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Abstract: Miller and Urey applied electric sparks to a reducive mixture of CH4, NH3, and water to
obtain a complex organic mixture including biomolecules. In this study, we examined the impact of
temperature, initial pressure, ammonia concentration, and the spark generator on the chemical profile
of a Miller–Urey-type prebiotic broth. We analyzed the broth composition using Gas Chromatography
combined with Mass Spectroscopy (GC/MS). The results point towards strong compositional changes
with the nature of the spark. Ammonia exhibited catalytic properties even with non-nitrogen-
containing compounds. A more elevated temperature led to a higher variety of substances. We
conclude that to reproduce such a broth as well as possible, all the studied parameters need to be
tightly controlled, the most difficult and important being spark generation.
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1. Introduction

In 1953, Stanley L. Miller and Harold C. Urey exposed water, methane, ammonia, and
hydrogen to an electric spark, demonstrating the non-biological synthesis of biologically
relevant compounds [1]. Their work paved the way for research into the development
of life on early Earth. Cleaves et al. demonstrated the significance of pH for prebiotic
chemistry [2]. Both climate and pH are controlled by the carbon cycle [3,4]. The pH of the
Earth’s oceans evolved from 6.3–7.2 at 4.0 Ga, to 6.5–7.7 at 2.5 Ga and 8.2 at the present
time. This is primarily driven by the secular decline of p CO2 (the partial pressure of
carbon dioxide). The decline in p CO2 is a consequence of increasing solar luminosity.
However, the evolution of the pH of the oceans is also moderated by carbonate alkalinity
delivered from continental and seafloor weathering [5]. Russell et al. proposed that
the origin of life occurred in alkaline hydrothermal vents resembling those found in the
Lost City, a hydrothermal field in the Atlantic ocean where a proton gradient produces a
natural proton-motive force at the boundary between the alkaline containing SH− ions
hydrothermal spring and the slightly acidic ocean (pH 5–6) containing iron in the water [6,7].
Regarding the emergence of macromolecules, dry conditions at high temperature and high
pressure promote abiotic polymerization [8,9]. The catalytic role of transitional metals like
Ni/Fe and iron sulfide (FeS) could facilitate the reduction of N2 to NH4+ in an aqueous
solution [10,11]. All cellular substances may well have evolved at the same time through
common chemistry [12].

The latter finding sparked new interest in the generation of prebiotic broths as pro-
duced via the Miller–Urey experiment. Different gas mixtures increase the diversity of
the observed chemical compounds [2,13–16]. Different energy sources such as UV [17,18],
X-ray [19,20], laser photolysis [21], and high-energy proton irradiation can replace the
spark [22]. Experiments suggested that complex molecules including amino acid pre-
cursors were formed from simple molecules like HCN in the gas phase [22]. In a recent
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study, Mohammadi et al. proposed that the accumulation of formic acid as an intermediate
of Fischer–Tropsch synthesis may well have occurred on early Earth through multiple,
independent pathways [23,24]. They note that ammonium salts of formic acid have been
suggested to serve as the precursor of formamide. Ferus et al. revisited the Miller–Urey
experiments by using electric discharge and laser-driven plasma simulations in a reducing
atmosphere to investigate nucleobase formation from formamide [25]. The synthesis of
organic compounds through the action of electric discharges on neutral gas mixture con-
ditions has been shown to be much less efficient compared to the reducing gas mixture
of the original experimental setup. However, significant amounts of amino acids were
produced even from neutral gas mixtures [2]. The presence of borosilicate glass as a cat-
alyst in the reaction vessel significantly increased the molecular diversity and yield of
organic matter [26]. The production of molecular species that are typically not preferred
under reactor conditions such as polyethyleneglycol suggests the existence of unidentified
organocatalysts [27].

Theoretical computational approaches have been developed as well. A reactive ma-
chine learning system combined with a nanoreactor molecular dynamics’ sampler was
used to simulate the behavior of C, H, N, and O elements in a wide range of real-world
reactive systems. It closely matched experimental structures in carbon solid-phase nu-
cleation and graphene ring formation studies and produces reliable predictions in cases
where experimental data are not available [28]. A different ab initio nanoreactor simulation
suggested new pathways for glycine synthesis from primitive compounds proposed to exist
on early Earth. However, such a nanoreactor does not aim to replicate the physicochemical
conditions of any specific environment [29]. A theoretical study at the quantum level based
on ab initio molecular dynamics showed that, rather than the activation energy of electric
discharge, it was the strong electric field that favored the formation of small intermediate
molecules such as formic acid and formamide in Miller–Urey-type experiments [30].

Vincent et al. pointed out that although the concept of “prebiotic broth” has received
considerable attention, there has been a notable absence of well-designed, real chemical
mixtures. They addressed this gap by exploring principles and guidelines for selecting
chemical mixtures, considering both assembled and synthesized options [31]. In our
previous findings, we highlighted the reactor design as an important factor affecting
the complex mixture of a Miller–Urey-type experiment [32]. To maintain a high level of
experimental control and facilitate a comprehensive analysis of the significance of each
parameter, we streamlined the design of the traditional circulating reactor to a simplified
one-pot reactor. This reduced the complexity, ensuring a high level of experimental control
for data comparison.

Here, we address the reactor’s physical parameters (i.e., the nature of the spark,
temperature, ammonia concentration, and pressure) and their effect on composition. Note
that these parameters are linked, i.e., pressure and temperature change the nature of the
spark. Concentrations intervene in the pressure and the ionization of the gas mixture during
sparking. To our knowledge, the above set of parameters has not been investigated before,
in particular, the influence of the spark generator remains uncharacterized. We conducted
GC-MS analysis to differentiate and identify the broth components’ fragmented ions to
gain a better understanding of the relationship between the variation of the mentioned
parameters and the resulting chemical profile.

2. Materials and Methods
2.1. Experimental Setup

We conducted four sets of experiments, focusing on temperature (samples 1, 2, and 3),
pressure (samples 2 and 6), ammonia concentration (samples 4, 2, and 5) and the spark
generator (samples 2, 7, and 8) (see Table 1. Experimental conditions). The experi-
ments were performed in a 5 L flask as a reactor equipped with an overpressure valve
(Normag, Hofheim-Germany) responding to a pressure of 1.3 bar (Normag, Hofheim-
GermanyORMAG-Germany) as shown in Figure 1. First, 300 mL HPLC-grade water
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(Fisher Chemical, Loughborough-UK) were added to the flask. The 5 L flask was evacuated
3 times using a vacuum pump and subsequently filled with methane (N25 Air Liquide,
Düsseldorf-Germany) to effectively remove any residual air from the flask and degas the
water. Subsequently, the desired amount of ammonium hydroxide 35% w/w solution
(Fisher Chemical, Loughborough-UK) was injected into the flask through a silicon septum
(DWK Life Sciences, Holzminden-Germany) using a glass syringe (Fortuna Optima Luer
Lock, Fisher Scientific, Schwerte-Germany) with a needle. Then, the 5 L flask was partly
immersed in a bath of heated silicon oil, equipped with a magnetic stirrer. The reactor
was allowed to equilibrate overnight prior to sparking. All experiments were conducted
for 5 days. The electric discharge occurred in the gaseous phase between two semi-sharp
electrodes. We utilized tungsten electrodes in our experiment. They were 30 cm in length,
6 mm in diameter, exhibited a length of their cone of 15 mm and a tip with 0.5 mm radius.
At the opposite end of the electrodes, there was a 20 mm deep pit with a 2.5 mm internal
diameter for the connection of high-voltage and earth cables through a ferrule embedded
within the hole. The analysis using Energy Dispersive X-ray Spectroscopy (EDX) revealed
the tungsten composition to be highly pure, with only trace amounts of impurities, notably
Iron, Cobalt, Nickel, and Copper. Two flyback-based (FB-1 and FB-2) and a capacitor-based
(C-1) high-voltage spark generators were used (Supplementary Materials for details).

Table 1. Experimental conditions.

Experiment # 1 Temperature 2

(◦C)
NH3

3

(gr/L)

Initial
Pressure 4

(bar)

Spark
Generator

Product
Weight

(mg)

Sample 1 +80 5.83 1.0 FB-1 3.0
Sample 2 +100 5.83 1.0 FB-1 15.6
Sample 3 +120 5.83 1.0 FB-1 1.0
Sample 4 +100 0.11 1.0 FB-1 1.6
Sample 5 +100 11.66 1.0 FB-1 5.2
Sample 6 +100 5.83 0.7 FB-1 4.0
Sample 7 +100 5.83 1.0 FB-2 5.1
Sample 8 +100 5.83 1.0 CA-1 9.3

1 Indicates the number of the experiment (for reference). 2 Temperature refers to the silicon oil bath. 3 The
ammonia concentration refers to the initial amount of dissolved ammonia in the liquid phase. 4 The initial
pressures are measured at room temperature.
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We compared three different ammonia concentrations in the Miller soup. The ammonia
partial pressure in sample 2 displayed a twofold increase compared to sample 4 (low
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ammonia). The high-ammonia solution (sample 5) underwent an approximately fourfold
surge relative to the low-ammonia solution (sample 4) (Figure S2 Supplementary Materials).
Accordingly, the ammonia-to-methane ratio in the gas phase changed; considering that the
methane pressure is kept constant (except for sample 6), ammonia is responsible for the
increased overall pressure.

2.2. Sample Preparation and Derivatization

We used the method of Bligh and Dyer [33] to extract the organic phase of our experi-
ments. Methanol and chloroform were added to the broth to attain a final volume ratio of
2:2:1 for the chloroform/methanol/prebiotic broth. Shaking vigorously on a shaker in a
separatory funnel at 150 rpm for 5 min, enabled separation so that the upper layer was no
longer cloudy. The lower layer (organic phase) was drained via a stopcock embedded in
the separatory funnel. The organic phase was dried at room temperature under a nitrogen
purge. After drying, the samples were stored under a nitrogen atmosphere at −80 ◦C until
analysis. Prior to GC-MS analysis, 1 mg of the sample was derivatized by adding 200 µL
of the derivatizer (BSTFA + TMCS, 99:1, sylon BFT) obtained from Supelco (Bellefonte,
PA, USA), followed by incubation at +70 ◦C for 2 h. During derivatization, the labile
hydrogen is replaced by trimethyl silyl, and the molecular polarity reduces to facilitate
chromatographic separation [34].

2.3. GC-MS Method

The samples were separated using a GC (Agilent 8890 GC, Wilmington-USA) System
equipped with a 30 m capillary column (0.250 mm i.d., 0.25 µm film) HP-5MS UI fused silica
capillary column (Agilent Technologies, Folsom-USA) coupled to a mass detector (5977B
GC/MSD, Wilmington-USA). Then, 1µL of the derivatized sample was injected in splitless
mode. The column temperature was initially held at +70 ◦C for 8 min, then increased to
+280 ◦C at a rate of 3.5 ◦C/min with a final hold time of 9 min. Helium was the carrier
gas with a constant flow rate of 0.9 mL/min. The injector temperature was maintained at
+280 ◦C and mass spectra were scanned from 50–550 m/z at a scan rate of 0.9 scans/s; EI
operated under 70 eV. For analysis, we used AMDIS software (Version 2.72) integrated with
the mass-spectrometry library from the National Institute of Standards and Technology,
NIST (Version 2.3, Gaithersburg, MD, USA). To exploit the relative quantification of primary
formed fragments, we used the Bruker DataAnalysis software (Version 5.0, Bruker, Bremen-
Germany). This software lists the intensities of all detected m/z during the time course
of measurement.

3. Results
3.1. Detected Compounds

The GC-MS analysis revealed a large variety of organic compounds including alkanes
(C12-C44), fatty acids, alcohols, amines, aromatics, and heterocycles among others (Table 2 and
Table S4 Supplementary Materials). The detected compounds have a wide range of degrees of
aromaticity and chemical variability as shown in Table 2 and Table S4 in the Supplementary
Materials. We identified several compounds that were common in all samples, regardless
of the applied conditions, e.g., alkanes, fatty acids and carbamates. However, the samples
showed major differences in composition with respect to the experimental conditions.

Table 2 shows that Guanine and ethanimidic acid consistently formed in the prebiotic
broths except in sample 1 (80 ◦C). Cyanophenol was not detected in samples 1 (80 ◦C),
2 (100 ◦C) and 8 (CA-1 spark generator). Oxalic acid was only observed in samples prepared
at 120 ◦C (sample 3), or at high-ammonia concentrations (sample 5) or with spark generator
FB-2 (sample 7). We also detected components such as symmetrical arrangements of ketone
groups, di-ketones, and bisphenols, which can be considered radical traps for oxidation.
1,4-benzoquinone was identified in all samples, except for sample 4 (lower concentration
of ammonia).
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Table 2. Detected compounds.

Compound Name S1 S2 S3 S4 S5 S6 S7 S8

Alkanes C12-C44 + + + + + + + +
Aromatics + + + + + + + +

PAHs + + +
Carbamat + + + + + + + +

Ethanimidic acid + + + + + + +
Guanine + + + + + + +

Aliphatic Amines + + + + + + + +
Pyridinol + + + + + +

Fatty acids + + + + + + + +
m-Phenylenediamine + + + + +

Cyanophenol + + + + +
Benzamide + + + + +

Dimethylphenol + + + +
Phenol + + + + +
Urea + + + +

Oxalic acid + + +
Methoxyphenol + + +

Pyrazine-2-carboxamide + + +
1,4-Benzoquinone + + + + + + +

4-Pyrimidinecarboxaldehyde + + +
Benzyl alcohol + + +
Fatty alcohols + + + + + +

Butadyne + + +
Methylbenzamide + + +

Ethyl-acridone + + +
Glycolic acid + + +
Biphenyldiol + + +

Biphenylene derivative + +
ethylene glycol + + + + + +

PEG strands + + +
Amino-O-cresol + +

Note: (+) indicates that the molecule is detected in the corresponding sample.

Biphenyldiol was observed in the sample with higher ammonia/methane ratios (sam-
ples 5 and 6) as well as with FB-2 (sample 7). Short polyethylene glycol (PEG) strands
were detected in samples 1, 3, and 8, while the possible corresponding monomer, ethylene
glycol, was detected in samples 1, 2, 3, 5, 6, and 7. A distinct set of polycyclic aromatic
hydrocarbons (PAHs) was observed in samples 5, 7, and 8.

Shortly after the start of the electric discharge, an oil layer formed on top of the
aqueous phase, while a thin deposit of black material started to form around the tip of
the electrode. This deposit exhibited a porous structural configuration and continuously
underwent detachment from the electrodes, descending onto the oil layer. The thickness
was highly dependent on the temperature and spark generator. We observed a significant
rise in the production of black material deposit at low temperature (sample 1); conversely, at
high temperature (sample 3), a negligible amount of black material formed. The utilization
of the FB-2 spark generator (sample 7) resulted in a significant increase in black matter
(compared to FB-1 and CA-1), whereas sample 8, delivered via the capacitor-based spark
generator (CA-1), produced a minimal amount of black dust. All other samples exhibited
an almost comparable amount of black matter regardless of the altered parameters.

3.2. Fragments Intensity Analysis

The ten major fragments of each sample are shown in Table 3. In Table 4, we present
the chemical structure as identified via the NIST database and in the literature. Detected
fragments consist of saturated hydrocarbons, fatty acids, esters, fatty alcohols, ketones,
ethers, aldehydes, sterols, ethylene glycol, and phenols, among others. The fragments 43,
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57, 71, and 85 m/z were attributed to hydrocarbon. The fragments 341, 313, 147, 145, 132,
129, 117, and 45 m/z were attributed to fatty acids and fatty alcohols; 180, 166, and 165 m/z
were attributed to phenol components. Some components were not among common
molecule fragmentation products found in the literature, and we assigned these molecular
fragments according to the GC-MS database, e.g., 330, 263, 222, and 221 m/z. Moreover,
due to the derivatization, we found some ions that originated from the BSTFA removal of
the labile hydrogens. Quantitatively, fatty acid fragments were the most abundant ones,
except for sample 6, where the phenol motif dominated. In Table 3, we identified a strong
similarity between samples 2 and 3, differing in temperature only (100 ◦C and 120 ◦C).
The fragmentation pattern of sample 1 (produced at 80 ◦C) was similar but did not exactly
follow the same path.

Table 3. Fragments’ abundance.

Experiment # Fragments m/z in Order of Abundance (Left to Right Decreased)

Sample 1 73 117 75 132 313 129 57 221 43 145
Sample 2 117 73 75 132 313 129 57 43 145 71
Sample 3 117 73 75 132 313 129 57 43 145 71
Sample 4 73 221 75 117 222 263 57 43 147 132
Sample 5 73 165 75 147 180 117 221 330 175 45
Sample 6 165 73 180 75 166 149 175 117 147 43
Sample 7 117 73 341 75 132 129 145 57 43 55
Sample 8 73 165 147 75 117 180 43 45 149 166

Note: (#) indicates the number of the experiment, see Table 1 for experimental conditions.

Table 4. Fragmented ions.

Molecular Ion (m/z) Predicted Fragment
Structure

Literature and Common
Compounds

Relevant Studies from a
Fragment References

43
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Table 4. Cont.

Molecular Ion (m/z) Predicted Fragment
Structure

Literature and Common
Compounds

Relevant Studies from a
Fragment References

71
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Fragments 117, 75 and 73 m/z (fatty acids, fatty alcohols, Ethers, and Aldehydes)
were present in samples 2, 4 and 5. In low- and mid-ammonia concentrations, three more
fragments were common (132, 57, and 43 m/z). These fragments were not among the top
ten of the high-ammonia sample (sample 5).

Reducing the pressure to 0.7 bars is achieved by decreasing the level of methane. Com-
paring sample 2 (at atmospheric pressure) and sample 6 (at 0.7 bars), we found that they
exhibited the same three common fragments, 117, 73, and, 75 m/z, which correspond to fatty
acids, fatty alcohols, ethers, and aldehydes. Notably, fragment 73 m/z, representing ethers
and aldehydes, held the second-highest rank. In the low-pressure condition (sample 6), the
chromatogram was dominated by fragment 165 m/z, associated with phenols.

Three distinct spark generators, FB-1, FB-2, and CA-1, were employed for the synthesis
of samples 2, 7, and 8. For both flyback-based spark generators (FB-1 and FB-2), ions with
m/z values of 145, 132, 129, 117, 75, 73, 57 and 43 (fatty acids, fatty alcohols, ethers,
aldehydes, and hydrocarbons) ranked among the top ten most abundant ions. Conversely,
sample 8, produced using spark generator CA-1, displayed the top five most abundant ions
165, 147, 180, 45, and 166 m/z (phenols, fatty acids, fatty alcohols, PEG, ethers, dicarboxylic
acids, bisphenols, and ketones). However, ions with 165, 147, 180 and 166 (m/z) appeared
in samples 5 and 6 among the top 10, suggesting that the CA-1 spark generator would (at
least partly) compensate for lower ammonia/methane ratios.

3.3. Limitations of Our Analytical Method

One significant limitation pertains to the vaporization of the analyte, which we im-
proved through derivatization techniques. Another challenge concerns the effective separa-
tion of compounds within the GC-MS system.

We used a HP-5MS UI fused silica capillary column (Agilent Technologies). It is non-
polar and will not provide optimal separation for polar compounds. However, developing a
non-targeted comprehensive method for all compounds is impossible. Moreover, we expect
several factors to contribute to a weak detection of certain compounds in our study, such as for
instance formic acid or amino acids (see Table 2 and Table S4 in the Supplementary Materials),
which were detected elsewhere by others [60–62].

a. Method and Run Time: The five-day duration of our experiment may have impacted
the composition by altering the ratios of components. Different run times can lead to
variations in product yields and product composition.

b. Extraction Procedure: the use of chloroform, a non-polar solvent, for extraction may
exclude or reduce the recovery of highly polar compounds.

c. Chemical Reactions: during the drying or extraction process, unintended reactions
could have occurred, potentially altering the composition in both the water-methanol
and chloroform phases [33,63].

d. GC-MS Method: The wide range of compounds generated in our experiment posed
a challenge for analysis. To ensure clarity and achieve robust results, we focused on
non-polar compounds with m/z values between 50 and 550. This allowed us to report
compounds with acceptable signal-to-noise ratios while ignoring peaks that did not
meet our predefined standards. This occurred in situations where substances could
not be separated by the column because their migration properties were too similar.

4. Discussion

Studying temperature, we observed that black material formation is maximized by
lower temperature (80 ◦C) as well as by spark generator FB-2 compared to FB-1 and CA-1.
The variety of the detected compounds was increased in sample 3 (high temperature) and in
sample 7 (FB-2 spark generator) (Table 2 and Table S3 in the Supplementary Materials). FB-2
exhibited a capacity to generate a broader range of compounds (300 components vs. around
150–200 assigned components for all other samples (see Table S3 Supplementary Materials).
However, the conditions for the highest product weight yield (15.6 mg) include spark
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generator FB-1, setting the temperature at 100 ◦C, maintaining an ammonia concentration
of 5.8 g/L, and operating under standard atmospheric pressure.

Different types of spark generators generated different fragments. Sample 8, synthe-
sized via spark generator CA-1, presents fragments 165, 147, 180, 45, and 166 m/z (phenols,
fatty acids, fatty alcohols, PEG, ethers, dicarboxylic acids, bisphenols, and Ketones) as the
top five abundant ions, which are not within the top ten abundant ions of the flyback-based
spark generators FB-1 and FB-2 (samples 2 and 7, respectively). However, this could be
compensated by increasing the amount of ammonia (sample 5). Analyzing the emission
spectra of ammonia, the FB-2 spark generator leads to notably higher relative emission
energy of the UV emission lines (Figure S8 Supplementary Materials). We conclude that
this spark generator excites the high energy levels of ammonia particularly well. This may
lead well lead to the broader variety of compounds compared to the other spark generators.

Examining the effects of pressure, the analysis of the ion fragments shows that in
the low-pressure condition (sample 6), there is an evident preeminence of the fragment
with a mass-to-charge ratio of 165 (corresponding to phenolic compounds). This is also
observed at high-ammonia conditions (sample 5), as well as in sample 8, generated via
the capacitor spark generator. The reduction in the initial pressure to 0.7 bar signifies a
reduction in the availability of methane, consequently amplifying the exposure of ammonia
and water fractions to plasma. Higher ammonia-to-methane ratios enhance or catalyze the
formation of phenolic compounds. FB-2 spark generator (sample 7) and higher ammonia
concentration (sample 5) presented higher potential to produce a higher variety of the
compounds. We conclude that the spark has the largest impact on the broth, besides the
methane/ammonia ratio.

Considering the substances detected in GC-MS, high-ammonia concentrations
(sample 5) resulted in the formation of a unique range of PAHs and unsaturated com-
pounds compared to mid-ammonia concentrations (sample 2) (Table 2 and Table S3
Supplementary Materials). This again suggests a possible catalytic role of ammonia in
the generation of unsaturated compounds. Moreover, in these conditions, the structural
variety of non-nitrogen-containing compounds was enhanced, e.g., phenol derivatives,
oxalic acid, PAHs and more (Table 2 and Table S3 Supplementary Materials). This points,
again, towards a catalytic role of ammonia.

Carbamate is a product formed through the reaction between carbon dioxide and
ammonia without needing a catalyst. Carbamate is assumed to have a crucial role in
facilitating subsequent reactions in the aqueous phase, particularly due to the presence of
ammonia [64]. It has been proposed that polycyclic aromatic hydrocarbons (PAHs) were
delivered to Earth through meteorites [65], but our findings indicate that PAHs could have
been generated autogenously in some of the experimental conditions, such as samples 5,
7, and 8. PAHs have the potential to fulfil a variety of functions in prebiotic chemistry;
for instance, amphiphilic PAHs may well increase the resistance of vesicles to divalent
cations [66]. PAHs may have functioned as pigments to drive photochemical reactions.
They are also believed to potentially catalyze biomolecule polymerization and participate
in protocell formation [67,68].

The process of auto-oxidation occurring under elevated pH conditions facilitates the
production of quinones from polyphenols, widely known as potent antioxidants [69–71].
Subsequently, the generated quinones can undergo reduction to semiquinones, accom-
panied by the release of superoxides [69,70]. This unique reactivity is due to the highly
alkaline nature of the reaction medium (pH 12 ± 0.5), enabling diketones to exhibit oxidiz-
ing properties by attracting dipolar and positively charged molecules. Examples of such
compounds found in the prebiotic broth include 1,4-benzoquinone and biphenyldiol.

The formation mechanism of PEG short strands in the prebiotic broth is not clear but
the alcohol condensation or oxirane polymerization in organic solvent with the presence
of a metal catalyst, e.g., tungsten particles (detached from the electrodes), could be an
option [27,72]. Previous studies have shown that saturated hydrocarbons may have been
key to specific reactions necessary for the emergence of life, in particular, for the synthesis
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of membrane forming molecules such as single chain amphiphiles (SCAs) through Fischer–
Tropsch-type (FTT) reactions [73–76]. A large amount of components with benzene motifs,
branched and linear alkanes (C12-C44), along with fatty acids, amines, and solid particles
from spark plasma (cf. black material), formed an interface between gas and aqueous
phases [32]. Many molecules of the oil phase, such as fatty alcohols and fatty acids (Table 2),
contained oxygen. Such compounds combine a hydrophobic and a hydrophilic part. They
act as tensioactives. Tensioactive molecules are capable of self-assembling into membrane-
bound vesicles. They accumulate at the oil–water interface, lowering the surface tension.
This may be understood as a first step towards the emergence of protocells [77].

The thickness and color of the oil layer that formed between the water and gas phase
varied depending on experimental parameters. An increase in the amount of hydrophobic
components leads to a greater volume of the hydrophobic phase, forming a more accessible
environment for reactions that predominantly occur in non-polar and aprotic solvents.

Micro- and nanostructures of metallic and oxidized tungsten originating from the
electrode, incorporated with black material emerging as particles in spark plasma, spread-
ing along the interfaces as well as in the aqueous phase are likely to enhance the catalytic
properties of the broth [78,79].

The question of whether the Miller–Urey experiment can be linked to the conditions
on early Earth in simple ways has been ongoing since the original work. Evidently, sulfur
and phosphate, two of the most important elements in today’s organisms, are lacking in
our setup, and they may have had a strong role [80]. However, these substances could
be added in future work, albeit complicating the analysis. In principle, the gas mixture
could also be changed to more oxidizing mixtures that may be closer to the atmosphere
of early Earth. However, such experiments were performed before to conclude that a
highly reductive atmosphere was a requirement to produce a highly complex broth [15].
In this context, Bada et al. showed that the yield of amino acids is greatly increased when
oxidation inhibitors such as ferrous iron are added prior to hydrolysis to counteract a more
oxidizing gas mixture [2]. The conclusion that locally reduced conditions were sufficient
for the generation of biomolecules challenged the belief that the Earth’s atmosphere was
just too oxidizing for a prebiotic broth to form spontaneously. Moreover, the oxidizing,
neutral, or even slightly reductive nature of the Earth’s atmosphere, as well as of its surface,
4–4.5 × 109 years ago in a prebiotic world, as well as beyond that date, remains under
discussion [81–83].

We concur with the findings of Mohammadi et al. [22] and the suggested role of
volcanic, electric discharges. Nevertheless, our sparks cannot directly be compared to
lightning, however, they could work in analogy to UV radiation. Light and in particular
UV radiation provides the energy for the photochemical synthesis of biomolecules that are
of interest in origin-of-life research. This can favor the formation of molecules that function
in extant biology while inhibiting the formation of molecules that do not [84]. We suggest
that, although the Miller–Urey experiment may not be directly transferrable to the existing
prebiotic conditions of Earth, a great deal can be learned regarding the generation and the
behavior of more or less spontaneously forming prebiotic broths. How to translate this
understanding to the conditions at the origin will then be a different question.

5. Conclusions

Here, we studied the influence of temperature, ammonia concentration, spark genera-
tor and pressure on the chemical composition of a Miller–Urey-type prebiotic broth.

The choice of spark generator had the most important influence on the range and
diversity of the synthesized compounds. Ammonia exhibited a catalytic role in generating
non-nitrogen-containing motifs and compounds. A lower ammonia concentration could be
partly accounted for by using a different spark generator. The highest temperature in our
study resulted in greater chemical diversity but a lower total mass of the generated product.
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Formic Acid, a Ubiquitous but Overlooked Component of the Early Earth Atmosphere. Chem. A Eur. J. 2020, 26, 12075–12080.
[CrossRef] [PubMed]

24. Schulz, H. Short history and present trends of Fischer–Tropsch synthesis. Appl. Catal. A Gen. 1999, 186, 3–12. [CrossRef]
25. Ferus, M.; Pietrucci, F.; Saitta, A.M.; Knížek, A.; Kubelík, P.; Ivanek, O.; Shestivska, V.; Civiš, S. Formation of nucleobases in a

Miller–Urey reducing atmosphere. Proc. Natl. Acad. Sci. USA 2017, 114, 4306–4311. [CrossRef] [PubMed]
26. Criado-Reyes, J.; Bizzarri, B.M.; García-Ruiz, J.M.; Saladino, R.; Di Mauro, E. The role of borosilicate glass in Miller–Urey

experiment. Sci. Rep. 2021, 11, 21009. [CrossRef] [PubMed]
27. Wollrab, E.; Scherer, S.; Aubriet, F.; Carré, V.; Carlomagno, T.; Codutti, L.; Ott, A. Chemical Analysis of a ‘Miller-Type’ Complex

Prebiotic Broth: Part I: Chemical Diversity, Oxygen and Nitrogen Based Polymers. Space Life Sci. 2015, 46, 149–169. [CrossRef]
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