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Abstract: Collision detection is very important for robot motion planning. The existing accurate
collision detection algorithms regard the evaluation of each node as a discrete event, ignoring the
correlation between nodes, resulting in low efficiency. In this paper, we propose a novel approach
that transforms collision detection into a binary classification problem. In particular, the proposed
method searches the k-nearest neighbor (KNN) of the new node and estimates its collision probability
by the prior node. We perform the hierarchical navigable small world (HNSW) method to query the
nearest neighbor data and store the detected nodes to build the database incrementally. In addition,
this research develops a KNN query technique tailored for linear data, incorporating threshold
segmentation to facilitate collision detection along continuous paths. Moreover, it refines the distance
function of the collision classifier to enhance the precision of probability estimations. Simulation
results demonstrate the effectiveness of the proposed method.

Keywords: collision detection; K-nearest neighbors; manipulator motion planning; HNSW

1. Introduction

Collision detection plays an important role in computer graphics and manipulator
path planning [1–4]. Multi-degree-of-freedom manipulators are composed of several
interconnected links that undergo positional changes during movement. Unlike a single
rigid body such as a UAV or a mobile robot, the complexity of a manipulator prevents
it from directly utilizing obstacle data in the workspace, which increases the complexity
of map construction [5,6]. In response, a sampling-based motion planner (SBMP) has
become an important solution for manipulator motion planning [7–10]. An SBMP gradually
explores the required geometric paths by random sampling in configuration space (C-space)
and by using a collision detection algorithm to ensure local path safety [11]. The topology
of the obstacle manifold in high dimensional C-space is very complex. As a result, real-
time performance is a challenge for SBMP using traditional collision detection. Collision
detection has been documented to occupy the most computational time in motion planning,
so improving its calculation speed is the key to improving the overall path planning
efficiency [12].

Traditional collision detection, as depicted in Figure 1, firstly maps joint positions Q to
link positions T = {T1, . . ., Ti} by forward kinematics fk(·), where i represents the link count.
The links and obstacles are then represented using convex geometries such as capsules,
spheres, and boxes. Obstacle information is described by the set O = {Obs1, Obs2, . . .,
Obsj}, where each obstacle Obsj is characterized by the coordinates Pj and radius rj of m
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points. Subsequently, the distance d between these geometries is computed to determine
the occurrence of collisions, which are classified as C. If d is not greater than 0, it is judged
to be a collision, in which case C is defined as 1; otherwise, it is a non-collision state C = 0.
For continuous path collision detection, the path X(τ) is discretized at a resolution K and
detection is repeated for each sample point. This process is known as the exact collision
detection method. Collision detection is transformed into the problem of computing the
minimum distance between convex geometries.
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There are numerous methods for calculating the Euclidean distance between two
simple convex geometries. Mohammad Safeea et al. introduced an efficient approach
to compute the minimum distance between capsules based on QR decomposition [13]
and used it for the path planning of a robotic arm [14,15]. Reference [16] proposed a new
calculation method of the distance between the sphere and the capsule and used it to detect
the collision of the links of manipulators.

The problem of computing the distance between general convex geometries is more
complicated. The Gilbert–Johnson–Keerthi (GJK) algorithm [17] and the Lin-Canny algo-
rithm [18] are widely used. The GJK algorithm reduces the complexity of convex geometry
by Minkowski distance, which has been widely used in computer graphics [19]. The swept
volume intersection (SVI) method is suitable for detecting collisions along continuous
paths [20]. It improves accuracy by assessing the collision situation based on the overlap
rate. However, the calculation of the scanning volume of objects with complex geometry
is very expensive [21]. The hierarchical bounding box (BVH) methods are proposed to
enhance computing speed and memory optimization [22]. However, BVH methods may be
too conservative in space, leading to inefficient exploration [23]. Exact collision detection
algorithms have been well developed and most of them have been integrated in the flexible
collision library (FCL) [24]. The exact collision detection methods ignore the correlation of
states in C-space, which makes them time-consuming.

Learning-based methods provide an alternative strategy, which fits the obstacle mani-
folds in C-space to obtain information about the free configuration space (Cfree). Learning-
based methods reduce the number of exact collision detections and significantly improve
computational efficiency [25]. Pan et al. used incremental support vector machines (SVM)
to learn an accurate model of the Cfree but the accuracy was not high and could not be
applied to an unstructured environment [26]. Configuration space decomposition strategy
can further improve the accuracy of collision detection methods based on SVM [27]. Huh
attempts to fit the Cfree of a high-DOF manipulator using a Gaussian mixture model (GMM)
but the fitting capability is limited [28]. Nikhil Das et al. proposed a collision detection
model based on online learning, which is called Fastron [29]. Fastron learns the offline
dataset based on Kernel Perceptron and obtains the optimal model to represent the bound-
ary of the free configuration space within the maximum number of iterations [30]. A new
kernel function is designed based on Fastron, which enhances the relationship between
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kinematics and configuration space and improves the accuracy of collision detection [31].
The DiffCo method is similar to Fastron in that obstacle manifold information is learned
through a nonparametric kernel perceptron but it is mainly applied to optimization-based
motion planners [32].

The above methods typically require the support of an offline dataset, making it diffi-
cult to transfer fitting capabilities to robots outside of the dataset. In addition, these methods
are inapplicable for continuous path collision detections. Addressing these shortcomings,
Pan Jia et al. proposed a K-nearest neighbors-based (KNN-based) collision classification
method utilizing locality-sensitive hashing (LSH) for nearest neighbor queries and KNN
for collision probability estimation [33]. The composite collision detection method (CCD)
combined with the KNN method improves the accuracy in some special cases and can be ap-
plied to the RRT algorithm [34]. However, limited by the query efficiency, the computation
speed of the KNN-based method is not maximized.

The KNN method, designed to identify the nearest neighbor information, has garnered
significant attention across multiple domains, including databases [35,36], image process-
ing [37], and deep learning-based control [38,39]. To reduce the complexity of the data
search, practical implementations of KNN often employ approximate solutions. Among
these, the graph-based KNN approach stands out as a prominent method for approximate
querying [40]. The graph-based method constructs a neighborhood graph, where each
data point corresponds to a node, the edges connecting the nodes define the neighborhood
relationship, and the search speed is improved by the edges [41]. HNSW (hierarchical
navigable small world) is a widely influential graph-based approximate KNN method [42].
HNSW is recognized as one of the most effective algorithms for querying speeds with fewer
than 10,000 nearest neighbors and guarantees perfect recall [43]. KNN-based collision
detection only needs to query a small number of nearest neighbors (less than 100) of the
new node. Consequently, the HNSW algorithm is particularly well-suited to this task.

In this paper, a fast collision detection method is proposed to transform the colli-
sion detection into a binary classification problem. It incrementally constructs a collision
database throughout the planning phase, queries this database for state information near
the target using the HNSW method, and introduces an enhanced Gaussian probabilistic
classifier for state classification. By leveraging local state correlations and circumventing
the inefficiencies of exact collision detection, this method requires no training and facilitates
collision detections on continuous paths. The primary contributions include the following:

1. An incremental construction approach for a collision information database based
on HNSW;

2. A KNN query technique for linear data employing minimum threshold segmentation;
3. A novel collision classifier, tailored to the kinematic characteristics of the manipulator.

The rest of the article is organized as follows. Section 2 introduces the HNSW algorithm
and describes the KNN query way for point state and line state. Section 3 presents a new
collision classifier based on the kinematic characteristics of the manipulator. Simulation
experiments in Section 4 verify the superior performance of the proposed method. The
conclusion is given in Section 5.

2. Construction of a Collision Database Based on HNSW

This section presents the technical details of KNN queries in the proposed approach.
For ease of reading, a nomenclature table is provided in Abbreviation part, which records
the variables and abbreviations in the following sections.

2.1. Introduction to HNSW

The goal of the KNN query is to find the k closest neighbors to the target. The HNSW
(hierarchical navigable small world) method is a graph-based approximate nearest neighbor
(ANN) search algorithm primarily employed for efficiently handling KNN queries in high-
dimensional data. HNSW merges the characteristics of small-world networks with a
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hierarchical strategy, accelerating queries and insertion operations through a multi-layered
graph structure. The database construction entails the following:

1. Hierarchical structure: HNSW constructs a multi-layered graph, with each layer being
a navigable graph. The bottom layer (level 0) contains all nodes, with higher layers
progressively having fewer nodes. Each node, upon insertion, is randomly assigned a
maximum layer, ensuring sparsity in higher layers;

2. Node insertion: A new node is first located in the highest layer graph using a greedy
search to find its nearest neighbors, then moves down layer by layer, performing
a local greedy search at each level until reaching level 0. At each layer, the node
selectively connects to other nodes in that layer based on distance criteria;

3. Connection strategy: Each node maintains a limited-size list of its perceived nearest
neighbors. This constrains each node’s out-degree, maintaining the graph’s sparsity
while ensuring efficient search capability.

The KNN query process for a new node unfolds as follows:

1. Initiating Search: Given a query point, the search begins at the highest layer, employ-
ing a greedy strategy to find the nearest neighbor at the current layer;

2. Descending Through Layers: Once a local nearest neighbor is found at a current layer,
the search moves to the next lower layer, continuing the search from this basis. This
process is repeated down to level 0;

3. Greedy Search: At each layer, the next closest node is greedily selected by comparing
distances between the node and the query point until no closer node can be found.

This paper implemented HNSW by using the open-source code (https://github.com/
nmslib/hnswlib, accessed on 6 April 2024.) and Euclidean distance as the metrics. The
parameters in the HNSW algorithm all use the values suggested in reference [42].

2.2. Construction of Collision Database

A node in C-space is defined by a set of joint angles, denoted as Q = [q1, q2, . . ., qn].
The database stores these nodes Q with an associated collision label C, where C can be
either collision-free (C = 0) or collision (C = 1). Using the HNSW method, we incrementally
construct the collision database as shown in Figure 2.
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Figure 2. The construction process of the collision database.

As depicted in Figure 2, the planner initially obtains Q through random sampling in
C-space, then uses HNSW to search for the k-nearest neighbors set N of Q. Condition 1 is
introduced here to exclude nodes that are significantly distant from other nodes, as their
collision probability is hard to estimable based on neighboring information.

https://github.com/nmslib/hnswlib
https://github.com/nmslib/hnswlib
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Condition 1. The number of neighbors satisfies k ≥ kmin. A neighbor is a node whose distance
from the new target is at most a threshold Dd, where Dd = 0.1·Scale, and Scale is the size of
the database.

When Condition 1 is satisfied, the collision probability p of Q is estimated. If p satisfies
Condition 2, the collision label C is determined by comparing p with the threshold t; C = 1
if p > t and C = 0 otherwise. The value of t will affect the accuracy of classification and it is
suggested to be 0.2 to 0.5 in this paper. If Condition 1 is not satisfied, the label C of Q is
obtained by exact collision detection and the node [Q C] is added to the database.

Condition 2. The collision probability p of a node is not equal to 0.5. The reason for rejecting the
classification of nodes with p = 0.5 is that these nodes are on the edge of the obstacle manifold and it
is difficult for the classifier to accurately decide the collision category.

In summary, when both Conditions 1 and 2 are satisfied, the classification is completed
by the collision probability of Q; otherwise, exact collision detection is performed on Q.
After obtaining the collision label C, Q is added to the collision database.

2.3. KNN Query Method for Line Data Based on Threshold Segmentation

Line data P = [Qt, Qt+1] representing manipulator motion from Qt to Qt+1 pose
a greater collision detection frequency in SBMP than single nodes. The dimensions of
nodes Q and P cannot be aligned, so it is difficult to directly use the method shown in
Figure 2 to perform KNN queries on P. In reference [33], a method of augmenting vectors
was proposed to make Q and P have the same dimension, denoted as the LSH method.
However, LSH complicates computations and risks false positives by treating line data as
straight lines, as illustrated in Figure 3a.

To address these issues, we introduce a threshold segmentation-based method, where
Dd segments line data into a set D of points, reducing computational complexity and
minimizing false positives, as defined in Equation (1).

P = [Qt, Qt+1] → D = {Qt, . . . , Qi, . . . , Qt+1}︸ ︷︷ ︸
n

, n ≥ 2, i = 0, . . . , m, (1)

where n is the number of split points, m = g(norm(P)/Dd), the norm( ) computes the length
of a vector, and the g( ) is the rounding function.

The Qi is calculated by Equation (2), where v is the unit vector of P.

Qi = Qt + i · Dd · v , i = 0, . . . , m, (2)

The elements in D are then traversed to obtain the neighbors and the union of the
neighbors of all elements is the neighborhood of the line data.

Since the range Sf of the segmented query is smaller than the valid range S, the
proposed method will lose a small number of positive neighbor nodes of line data, as
shown in Figure 3b. The upper bound of the probability of the loss can be obtained
from Equation (3). Despite a potential loss of positive neighbors due to smaller query
ranges, this method’s impact on collision detection accuracy is negligible, making it an
acceptable compromise.

p = 1 −
S f

S
=

2(m − 2)D2
d

(
1 − π

6 −
√

3
4

)
2(m − 2)D2

d
=

(
1 − π

6
−

√
3

4

)
< 0.044, (3)
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Figure 3. KNN query process of the LSH method and the proposed method. (a) KNN queries
for a single node and line data by LSH-based. (b) KNN query process for line data based on the
proposed method.

In the range [−π, π], 10,000 sets of 2D, 3D, and 6D nodes are randomly selected as the
database to test the performance of the LSH method and the proposed method. Figure 4
illustrates the query results for the 2D and 3D databases, with red dots representing
queries by the proposed method and yellow dots indicating those by the LSH method. The
proposed method demonstrated a notable reduction in false positives, a trend consistent
across the 6D database as well, as presented in Figure 5. This indicates the proposed
method’s superior accuracy in filtering relevant data across multiple dimensions.
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KNN queries are performed on 50 different sets of continuous paths on three datasets.
To fairly compare the performance of the two methods, brute-force query is used in both
retrieval methods; the final time performance of the two methods in the continuous path
scene is shown in Figure 6a, which shows the query time of the proposed method in the
three datasets.
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on three datasets.

The proposed method exhibits superior efficiency in query times compared to the LSH
method across datasets of varying dimensions. Specifically, the average query times for
the proposed method are 7.1 × 10−4 s for 2D, 6.7 × 10−4 s for 3D, and 1.0 × 10−3 s for 6D
datasets, as recorded in Figure 6a. In contrast, the LSH method shows average query times
of 3.46 × 10−2, 3.52 × 10−2, and 4.01 × 10−2 s for 2D, 3D, and 6D datasets, respectively,
as indicated in Figure 6b. Thus, the proposed method achieves a query time efficiency
improvement by two orders of magnitude for 2D and 3D datasets and a 97.5% reduction
for 6D datasets. These simulation results underscore the proposed method’s significant
time-saving advantage over the LSH approach.

In summary, the proposed method offers three key benefits in KNN queries of line
data over the LSH method:
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(1) Lower Memory Requirement: It maintains the original database vector form without
needing extra memory for storing augmented vectors;

(2) Elimination of Post-Processing: By segmenting line data and querying neighbor data
within each segment’s maximum range, it circumvents the need to filter out false
positives, a step required by the LSH method;

(3) Reduced Time Consumption: Utilizing the Euclidean distance for queries in the
d-dimensional database minimizes computational complexity relative to the LSH’s
augmented vector approach.

3. Design of Collision Classifier

It is considered that within a reasonable range of Dd, the node under test has a
probability consistency with its neighbor set. Therefore, the collision probability P can be
estimated according to the collision situation of neighboring nodes and the type of collision
can be judged by P. Based on this theory, we design a new collision classifier.

Firstly, we use a Gaussian function to weigh the influence of neighbors at different
distances and the weights are defined by Equation (4).

wi = e−γ·ρ(Q,xi), (4)

where Q is the target node or a line data, xi is the ith neighbor data, ρ() is the distance
function, and γ is the weight controlling the scale, which is calculated by Equation (5).

γ =
1

(0.05 · scale)2 , (5)

As the distance between the neighbor node and the node or line data to be tested
decreases, the probability of the two collision types being the same increases. The distance
function ρ() is used to calculate the similarity of state variables, which is crucial for collision
type estimation. Each joint has different effects on the movement of the link and the way
to calculate the node distance will lead to changes in the motion configuration of the
manipulator [44]. The influence of different joints is assigned by weights and the distance
function is defined as

ρ = ∆QTM∆Q, , (6)

where ∆Q is the joint distance vector and M is a diagonal matrix whose elements are joint
weights. M can be customized by users; this paper suggests diag(0.32, 0.27, 0.23, 0.05, 0.2,
and 0.05). The collision probability of node Q is estimated by Equation (7).

P(c(Q) = 1|N ) = sigmoid
(

µ2 + σT
12σ−1

1 (Q − µ1)
)

, (7)

where N is the set of neighbors and the sigmoid function is used to improve the sensitivity
of the classifier. Here, µ1 and µ2 are the mean values of the Gaussian distribution and σ12
and σ1 are the variances of the Gaussian distribution [45], which can be obtained from
Equations (8) and (9), respectively. The parameter ci is the collision state of xi and the value
is 0 or 1.

µ1 =
∑i wixi

∑i wi
, µ2 =

∑i wici

∑i wi
, (8)

σ1 = ∑i wi(p−xi)(p−xi)
T

∑i wi
, σ2 = ∑i wi(ci−µ2)

2

∑i wi

σ12 = ∑i wi(xi−µ1)(ci−µ2)
∑i wi

, (9)

To classify a node’s collision state, a threshold t ~ (0, 1) is applied. If P[c(Q) = 1|D] > t,
Q is deemed colliding; otherwise, it is collision-free. A threshold of 0.2 is empirically
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chosen. For line data, the collision probability calculation differs and is outlined in a
distinct equation, as shown in Equation (10).

P(c(P) = 1|N ) = sigmoid
(

µ2 + σT
12σ−1

1 (Near(l, µ1)− µ1)
)

, (10)

where the function Near(P, x) returns the point closest to x on P. The other variables are
calculated by Equations (8) and (9) but it should be noted that the variables in the weighted
distance function need to be changed to line data P.

The collision state of P is predicted using a similar threshold strategy, with t = 0.25
for line data, to determine whether the line segment is colliding or collision-free. This
methodology underscores a systematic approach to estimating collision probabilities and
classifying collision states for both nodes and line data, leveraging the relational dynamics
within a node’s neighbor set.

4. Simulation and Results
4.1. Introduction to the Obstacle Environment and Databases

In this paper, the UR5 robot is used as the simulation object, as shown in Figure 7,
where ai is the length of the connecting rod and qi is the rotation angle of the i-th joint. The
axes of adjacent joints are orthogonal or parallel.
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Figure 7. Structure diagram of UR5. (a) UR5 manipulator and (b) Structure diagram of UR5,
a1 = 780 mm, a2 = 320 mm, a3 = 1125 mm, a4 = 200 mm, a5 = 1142.5 mm, and a6 = 82.5 mm.

Four obstacle environments were simulated and designed, which were defined as
cylinder scene, drawer scene, box scene, and sphere scene, respectively, as shown in
Figure 8. The capsules are used to represent the linkage of the UR5 robot and obstacles are
composed of spheres, capsules, and planes. The experiments were performed on an Intel R⃝

CoreTM i7-9750H, @2.60GHz CPU.
The cylinder scene has only one obstacle, the drawer scene and the box scene have

17 obstacles, including 12 capsules and 5 planes, and the sphere scene has 4 sphere obstacles.
The database is composed of 30,000 sets of random sampling nodes in the configuration
space and the data form is Q = [q1, q2,..., q6, c]. The ratio of positive samples to negative
samples was 1:3. The test set is divided into two categories, 1000 discrete nodes Qs, and
1000 continuous path Ps. We use FCL to obtain the real collision situation of all the data.

Accuracy (Ac), specificity (TNR), and sensitivity (TPR) were used to measure the per-
formance of the algorithm. Ac was the prediction accuracy rate, TPR was the proportion of
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samples correctly classified in collisions, and TNR was the proportion of samples correctly
classified without collisions. The three metrics are defined in Equation (11).

Ac =
TP + TN

FP + TN + TP + FN
, TNR =

TN
FP + TN

, TPR =
TP

TP + FN
(11)

where TP is the number of true positive samples, TN is the number of true negative samples,
FP is the number of false positive samples, and FN is the number of false negative samples.

We use three methods for collision detection of test sets, namely the Fastron method [29],
the LSH method [33], and the proposed method. The three algorithms are implemented at the
same hardware level and the specific parameters of Fastron and LSH algorithms are detailed
in their references.
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4.2. Collision Detection of a Single Node

In examining the average detection times across four distinct scenarios, as delineated in
Figure 9, it is observed that the Fastron method significantly outpaces the LSH and proposed
methods in prediction speed, achieving microsecond-level efficiency. Nonetheless, this
advantage is mitigated by the additional temporal expenditure required for Fastron’s
training phase, which escalates exponentially with the augmentation of the training set size,
ranging from 1 ms to 900 ms. Consequently, the ostensibly superior speed of Fastron is
counterbalanced by its extensive training duration, eroding its overall temporal advantage.
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The comparative analysis presented in Figure 9a–f highlights the performance enhance-
ments afforded by the proposed method over the LSH method across varying training set sizes.
Specifically, with a training set size of 1000, the proposed method exhibited improvements in
prediction speed by 14.8%, 37.2%, 40.0%, and 38.3% across the four simulated environments.
Incremental increases in training set size to 5000; 10,000; 15,000; 20,000; and 25,000 further am-
plified the proposed method’s performance advantage, with respective speed enhancements
of 23.0%, 47.4%, 54.1%, 48.6%; 51.7%, 25.7%, 13.7%, 44.2%; 18.2%, 36.4%, 58.7%, 33.5%; 26.4%,
34.0%, 32.5%, and 43.5% and finally, 10.8%, 44.1%, 52.0%, and 25.6%.

Disregarding the duration necessary for training, the Fastron method distinctly leads
in detection time, surpassing the other two methodologies by approximately an order
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of magnitude. Nevertheless, the LSH and the proposed methods have their inherent
advantages, chiefly their non-reliance on a training phase. Furthermore, the proposed
method benefits from a hierarchical design, ensuring that the time required for nearest
neighbor retrieval via HNSW remains stable irrespective of increases in the training set size.
Figure 10a–f shows the performance of the three methods on the three metrics. Obviously,
the proposed method performs best in four scenes with training samples of different sizes.
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Figure 10a delineates that, with a sample size of 1000, the Fastron method’s accuracy
falls below 50% across all but one scenario, suggesting its limitations in complex envi-
ronments with minimal training data. Conversely, the method proposed herein achieves
significantly higher accuracy rates-surpassing the LSH method by margins of 6.0%, 16.9%,
28.7%, and 17.0% across the four evaluated scenes. This discrepancy highlights the pro-
posed method’s superior ability to correctly identify collision instances.

As the sample size escalates to the range of 5000 to 20,000, the Fastron method shows
an uptick in detection accuracy, surpassing 50% in all scenarios and occasionally exceeding
60%. However, these figures, while improved, remain modest. During this expansion, the
relative performance gap between the LSH and proposed methods widens, with the latter
maintaining an exceedingly high accuracy level of over 98% across all scenarios and sample
sizes, underscoring its robustness and adaptability.

Upon further increasing the sample size to 25,000, the LSH method experiences a
notable decline in detection accuracy. This reduction is attributed to the method’s suscepti-
bility to the effective range or k-value parameter, complicating the extraction of obstacle
features and causing positive sample neighbors to erroneously influence classification
outcomes. The distance function introduced by the proposed methodology effectively
mitigates such interference, sustaining remarkable accuracy levels of 100%, 99.9%, 99.6%,
and 99.4% across the four scenes. This performance underscores the proposed method’s
capacity to provide reliable collision detection in robotic path planning.

4.3. Collision Detection of Continuous Paths

According to the above analysis, it can be seen that the performance of the Fastron
method in a complex environment is not ideal. Therefore, Fastron is excluded from the
comparison. To ensure a balance between computational efficiency and detection accuracy,
a training set with a fixed size of 2000 samples was employed, with a sampling frequency
of 500 for precise collision detection along continuous paths.

Table 1 presents the execution times for exact collision detection, LSH-based methods,
and the proposed method across four distinct environments. The recorded times for the
LSH-based method reflect only correctly predicted samples to mitigate the distortion from
anomalous samples on the analysis’s integrity.

Table 1. Execution time in four environments for exact collision detection, the LSH method, and our
method (ms).

Method Scene 1 Scene 2 Scene 3 Scene 4

Exact collision detection 51.06 76.78 106.24 121.37
LSH-based 8.40 8.22 9.85 7.90

Ours 1.72 2.27 1.91 1.89

The data reveal that the proposed method outperforms the exact collision detection
and LSH methods in terms of speed, boasting improvements of 96.6% and 79.5% in Scene
1, 97.0% and 72.4% in Scene 2, 98.2% and 80.6% in Scene 3, and 98.4% and 76.1% in Scene 4,
respectively. These findings underscore the proposed method’s significant efficiency across
all evaluated environments.

Furthermore, as illustrated in Figure 11, the proposed method demonstrates con-
sistently high accuracy in detecting collisions along continuous paths, with accuracies
of 99.1%, 98.7%, 98.7%, and 98.2% in the four scenarios, respectively. The true positive
rate (TPR) confirms the proposed method’s reliability in accurately identifying collisions.
Conversely, the LSH method’s performance is markedly impaired by irrelevant samples,
leading to significantly reduced accuracies of 26.8%, 31.2%, 26.8%, and 30.9%, with true
negative rates (TNR) of 23.7%, 23.9%, and 26.1%, respectively.
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four cases.

Simulation results show that the performance of the proposed method for continuous
path detection (Ac, TNR, and TPR) is much better than that of the LSH method in four
scenarios. In the detection of continuous paths, our method still maintains the same
detection speed advantage as the discrete configuration sample, which is attributed to the
method in Section 2.3. In addition, compared with the LSH method, the HNSW method
has advantages in KNN queries.

4.4. Collision Detection for Manipulators with Different Degrees of Freedom

To evaluate the proposed method’s performance across manipulators with varying
degrees of freedom (DOF), we conducted simulations on 2DOF and 3DOF manipulator
systems. The obstacles and their associated collision manifolds for both manipulators are
depicted in Figure 12.

Initially, 10,000 random nodes are sampled within the configuration space of each
manipulator; the FCL is utilized to ascertain the true collision status of each node. Subse-
quently, a subset of 5000 samples was selected as the test set to assess the accuracy (Ac) and
execution time of both the proposed method and the LSH method, with the comparative
results detailed in Table 2.

Table 2. The Ac and execution time of the LSH method and our method on the two manipulators.

Method Number of DOF Ac (%) Time (µs)

LSH-based
2-DOF 94.47 720.43
3-DOF 89.21 1323.04

Ours
2-DOF 99.57 479.11
3-DOF 98.83 494.06

Table 2 demonstrates that the LSH and the proposed method both exhibit high ac-
curacy in collision detection for the 2DOF manipulator, achieving 94.47% and 99.57%
accuracy, respectively. Our method not only improves accuracy by 5% but also reduces
the computation time by 33.50%. For the 3DOF manipulator’s collision detection, the pro-
posed method’s time efficiency is even more pronounced, yielding a 62.65% time reduction
compared to the LSH method while simultaneously increasing accuracy by 9.6%.
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The above results show that the proposed method consistently delivers high accu-
racy and speed across manipulators with varying DOF, substantiating its robustness and
efficiency in diverse robotic configurations.

5. Conclusions

This paper presents a rapid collision detection method based on probability classifica-
tion, which can be used for collision detection of continuous paths. The proposed method
constructs the collision database incrementally and the KNN query is performed on the
target based on the HNSW method. Moreover, the challenge of continuous path KNN
query is solved by adopting a threshold segmentation strategy, which effectively reduces
the influence of irrelevant samples, thus improving the efficiency and accuracy of the query.
Finally, the collision state classifier based on the weighted distance function is used to
calculate the collision probability of the target state and complete the collision detection.
Simulation results verify the effectiveness of the proposed method. Extending the proposed
method to dynamic environments is a future work.
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Abbreviations

Nomenclature Definition
SBMP Sampling-based motion planner
C-space Confugration space
Cfree Collision-free confugration space
KNN K-nearest neighbors
ANN Approximate nearest neighbor
FCL Flexible collision library
LSH Locality-sensitive hashing method
HNSW Hierarchical navigable small world
Ac Accuracy
TNR Specificity rates
TPR Sensitivity rates
X(τ) Continuous path in C-space
τ Path parameter
Q Confugration or node
T Pose matrix
O Set of obstacles
N The set of neighbors of a node
P Position vector
Obs Pose matrix of obstacles
M Distance weighted matrix
fk(·) Forward kinematics
ρ(·) The distance function
qi The ith joint angle
C Collision label
r Radius
d Minimum distance between envelopes
p The collision probability of a node
Dd Minimum distance threshold
t Collision probability threshold
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