that
R2 ∼= R1 and R3 ∼= Zp4 [x]/(x2 − p3β − pβ1h1x, p3x) ∼= Zp4 [x]/(x2 − p2β, p3x). When
p = 2, there are four of such rings up to isomorphism.

Case a4. If d = 4, we classify all such rings as follows:

R1
∼= Zp4 [x]/(x2, p3x),{
R2 ∼= Zp4 [x]/(x2 − p2βx, p3x),

R3 ∼= Zp4 [x]/(x2 − pβhx, p3x),
(p ̸= 2){

R4
∼= Z24 [x]/(x2 − 4x, 8x),

R5 ∼= Z24 [x]/(x2 − 2hx, 8x).
(p = 2)

Case b. Now, let us consider the case where n = 5. Similar to the previous reasoning,
we have t = 2, d can take values of 3, 4, 5, and e can be 1 or 2. Based on these values, we
construct the following structures.

Case b1: Assuming d = 3, we list all possible singleton local rings:{
R1

∼= Zp5 [x]/(x2 − p3β, p2x),
R2 ∼= Zp5 [x]/(x2 − p3β − pβ1x, p2x),

(p ̸= 2){
R3 ∼= Z25 [x]/(x2 − 8, 4x),
R3 ∼= Z25 [x]/(x2 − 8 − 2x, 4x).

(p = 2)

In this subcase, we identify two classes each for the R1 and R2 types of singleton local rings,
satisfying the given conditions. In the case where p = 2, there are two rings that fall into
this category.

Case b2. When d = 4, we proceed to classify all rings that satisfy this condition:{
R1

∼= Zp5 [x]/(x2 − p4β, p2x),
R2 = Zp5 [x]/(x2 − p4β − pβ1x, p2x),

(p ̸= 2){
R3 ∼= Z25 [x]/(x2 − 16, 4x),
R3 ∼= Z25 [x]/(x2 − 16 − 2x, 4x).

(p = 2)

Our results reveal the existence of two rings for each type R1 and R2. Moreover, in the case
where p = 2, there are two distinct classes of these rings.
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Case b3. Now, let us consider the scenario where d = 5. We undertake the classification
of all rings that fulfill this criterion:

R1
∼= Zp5 [x]/(x2, p2x),

R2 ∼= Zp5 [x]/(x2 − pβ1x, p2x), if p ̸= 2

R3 ∼= Z25 [x]/(x2 − 2x, 4x).

When p ̸= 2, there are two distinct classes of local rings R1 that satisfy the given specifica-
tions. Additionally, for the R2 type, there are two rings with q = 2. In the case where p = 2,
there are also two rings that meet the criteria.

Case c. Lastly, we consider n = 6. According to Theorem (1),

R1
∼= Zp6 [x]/(x2 − p5β, px), if p ̸= 2,

R2 ∼= Z26 [x]/(x2 − 32, 2x), if p = 2.

Under the given conditions, we observe two distinct classes of rings belonging to the R1
type. Additionally, there is one ring in the R2 category.

5.Conclusions

The realization that nonlinear codes over finite fields can be connected to linear codes
over finite local rings via the Gray maps has significantly enhanced the importance of
finite local rings in the study of codes over finite rings. This is primarily due to their
characteristic of having unique maximal ideals. As a result, this study opened the door for
investigating finite local rings in general. In this article, we have successfully classified up
to isomorphism all finite local rings with a singleton basis, i.e., k = 1. The classification
process took into account six positive integer invariants p, n, s, t, d, and e. As a result, all
finite local rings with a singleton basis of orders p6 and p7 have been thoroughly classified
and counted up to isomorphism. However, the task becomes more challenging when k ≥ 2,
i.e., non-singleton local rings, which complicates the classification of finite local rings. This
limitation indicates the necessity for alternative approaches or techniques to address this
general case.
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