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Abstract: Piceatannol (PIC), a polyphenol abundant in passion fruit seeds, is reported to promote fat
metabolism. This study investigated whether PIC affects sirtuin 1 (SIRT1) expression and metabolic
factors in C2C12 skeletal muscle cells. C2C12 myotubes were stimulated with PIC, and alterations in
gene expression, protein levels, mitochondrial DNA content, and fatty acid levels were assessed using
real-time PCR, Western blotting, and Nile red staining. Furthermore, we examined changes in SIRT1
expression following the consumption of a test food containing 100 mg PIC for 2 weeks among adults
with varying age and body mass index ranges. Both PIC and passion fruit seed extract induced SIRT1
expression in C2C12 myotubes to a greater extent than resveratrol. PIC also increased the expression
of genes associated with mitochondrial biogenesis and fatty acid utilization, increased mitochondrial
DNA content, and suppressed oleic acid-induced fat accumulation. Moreover, participants who
consumed PIC exhibited significantly higher SIRT1 mRNA expression in whole blood compared to
those in the placebo group. These findings suggest that PIC induces SIRT1 expression both in vitro
and in the human body, which may promote mitochondrial biosynthesis and fat metabolism.

Keywords: piceatannol; passion fruit seed; fat metabolism; SIRT1; mitochondria; resveratrol; skeletal
muscle

1. Introduction

Healthy life expectancy refers to the average number of years that a person can expect
to live in “full health” by considering the years lived in less than “full health” due to
disease or injury [1]. According to the World Health Organization, the global average
life expectancy increased from 66.8 to 73.4 years, with the healthy life expectancy being
extended from 58.3 to 63.7 years in the past two decades (2000–2019) [2]. Although both
life expectancy and healthy life expectancy are increasing, the gap between the two has
widened from 8.5 to 9.7 years, indicating that although people live longer, they are not nec-
essarily spending these additional years in good health or being physically active. Hence,
it is crucial to address this issue to enable people to enjoy longevity while leading healthy
and fulfilling lives, and to tackle societal challenges such as rising healthcare costs and
increased demand for care in an aging society. Sirtuin genes, particularly sirtuin 1 (SIRT1),
are well-conserved nicotinamide adenine dinucleotide (NAD+)-dependent deacetylases
that deacetylate acetylated lysine residues in numerous histone and nonhistone proteins,
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and SIRT1 is crucial for the aging process and metabolism [3–6]. SIRT1 was first identi-
fied as a factor that extends the lifespan of various organisms, including yeast [7], fruit
flies [8], Caenorhabditis elegans [9], and mice [10,11]. SIRT1 regulates metabolism in different
tissues [12], including promoting gluconeogenesis in the liver [13] and reducing fat accumu-
lation and increasing free fatty acid levels in the white adipose tissue (WAT) [14]. Moreover,
SIRT1 enhances insulin secretion in the pancreas [15,16] and insulin sensitivity [17–19].
Conversely, decreased SIRT1 expression has been reported in individuals with metabolic
syndrome, insulin resistance, or obesity [20,21]. SIRT1 activation leads to the prevention
of various chronic diseases associated with aging [12,22,23]. Recently, research on nicoti-
namide mononucleotide (NMN) has attracted attention as a means of enhancing NAD+, the
cofactor of SIRT1 [24]. SIRT1 is increasingly gaining attention as a factor with the potential
to improve a healthy lifespan by helping to prevent a variety of age-related disorders.

SIRT1 is an important regulator of mitochondrial biogenesis, fatty acid oxidation, and
energy expenditure in skeletal muscles [25,26]. Hence, SIRT1 is fundamental for main-
taining energy homeostasis, enhancing muscle fiber strength, and facilitating recovery
from injuries [27]. Additionally, mitochondrial dysfunction in skeletal muscles is central in
the development of various metabolic diseases, such as obesity and associated metabolic
disorders [26]. For instance, SIRT1 overexpression attenuated high glucose-induced insulin
resistance by reducing mitochondrial dysfunction in skeletal muscle cells [28]. Moreover,
the administration of the SIRT1 activator SRT1720 enhanced the endurance running perfor-
mance and protected mice against insulin resistance and diet-induced obesity by enhancing
oxidative metabolism in their skeletal muscle and other tissues [29]. These studies sug-
gested that SIRT1 activation in the skeletal muscles may contribute to preventing metabolic
disorders and obesity.

Piceatannol (PIC), a plant-derived polyphenolic compound with a stilbene structure
that is abundant in passion fruit seeds [30,31], has antioxidant [32] and anti-inflammatory
properties [33], inhibits fat adipogenesis [34], and reduces cognitive impairment [35]. In
clinical trials, the intake of PIC from passion fruit seeds helped maintain skin hydration and
elasticity [36,37] and increased fat burning at rest and during moderate exercise [38,39]. PIC
increased the expression of heme oxygenase-1 (HO-1) and superoxide dismutase 1 (SOD-1)
and reduced the accumulation of H2O2-induced reactive oxygen species (ROS) in skeletal
muscle cells [32]. Furthermore, PIC increased glucose uptake into skeletal muscle cells by
promoting the translocation of GLUT4 to the cell membrane [40]. Collectively, these findings
suggest that PIC plays a considerable role in reducing oxidative stress and influencing
glucose metabolism in skeletal muscles. Resveratrol (RES), a compound related to PIC, is
present in plants such as peanuts, cocoa, and berries [41–43]. This polyphenol, notable for
its antiaging benefits [44], has been extensively studied for its various physiological effects.
Human clinical studies targeting patients with coronary heart disease and type 2 diabetes
mellitus have revealed that RES intake increased SIRT1 levels in the blood [45]. Although
RES has been extensively studied, few reports exist on PIC [46], especially regarding its
effect on SIRT1 expression in skeletal muscles and its potential to induce SIRT1 expression
in humans when consumed.

Here, we examined the effects of PIC on SIRT1 expression in the skeletal muscle cell
line C2C12 and in adults across a broad range of age and body mass index (BMI) who
consumed test food containing 100 mg PIC for 2 weeks. Additionally, the influence of PIC on
mitochondrial biogenesis and fatty acid accumulation was investigated in cell experiments.

2. Materials and Methods
2.1. Cell Culture and Sample Preparation

C2C12 mouse skeletal muscle cells were cultured as described previously [32]. When
cells reached 90–100% confluency, the medium was replaced with a differentiation medium,
containing 2% heat inactivated horse serum, and differentiation was initiated. The differen-
tiation medium was replenished every 3 d. After 6 d, the cells underwent differentiation
and formed myotubes. Initially, PIC or RES was dissolved in dimethyl sulfoxide (DMSO)
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and diluted to the desired concentration using the differentiation medium. Passion fruit
seed extract (PFSE) was prepared as described previously [47] and dissolved in DMSO. The
final concentration of DMSO was kept at 0.1% under all conditions. For fatty acid detection,
oleic acid was dissolved in 100 mg/mL bovine serum albumin (BSA) in phosphate-buffered
saline (PBS) and diluted to 1 mM in a 1:1 mixture of PBS and differentiation medium. The
cells were exposed to 1 mM oleic acid for 1 h. No cytotoxic effects were observed under
these conditions.

2.2. RNA Isolation, cDNA Synthesis, and Quantitative Real-time PCR

Total RNA was extracted from C2C12 myotubes and cDNA was synthesized as de-
scribed previously [32]. The amplification of cDNA was performed on a LightCycler 96
Real-Time PCR system (Roche Molecular Diagnostics, Basel, Switzerland) using the KAPA
SYBR FAST qPCR Master Mix (Kapa Biosystems, Cape Town, South Africa), following
the guidelines provided by the manufacturer. The levels of Sirt1 mRNA expression were
normalized to those of Gapdh. The sequences of the gene-specific primers are shown in
Table 1.

Table 1. Sequences of the PCR primers used for real-time PCR in C2C12 cells.

Gene Forward Sequence (5′-3′) Reverse Sequence (5′-3′)

Gapdh TCCAGTATGACTCCACTC ATTTCTCGTGGTTCACAC
Sirt1 TCGTGGAGACATTTTTAATCAGG GCTTCATGATGGCAAGTGG
Ho-1 AGGCTAAGACCGCCTTCCT TGTGTTCCTCTGTCAGCATCA
Nqo-1 AGAGAGTGCTCGTAGCAGGAT GTGGTGATAGAAAGCAAGGTCTT
Pdk4 CACATGCTCTTCGAACTCTTCAAG TGATTGTAAGGTCTTCTTTTCCCAAG

Fat/cd36 GATGACGTGGCAAAGAACAG TCCTCGGGGTCCTGAGTTAT
Sirt3 GCCTGCAAGGTTCCTACTCC TCGAGGACTCAGAACGAACG
Idh3α AGGACTGATTGGAGGTCTTGG ATCACAGCACTAAGCAGGAGG
Tfam CACCCAGATGCAAAACTTTCAG CTGCTCTTTATACTTGCTCACAG
Nrf1 CCACGTTGGATGAGTACACG CTGAGCCTGGGTCATTTTGT
Tfb2 TTTTGGCAAGTGGCCTGTGA CCCCGTGCTTTTGACTTTTCTA
Esrrα AAGACAGCAGCCCCACTGAA ACACCCAGCCCAGCACCT

2.3. Western Blotting for Quantification of SIRT1 Protein

Western blotting and antibody detection were performed following the methods
reported by Kawakami et al. [47]. Briefly, C2C12 cells were lysed in RIPA buffer, and the
concentration of the extracted protein was measured. Proteins (20 µg) were separated
using 10% SDS-PAGE and then transferred to PVDF membranes. The membranes were
first blocked using 3% BSA (for SIRT1) or 5% skim milk (for GAPDH) in Tris-buffered
saline with 0.1% Tween-20 (TBS-T) for 1 h. Subsequently, they were incubated overnight
at 4◦C with rabbit anti-SIRT1 antibodies (Cat. No. 3931; 1:1000 in 3% BSA/TBS-T; Cell
Signaling Technology, Danvers, MA, USA) or rabbit anti-GAPDH antibodies (Cat. No. 2118;
1:5000 in 5% skim milk/TBS-T; Cell Signaling Technology). After washing with TBS-T, the
membranes were incubated with horseradish peroxidase-conjugated anti-rabbit IgG (Cat.
No. 7074S, Cell Signaling Technology) for SIRT1 (1:1000 in 5% skim milk) or for GAPDH
(1:5000 in 5% skim milk), for 1 h at 20–25 ◦C. Immunoreactive bands were detected using
an ECL Prime (GE Healthcare, Chalfont St. Giles, UK). Band intensities were quantified
using the ImageJ, with values normalized to that of GAPDH.

2.4. Quantification of Mitochondrial DNA

Total DNA was isolated from C2C12 myotubes using the QIAamp DNA Mini Kit
(QIAGEN), following the guidelines provided by the manufacturer. Mitochondrial DNA
(mtDNA) and nuclear DNA were quantified, as described in Section 2.2. The sequences of
primers used for mtDNA amplification are listed in Table 2.
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Table 2. Sequences of the PCR primers used for mitochondrial DNA quantification in C2C12 cells.

Gene Forward Sequence (5′-3′) Reverse Sequence (5′-3′)

Genome DNA (LPL) GGATGGACGGTAAGAGTGATTC ATCCAAGGGTAGCAGACAGGT
Mitochondrial Gene (NDH-I) CCCATTCGCGTTATTCTT AAGTTGATCGTAACGGAAGC

2.5. Detection of Fatty Acid Accumulation

C2C12 cells were cultured and differentiated in 96-well black plates, and the cells were
treated with 1 mM oleic acid for 1 h at 20–25 ◦C. The medium was then replaced with a
differentiation medium with or without PIC, and the cells were incubated for 48 h. For
cellular neutral lipid detection, the cells were washed twice with PBS and stained with
100 ng/mL Nile red in PBS. The cells were then washed twice with PBS and subjected to
fluorometric analysis using a microplate fluorescence reader at excitation and emission
wavelengths of 486 nm and 528 nm, respectively. For normalization, total protein was
extracted from each well, and Nile red fluorescence was normalized to the protein content.

2.6. Clinical Trial Design

A clinical trial was conducted in accordance with the ethical principles of the Declara-
tion of Helsinki (revised in 2013) and the Ethical Guidelines for Life Sciences and Medical
Research Involving Human Subjects (Ministry of Education, Culture, Sports, Science, and
Technology; Ministry of Health, Labor, and Welfare; and Ministry of Economy, Trade, and
Industry, Japan). The study was approved by the Institutional Review Board of Chiyoda
Paramedical Care Clinic (IRB No. 15000088; approval date: 18 August 2023). Participants
were fully informed of the purpose, details, and methods of the study and provided in-
formed consent prior to participating. Participants were recruited and managed by the
CPCC Company Ltd., and measurements were conducted at the Chiyoda Paramedical
Care Clinic. The study was carried out between September and November 2023. The study
protocol was registered in the UMIN-CTR (UMIN ID: UMIN000052082).

2.7. Participants

This study selected participants who met the following inclusion criteria but did not
meet the exclusion criteria.

Inclusion criteria: (1) males and females > 20 but <70 years old when informed consent
was given; (2) individuals with a BMI ≥ 20; and (3) individuals who have received enough
explanation, understood the purpose of the study, and can provide informed consent.

Exclusion criteria: (1) individuals who take foods with functional claims or foods
or supplements containing polyphenols more than three times a week, or will take them
for the test period; (2) individuals who are aware of severe symptoms such as irregular
menstruation, menstrual cramps, and symptoms related to menopausal disorders; (3) indi-
viduals who participated in other clinical studies in the past 4 weeks, or will participate
during the test period; (4) individuals who are heavy alcohol drinkers; (5) individuals
with a history of hepatopathy, kidney damage, heart disease, or gastrointestinal disease at
present or within the past 5 years; (6) individuals who are allergic to foods or medicines;
(7) females who are or are possibly pregnant, or are lactating; (8) individuals who donated a
total of more than 200 mL whole blood or blood components in the past 1 month; (9) males
who donated a total of more than 400 mL whole blood in the past 3 months; (10) females
who donated a total more than 400 mL whole blood in the past 4 months; (11) males who
have donated a total of more than 1200 mL blood in the past 12 months, including the
test period; (12) females who have donated a total of more than 800 mL blood in the past
8 months, including the test period; and (13) individuals judged inappropriate for this
study by the principal investigator.
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2.8. Test Food

The test food was a drink (200 mL; 33 kcal) containing PIC from passion fruit seed
extract. Similarly, the placebo food was a drink (200 mL; 29 kcal) with the same composition
as the test food, except that it did not contain passion fruit seed extract. The participants
consumed three packs of the test or placebo drink daily for two weeks; the amount of PIC
in the test food was 100 mg/d. The nutrient composition of the test and placebo food are
shown in Table 3.

Table 3. Nutrient composition of test food and placebo food (per daily intake).

Test Food Placebo Food

Protein (g) 0 0
Fat (g) 0 0

Carbohydrate (g) 39 36
NaCl (g) 1.2 1.1

Piceatannol (mg) 100 0

2.9. Experimental Protocol

This was a randomized, double-blind, placebo-controlled, parallel-group comparison
trial. This study was designed to investigate the effects of test foods through subgroup
analyses by age, BMI, and sex. Therefore, the target sample size was set at 300, divided
into five blocks by age (20 s–60 s) and three blocks by BMI (20.0 to 24.9, 25.0 to 29.9, and
≥30 or over). Ten males and ten females were included in each block.

At the first clinic visit, the participants were informed about the study, their height
and weight were measured, and their BMI was calculated. After a medical interview,
participants who met the criteria and were judged by the principal investigator to be
eligible to participate in the study were selected. Based on sex, age, and BMI, participants
were divided into two groups using the stratified randomization method. Subsequently, an
independent controller assigned each group to either the test or placebo food. The assigned
test food information was kept confidential until analysis was completed. During the study,
the participants were instructed to not make any major lifestyle changes, such as excessive
exercise or overeating. Any changes in the physical condition of participants or missing a
dose of the test or placebo food were recorded. One and two weeks after consuming the
test or placebo food, the participants visited the clinic without eating breakfast, and blood
samples were collected.

2.10. Measurement of SIRT1 mRNA Levels from Blood Samples

For ethical reasons, this study examined SIRT1 expression in whole blood samples.
Whole blood from each participant was collected in PAXgene Blood RNA Tubes (BD
Biosciences, Franklin Lakes, NJ, USA) and preserved at −20 ◦C until further analysis. Total
RNA was isolated using the PAXgene Blood RNA Kit (QIAGEN), following the guidelines
provided by the manufacturer. cDNA synthesis was performed as described in Section 2.2.
Subsequent real-time PCR was carried out using FastStart Essential DNA Probe Master
Mix (NIPPON Genetics Co., Ltd., Tokyo, Japan) according to the manufacturer’s protocol.
The levels of SIRT1 mRNA expression were normalized to that of GAPDH. The sequences
of the gene-specific primers are listed in Table 4.

Table 4. Sequences of the PCR primers and probes used for real-time PCR in the clinical trial.

Gene Forward Sequence (5′-3′) Reverse Sequence (5′-3′) Probe (5′-3′)

GAPDH CCATCTTCCAGGAGCGAGAT GGGCAGAGATGATGACCCTT AGTCCACTGGCGTCTTCACCACCAT
SIRT1 ACTGGAGCTGGGGTGTCTG CATCGCTTGAGGATCTGGAAGA CTACAGCAAGGCGAGCATAAATACCATCCC
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2.11. Statistical analysis

Data from in vitro assays are expressed as the mean ± standard deviation (SD). For
comparing three or more groups, data were analyzed using Tukey’s multiple comparison
test or Dunnett’s multiple comparison test. Student’s t-test was used to compare the
differences between two groups. For the clinical data, participant background data are
presented as the mean ± SD, whereas other data are presented as the mean ± standard error
of the mean (SE). Differences between groups were analyzed using analysis of covariance
(ANCOVA), with the value at baseline (0 week) as a covariate. Statistical analyses were
performed using SPSS software version 26 (IBM Corp., Armonk, NY, USA). Statistical
significance was set at p < 0.05.

3. Results
3.1. PIC Upregulated the mRNA and Protein Expression of Sirt1

To examine the effect of PIC on Sirt1 mRNA expression in skeletal muscle cells, C2C12
myotubes were subjected to quantitative real-time PCR. After 6 h of PIC treatment, a PIC
concentration-dependent upregulation of Sirt1 expression was observed (Figure 1A). The
stimulation of PFSE, containing 20 µM PIC, also significantly upregulated SIRT1 mRNA
expression, and the effect was similar to that after stimulation with 20 µM PIC. The effect
of PIC on Sirt1 expression was compared with that of RES. After 6 h of stimulation, PIC
significantly induced Sirt1 mRNA expression, whereas RES did not significantly affect Sirt1
mRNA levels. Moreover, Sirt1 expression following PIC stimulation was 1.5-fold higher
than that following RES stimulation, indicating a significant increasing trend (p = 0.07;
Figure 1B). The effects of PIC and RES on SIRT1 protein expression were also examined.
Both PIC and RES stimulation for 24 h increased SIRT1 protein levels (Figure 1C). Moreover,
PIC significantly increased the expression of Sirt1 by approximately 1.2-fold compared
with that induced by RES (p = 0.01; Figure 1C).
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Figure 1. Effect of piceatannol (PIC) on SIRT1 expression in C2C12 myotubes. (A) Cells were exposed to
0.1% DMSO (CON; white bar) or PIC at concentrations of 10, 20, and 50 µM (black bar) for 6 h (n = 6),
and Sirt1 mRNA expression was measured and normalized to that of Gapdh. *** p < 0.001 vs. CON
(Dunnett’s test). (B) Cells were exposed to 0.1% DMSO (CON; white bar) or passion fruit seed extract
(PFSE, containing 20 µM PIC; black bar) for 6 h (n = 8), and Sirt1 mRNA expression was measured and
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normalized to that of Gapdh. *** p < 0.001 vs. CON (Student’s t-test). (C) Cells were exposed to
0.1% DMSO (CON; white bar), 50 µM PIC (black bar), or 50 µM RES (gray bar) for 6 h (n = 4), and
Sirt1 mRNA expression was measured and normalized to that of Gapdh. Significant differences were
identified using Tukey’s HSD test. Different letters indicate significance (p < 0.05). (D) Following
a 24 h treatment with 0.1% DMSO (CON; white bar), 50 µM PIC (black bar), or 50 µM RES (gray
bar), the relative SIRT1 protein level was normalized to that of GAPDH (n = 6). The right panel of
(D) depicts a typical blot image showing treatments with the control, 50 µM PIC, and 50 µM RES.
Tukey’s HSD test was utilized to ascertain significant differences between treatments, with different
letters indicating significance (p < 0.05).

3.2. PIC Enhanced Mitochondrial Biogenesis and Boosted Antioxidant Marker Expression

SIRT1 enhances the expression of genes involved in mitochondrial biogenesis [44].
Based on the observed increase in SIRT1 levels in response to PIC, we further investigated
whether PIC enhanced the expression of mitochondria-related genes in C2C12 myotubes.
After 24 h of treatment, PIC upregulated the expression of various mitochondrial genes,
including regulatory genes such as Sirt3, Esrra, Nrf1, Tfam, and Tfb2, as well as the TCA
cycle gene Idh3a (Figure 2A). PIC upregulated the expression of genes associated with
mitochondria; therefore, mitochondrial content was measured as the mtDNA copy number
to verify whether PIC affected mitochondrial mass. As shown in Figure 2B, a significant
increase in mtDNA levels was observed after treatment with PIC for 48 h.
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Figure 2. Effect of piceatannol (PIC) on mitochondria-related gene expression and mtDNA copy
number in C2C12 myotubes. (A) Cells were exposed to 0.1% DMSO (CON; white bar) or 50 µM PIC
(black bar) for 24 h (n = 5–6). Mitochondrial gene mRNA levels were quantified and normalized to
those of Gapdh. (B) Cells were exposed to 0.1% DMSO (CON; white bar) or 20 µM PIC (black bar) for
48 h (n = 7). The mitochondrial-to-nuclear DNA ratio (mtDNA/nDNA) was determined via qPCR
after total DNA extraction. * p < 0.05, ** p < 0.01, *** p < 0.001 vs. CON (Student’s t-test).

Given the key role of the mitochondria in energy production and the associated
increase in ROS levels, evaluating the mechanism by which PIC affects cellular antioxidant
defense systems is crucial. In the current study, we reconfirmed the effects of PIC treatment
on the levels of mRNA expression of the antioxidant enzyme HO-1 and further examined its
effect on the antioxidant enzyme NAD(P)H quinone dehydrogenase-1 (NQO-1) to provide
a more comprehensive understanding of its effect on cellular antioxidant defense systems.
After 6 h of stimulation, PIC significantly induced Ho-1 and Nqo-1 mRNA expression,
whereas RES did not significantly affect the mRNA expression of these genes. The mRNA
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expression of Ho-1 and Nqo-1 in cells exposed to PIC was approximately 14- and 6-fold
higher than that in RES-stimulated cells, respectively (Figure 3).
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Figure 3. Effect of PIC on Ho-1 and Nqo-1 mRNA expression in C2C12 myotubes. Cells were exposed
to 0.1% DMSO (CON; white bar), 50 µM PIC (black bar), or 50 µM RES (gray bar) for 6 h (n = 4),
and Ho-1 and Nqo-1 mRNA levels were quantified and normalized to those of Gapdh. Significant
differences were identified using Tukey’s HSD test, with different letters indicating significance
(p < 0.05).

3.3. PIC Upregulated the Expression of Genes Involved in Fatty Acid Utilization and Suppressed
Fatty Acid Accumulation

Similar to mitochondria-related genes, SIRT1 also increases the expression of genes
involved in fatty acid utilization [48]. Hence, we next investigated whether PIC upregulates
these genes. At 24 h posttreatment, an increase in the expression of genes involved in fatty
acid utilization, such as Pdk4 and Fat/cd36, was observed (Figure 4A). The effect of PIC
treatment on fatty acid accumulation was investigated using oleic acid, and the results
revealed that a 48 h stimulation with PIC significantly suppressed oleic acid-induced fat
accumulation (Figure 4B).
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Figure 4. Effect of piceatannol (PIC) on the mRNA level of fatty acid utilization genes and fatty acid
accumulation in C2C12 myotubes. (A) Cells were exposed to 0.1% DMSO (white bar) or 50 µM PIC
(black bar) for 24 h (n = 5–6). Gene expression related to fatty acid utilization was quantified and
normalized to that of Gapdh. * p < 0.05. (B) Cells were treated with 1 mM oleic acid (OA) or left
untreated for 1 h. Subsequently, cells were incubated with or without 50 µM PIC for 48 h. Cells in the
control group (CON) were treated with 0.1% DMSO, without OA treatment. Cells in the OA group
were treated with 1 mM OA, whereas those in the OA+PIC group were treated with both 1 mM
OA and 50 µM PIC. Intracellular lipid droplets were quantified using Nile red staining. Significant
differences were identified using Tukey’s HSD test, with different letters indicating significance
(p < 0.05).
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3.4. PIC Upregulated SIRT1 Expression in Human Whole Blood

A clinical study was conducted to verify whether PIC treatment induced SIRT1 ex-
pression in humans. A flow diagram of this study is presented in Figure 5. A total of
302 participants were selected for the study and allocated to the test (PIC group) or placebo
(placebo group) food group. Seven participants dropped out during the study period due
to the following reasons: did not visit the clinic (PIC group, n = 2); had COVID-19 infection
(PIC group, n = 3); had high blood pressure (placebo group, n = 1); or had urticarial symp-
toms (PIC group, n = 1); hence, 295 participants completed the study. After a careful review
of their records, 14 participants were excluded from the analysis for the following reasons:
low intake of test food (<85% in the test period; PIC group, n = 1); failure to maintain fasting
on the morning of the first measurement day (placebo group, n = 1; PIC group, n = 3); or
intake of drugs for the treatment of disease, or treatment of adverse events during the study
period (placebo group, n = 4; PIC group, n = 5). Therefore, 281 participants were included in
the efficacy evaluation. Their characteristics are shown in Table 5. No significant differences
were observed in age, height, body weight, or BMI between the groups.
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Table 5. Baseline characteristics of the study participants.

PIC Group (n = 138) Placebo Group (n = 143) p-Value

Age (years) 44.9 ± 13.8 44.8 ± 13.1 0.981
Sex 69 male/69 female 72 male/71 female

Height (cm) 164.6 ± 8.6 163.8 ± 8.6 0.441
Body weight (kg) 74.9 ± 16.6 72.9 ± 15.0 0.295

Body mass index (kg/m2) 27.5 ± 5.1 27.1 ± 4.7 0.436

The results of SIRT1 mRNA expression are shown in Table 6. After one week of intake,
SIRT1 expression was significantly higher in the PIC group than in the placebo group.

Table 6. SIRT1 mRNA expression in the whole blood of participants in this study.

0 Week 1 Week p-Value 2 Week p-Value
AVE SE AVE SE AVE SE

Placebo n = 143 0.989 0.019 0.977 0.019
0.027

0.950 0.018
0.299PIC n = 138 0.962 0.018 0.997 0.020 0.951 0.018
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Subgroup analyses were performed to investigate the differences in SIRT1 expression
based on age, BMI, and sex. Subgroup analysis by age showed that SIRT1 expression
was significantly higher in the PIC group than in the placebo group for participants at
60–69 years of age (Table S1). BMI subgroup analysis showed that SIRT1 expression was
significantly higher in the PIC group in participants with a BMI of 30 or above after 1 week
of intake (Table S2). When stratified by sex, SIRT1 expression was significantly higher in
the PIC group at 1 week in females only (Table S3). Further analysis according to BMI
showed that SIRT1 expression was significantly higher in the PIC group in males with
a BMI of 30 or higher and in females with a BMI of 20–25 after 1 week of intake (Table
S3). In addition, after stratification based on the presence or absence of menopause, SIRT1
expression was significantly higher in the PIC group in postmenopausal females (Table S4).

During the study, 24 adverse events occurred in 23 participants, whereas no serious
adverse events were observed. These adverse events included back pain, arthralgia, gastric
distress, stomatitis, acute cystitis, fever, viral gastritis, abdominal pain, diarrhea, headache,
COVID-19, hives, itching, chills, acne vulgaris, dizziness, and high blood pressure. Cases
of urticarial symptoms (placebo group, n = 1; PIC group, n = 1) were considered by the
investigator to be causally related to the intake of the test food but were transient, and
symptoms resolved quickly during the study period. The other 22 adverse events were
determined to be unrelated to the intake of the test food.

4. Discussion

In this study, PIC as well as PFSE increased Sirt1 mRNA and protein levels in C2C12
myotubes. Previous studies on the SIRT1-inducing effects of PIC reported various findings.
These included a concentration-dependent increase in SIRT1 levels in THP-1 cells following
PIC stimulation [47], an increase in hepatic Sirt1 expression in mice fed a high-fat diet
after receiving PIC for 4 weeks [49], and the restoration of diminished Sirt1 expression in a
cerebral ischemia–reperfusion injury mouse model after the oral intake of PIC [50]. Taken
together, these findings suggest that PIC is a potent compound that can improve health by
increasing SIRT1 expression in various tissues.

This study demonstrated that PIC enhances the expression of genes related to mito-
chondrial biogenesis, such as Sirt3, Tfam, Nrf1, Tfb2, and Esrra, increasing mtDNA content
in C2C12 cells. The activation of SIRT1 leads to the deacetylation of PGC-1α [13], which
interacts with various transcription factors to induce mitochondrial biogenesis [48,51,52].
In the present study, we also found that PIC enhanced the expression of genes involved
in fatty acid utilization, such as Pdk4 and Fat/cd36, which leads to a reduction in the ac-
cumulation of neutral fats induced by oleic acid. The deacetylation of PGC-1α enhances
the expression of fatty acid utilization genes, including Pdk4 and Fat/cd36 [48]. SIRT1
also regulates the nuclear receptor peroxisome proliferator-activated receptor-α (PPARα),
thereby modulating lipid homeostasis [53]. Our previous studies reported that PIC intake
in humans enhances energy expenditure from fat, both at rest and during moderate physi-
cal activity [38,39]. Considering these studies and our present findings, we propose that
the consumption of PIC not only activates SIRT1, which in turn regulates PGC-1α and
PPARα, but also simultaneously promotes mitochondrial biogenesis and enhances fatty
acid utilization at the cellular level. Together, these processes may contribute to an increase
in mitochondrial density and fat consumption, collectively leading to an increase in fat
consumption throughout the body.

The effect of PIC on SIRT1 induction was compared with that of RES, and PIC en-
hanced SIRT1 level to an extent equivalent to or greater than that achieved with RES. In
addition, our current study reconfirmed that PIC significantly increased not only Ho-1
expression [32], a process that is NRF2-dependent [54], but also Nqo-1 expression com-
pared with RES. A recent study reported that NQO-1 physically interacts with SIRT1 and
modulates its activity [55]. NQO-1 produces NAD+, which is essential for SIRT1 activity.
These findings suggested that an upregulation in NQO-1 expression can enhance the activ-
ity of SIRT1. Our previous study found that intact PIC has a higher bioavailability than
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RES [56] and that both isorhapontigenin and methylated metabolites of PIC upregulate
SIRT1 expression [47]. Thus, PIC may be a more potent polyphenol than RES for activating
SIRT1. Some polyphenols, such as cocoa polyphenol extract or quercetin, were reported
to induce SIRT1 expression [57,58]. Further studies on the differences in SIRT1 induction
effects between PIC and other polyphenols will clarify the characteristics of PIC effects.

SIRT1 is effective against various metabolic diseases. For instance, mice overexpress-
ing Sirt1 and fed a high-fat diet exhibited less lipid-induced inflammation and improved
glucose tolerance compared with those in their nontransgenic counterparts [59]. Moreover,
clinical trials with obese participants demonstrated that calorie restriction increased SIRT1
expression in peripheral blood mononuclear cells and significantly reduced body weight,
BMI, as well as the levels of free fatty acids, fasting insulin, and inflammatory markers [60].
Although further human clinical trials are needed to verify our findings, PIC, as a SIRT1
activator, can potentially promote mitochondrial biogenesis and enhance fatty acid con-
sumption through SIRT1 induction. Further investigation of the involvement of SIRT1 in
the promotion of mitochondrial biosynthesis and fat metabolism by PIC will further clarify
the mechanism of action of PIC.

This study showed that compared with the placebo, PIC consumption significantly
increased SIRT1 expression in participants with no apparent disease, other than a high
BMI. No significant increase in SIRT1 level was observed after 2 weeks of PIC intake, and
although the reason for this has not been clarified, further investigation of the PIC dosage
and its treatment duration will improve our understanding of the SIRT1 induction effect of
PIC. We previously found that the intake of PIC from passion fruit seed for 1 or 2 weeks
increases fat burning in healthy individuals [38,39]. Considering that SIRT1 promotes fat
burning, the duration of SIRT1 induction observed in this study is considered reasonable.
A clinical trial reported that the ingestion of 500 mg RES for 4 weeks resulted in an increase
in blood SIRT1 expression as a metabolic regulatory marker in patients with type 2 diabetes
mellitus and coronary heart disease [45]. In this study, PIC ingestion at a dose lower than
that of RES resulted in the induction of SIRT1 expression. In animal studies, the blood
concentration of the unchanged form of PIC was reported to be higher than that of RES
when co-administrated [56]. In addition, metabolites of PIC have also been shown to have
a SIRT-inducing effect [47], suggesting that PIC is a more effective ingredient than RES
in inducing SIRT1 expression. PIC can be detected in blood after a single intake of food
containing 100 mg PIC [61], suggesting that SIRT1 expression is induced by the action of
PIC and its metabolites on cells in blood such as peripheral blood mononuclear cells.

In addition, the subgroup analysis of blood SIRT1 expression by age and BMI showed
a significant effect of PIC in the older age and higher BMI subgroups. Obese subjects have
been reported to have lower Sirt1 mRNA expression in the subcutaneous adipose tissue
than normal-weight and overweight participants [62], and Sirt1 expression in the brain,
liver, skeletal muscle, and WAT was shown to decrease in aging mice [63]. Our findings
suggested that PIC may rescue the decline in SIRT1 expression in subjects with high BMI or
advanced age. Moreover, the results of the clinical trial showed differences in the effects
of PIC on SIRT1 induction between males and females. In particular, differences were
observed in the effects of PIC depending on menopausal status, suggesting a possible
influence of sex hormones on the biological effects of PIC. Of note, Sirt1 expression was
found to be decreased in the aorta of ovariectomized mice [64], while estradiol, a female
sex hormone, was reported to affect SIRT1 expression [65]. Moreover, PIC acts as a phy-
toestrogen, phosphorylating hormone-sensitive lipase by activating the G protein-coupled
estrogen receptor and reducing fat accumulation [66]. These findings suggested that the
phytoestrogenic action of PIC may affect SIRT1 expression in postmenopausal females.

This clinical study had some limitations. First, as SIRT1 expression has been reported
to vary depending on the meal consumed before measurement [67], participants were
required to fast on the morning of the measurement day. However, participants had no
dietary restriction on the day before the measurement day. Hence, a more severe dietary
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control may clearly demonstrate the effect of the intervention. Second, the dosage and
duration of intervention need to be further examined.

In this study, we focused on SIRT1, but other sirtuins also affect the aging process and
metabolic function, such as SIRT6 [68] and SIRT7 [69]. Little is known about the effects of
PIC on such other sirtuins, and further investigation will improve our understanding of
the action of PIC.

5. Conclusions

We demonstrated that PIC increases SIRT1 levels and upregulates the expression of
mitochondrial biogenesis and fatty acid utilization genes in skeletal muscle cells. This leads
to an increased amount of mitochondrial DNA and reduced fatty acid accumulation. In the
clinical trial, SIRT1 expression in the whole blood was significantly higher in the PIC than
in the placebo group. These findings indicate that PIC enhances SIRT1 expression, leading
to increased mitochondrial activity and fat consumption, and may contribute to preventing
various age-related diseases.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/life14050589/s1, Table S1: Subgroup analysis of SIRT1 expression
by age; Table S2: Subgroup analysis of SIRT1 expression according to body mass index (BMI); Table
S3: Subgroup analysis of SIRT1 expression by sex and body mass index (BMI); Table S4: Subgroup
analysis of SIRT1 expression by menopausal status in female participants.
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