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Supporting Information: Justification of Eq. [2] 

 

A) General approach for a sequential entropy 

 

In statistical thermodynamics, the term entropy is defined according to the Boltzmann formula  

 

   S   =   kB ln w            [S1] 

 

with kB as Boltzmann’s constant and w as the statistical weight of the system’s state. We assume that a system 

consists of N separate amphiphilic units of different varieties i = 1, 2, 3, …n. If each variety i occurs at a number 

of mi (with m1 + m2 + m3 + … + mn = N), the number of different sequences obtained in a random walk through all 

of the units (and hence the corresponding statistical weight of the system’s state) is given by 

 

   w   =   
𝑁!

𝑚1! × 𝑚2! × 𝑚3! × ….  × 𝑚𝑛!
      [S2] 

Or, in a logarithmic form: 

 

   ln w = ln N! – ln m1! – ln m2! – ln m3! – … – ln mn!  [S3] 

 

With the approximation ln x! ≈ x ln x – x for large numbers x and accounting for m1 + m2 + m3 + … + mn = N, we 

get 

 

   ln w  =   N ln N  -  ∑ 𝑚𝑖  ln m𝑖
𝑛
𝑖=1     

=    ∑ (𝑚𝑖 ln 𝑁 − 𝑚𝑖  ln m𝑖)𝑛
𝑖=1      [S4] 

 

When we introduce the fraction pi = mi / N of each variety i, this expression turns into 

 

   ln w  =   - N  ∑ 𝑝𝑖  ln 𝑝𝑖
𝑛
𝑖=1    

=   N  ∑ 𝑝𝑖  ln (1/𝑝𝑖)𝑛
𝑖=1         [S5] 

 

Together with the Boltzmann formula Eq. [S1], this leads to a term for the sequential entropy: 

 

S   =   kB N  ∑ 𝑝𝑖  ln (1/𝑝𝑖
𝑛
𝑖=1 )       [S6] 
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In the case of dissolved amphiphiles, the micellar populations pi are replaced by the solution populations πi. The 

result shown in Eq. [S6] is completely analogous to the thermodynamic entropy of N particles with n different 

states i = 1, 2, 3, …n and given populations pi where p1 + p2 + p3 + … + pn = 1.  

 

In a system that consists of only one single type of unit (that is, p1 = 1 while all other populations are zero), all 

random walks would yield identical sequences. According to Eq. [S6], this leads to S = 0. In a system that consists 

of, e.g., 30 different units with equal populations pi = 1/30, the corresponding result is S = kN ln 30. 

 

B) A characteristic random walk 

We now need to consider an averaged characteristic random walk following the rules that are described in 

section 3. Assuming that the system consists of amphiphilic molecules in solution as well as of micelles that 

contain an average number of N amphiphilic molecules, we assume the random walk will connect an average 

of M free amphiphilic molecules before it hits the first micelle. Starting from this point, the path connects all 

units of the micelle following the rule that it always continues to the next neighbor that has not yet been part of 

the random walk. When all steps through the micelle are finished, the random walk again continues in the 

solution, starting with the next neighbor. Thus, on average, a typical step, including one path through the 

solution and one path through a micelle (or the other way round), includes M + N units. Considering a random 

walk over a total of Nrw units, we need to account for Nrw/( M + N) repetitions of this step.  

 

During each such step (one path through the solution and one micelle), two different contributions to the 

sequential entropy have to be accounted for: i) the path through the monomers in the solution, and ii) the path 

along the units of the micelle. Both contributions are considered in the following. 

 

1) Path through the solution of amphiphiles 

This contribution to the sequential entropy is determined by M as the number of monomer units per step and 

by the relative populations πi of the NG different types of amphiphiles where π1 + π2 + π3 + … + πNG = 1. In analogy 

to Eq. [S6] and for Nrw/( M + N) steps, it reads 

 

S1   =   kB M(
𝑁𝑟𝑤

𝑀+𝑁
)  ∑ 𝜋𝑖  ln (1/𝜋𝑖)

𝑁𝐺
𝑖=1     [S7] 

 

For just one single type of amphiphile and π1 = 1, this contribution is zero. For, e.g., 30 different types of 

amphiphiles with equal populations π1 = π2 = … = π30 = 1/30, it turns into (ln 30) kB MNrw/( M + N). 

 

2) Path along the units of the micelle 

The second contribution to the sequential entropy is determined by the relative predictability pi of each following 

amphiphile molecule of the type i within a micelle. This predictability is defined by the composition of the 

micelle and the corresponding relative contributions of its amphiphilic molecules pi with p1 + p2 + p3 + … + pNG = 

1. In analogy to Eq. [S6] and for Nrw/( M + N) steps, the contribution S’2 for one single type of micelle consisting 

of N amphiphilic molecules reads 
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   S’2   =   kB (
𝑁𝑟𝑤

𝑀+𝑁
)  𝑁 ∑ 𝑝𝑖  ln (1/𝑝𝑖)

𝑁𝐺
𝑖=1    [S8] 

 

For a micelle that contains only one single type of amphiphile with p1 = 1 (and all other pi = 0), this contribution 

is zero. For completely random micelles of, e.g., 30 different amphiphiles and all pi = 1/30, it turns into (ln 30) kB 

NNrw/(M + N). 

 

In general, the assembly will contain several groups of micelles that will follow different preferred compositions, 

some of them deviating from the composition of the solution. This will be especially the case when composomes 

form. These may be characterized by an index k and individual contributions pi,k of their amphiphiles. 

Considering the relative contribution Pk of micelles of the type k, the overall contribution S2 now reads 

   S2   =   kB ∑ [(
𝑃𝑘𝑁𝑟𝑤

𝑀+𝑁
) 𝑁𝑘 ∑ 𝑝𝑖,𝑘  ln (1/𝑝𝑖,𝑘)

𝑁𝐺
𝑖=1 ]𝑘  [S9] 

 

 

In combination, both contributions S1 and S2 add up to Eq. [2] in the main text. If Nrw is set to 6.022∙1023, the 

resulting value Sr  =  S1 + S2 accounts for a molar entropy of the assembly with respect to its amphiphilic 

composition. Its thermodynamic equivalent is the mixing entropy. This mixing entropy would contribute to the 

driving force for the complete loss of the composomal structure.  


