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Abstract: Introduction: Hepatic venous flow patterns reflect pressure changes in the right ventricle
and are also markers of systemic venous congestion. Fluid management is crucial in patients
undergoing cardiac surgery. Methods: Our goal was to determine which factors are associated with
the increased congestion of the liver as measured by Doppler ultrasound in patients undergoing
cardiac surgery. This prospective, observational study included 41 patients without preexisting
liver disease who underwent cardiac surgery between 1 January 2021 and 30 September 2021 at
a tertiary heart center. In addition to routine echocardiographic examination, we recorded the
maximal velocity and velocity time integral (VTI) of the standard four waves seen in the common
hepatic vein (flow profile) using Doppler ultrasound preoperatively and at the 20–24th hour of
the postoperative period. The ratios of the retrograde and anterograde hepatic venous waves
were calculated, and the waveforms were compared to the baseline value and expressed as a delta
ratio. Demographic data, pre- and postoperative echocardiographic parameters, intraoperative
variables (procedure, cardiopulmonary bypass time), postoperative factors (fluid balance, vasoactive
medication requirement, ventilation time and parameters) and perioperative laboratory parameters
(liver and kidney function tests, albumin) were used in the analysis. Results: Of the 41 patients,
20 (48.7%) were males, and the median age of the patients was 65.9 years (IQR: 59.8–69.9 years).
Retrograde VTI growth showed a correlation with positive fluid balance (0.89 (95% CI 0.785–0.995)
c-index. After comparing the postoperative echocardiographic parameters of the two subgroups,
right ventricular and atrial diameters were significantly greater in the “retrograde VTI growth”
group. The ejection fraction and decrement in ejection fraction to preoperative parameters were
significantly different between the two groups. (p = 0.001 and 0.003). Ventilation times were longer in
the retrograde VTI group. The postoperative vs. baseline delta VTI ratio of the hepatic vein correlated
with positive fluid balance, maximum central venous pressure, and ejection fraction. (B = −0.099, 95%
CI = −0.022–0.002, p = 0.022, B = 0.011, 95% CI = 0.001–0.021, p = 0.022, B = 0.091, 95% CI = 0.052–0.213,
p = 0.002, respectively.) Conclusion: The increase of the retrograde hepatic flow during the first 24 h
following cardiac surgery was associated with positive fluid balance and the decrease of the right
ventricular function. Measurement of venous congestion or venous abdominal insufficiency seems to
be a useful tool in guiding fluid therapy and hemodynamic management.
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1. Introduction

Objective assessment of hemodynamic conditions is fundamental to guide the clinical
management of the cardiac surgery patient during the postoperative period [1–3]. Meticu-
lous fluid management is crucial in patients undergoing cardiac surgery, particularly in
those with heart failure; prolonged operative and aortic cross-clamp time; or preexisting
kidney, lung, or liver dysfunction [4,5]. Recent studies suggested that abdominal congestion
can lead to or worsen renal and hepatic dysfunction and thus increase the risk of post-
operative complications and lead to higher resource utilization [6,7]. Postoperative fluid
overload is associated with prolonged mechanical ventilation, higher vasoactive, inotropic
support, and mortality [6–8]. The changes in the venous flow patterns of different organs
due to congestion can be measured and quantified by several ultrasound techniques [9–11].

Many physicians performing point of care ultrasound assessment (POCUS) usually
use inferior vena cava (IVC) measurements to predict fluid status. However, there are
more venous structures that clinicians could evaluate. Using solely IVC measurements can
lead to inaccurate results because they do not accurately represent the patient’s preload
conditions of the left ventricle. The IVC can also be dilated in conditions such as tricuspid
or mitral insufficiency, pulmonary hypertension, or in athletes. Many recent protocols, such
as the venous excess ultrasound examination (VExUS) use several hepatic, portal, and renal
structures for Doppler ultrasound analysis [12,13]. The renal venous Doppler pattern is
seen as a continuous monophasic flow. As venous congestion increases, there is a decrease
of the systolic component of the wave with progression to a biphasic pattern and later a
complete absence of systolic flow can be seen [14]. The portal venous flow is normally
monophasic with little to no variation. As venous congestion increases, increasing amounts
of pulsatility can be detected in the flow pattern. The hepatic venous flow is composed of
a systolic (S), a diastolic (D) and two retrograde waves (A and V). As venous congestion
increases, a decrement of the S wave (smaller than D) and an increment of the retrograde
waves (A and V) can be seen [15,16].

However, the influence of postoperative interventions, such as fluid therapy and the
use of vasoactive drugs, or the probably significant effect of positive pressure ventilation,
has not been analyzed in relation to venous return.

The aim of our study was to investigate the postoperative factors that might be
associated with increased hepatic venous congestion during the postoperative period
in patients undergoing cardiac surgery. The investigation focused on the changes and
relationships among hepatic waveforms and echocardiographic parameters, ventilator
settings, fluid and vasoactive medications, and laboratory parameters of renal and liver
functions during the first 24 h. Our goal in our prospective observational study was
to determine which factors are associated with the increased congestion of the liver as
measured by Doppler ultrasound in patients undergoing cardiac surgery.

2. Methods
2.1. Study Design

The study results are reported according to the STROBE statement. The filled form
can be found in Supplementary Materials File S1. Our study received approval from the
Institutional Review Board of Semmelweis University (IRB 141/2018), and it was registered
on ClinicalTrials.gov (NCT02893657). Each patient who agreed to participate signed an
informed consent form before the first investigation. In this prospective, observational
study, 41 patients undergoing cardiac surgery between January 2021 and March 2021 were
enrolled. Exclusion criteria were preoperative chronic kidney disease (defined as GFR
under 30 mL/min/1.73 m2), hepatic cirrhosis, and portal vein thrombosis. (Figure 1)
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Figure 1. Flowchart by STROBE statement (identification–inclusion–analysis). Detailed information
in Supplementary Materials File S1.

2.2. Definitions and Measurements (Variables and Data Sources and Grouping)

Demographic data, perioperative echocardiographic parameters, and intraoperative
variables (procedure type, cardiopulmonary bypass time) were collected. Postoperative fac-
tors (fluid balance, vasoactive requirement, ventilation time and parameters—respiratory
rate, tidal volume, positive end-expiratory pressure, fraction of inhaled oxygen, and peri-
operative laboratory parameters (liver, kidney function, albumin) were also used in the
analysis. Laboratory results were collected during the preoperative period and on the first,
second, and third postoperative days. In addition, information on the predictors of the
European System for Cardiac Operative Risk Evaluation II score (EuroSCORE II) was used
and [17] the Vasoactive Inotrope score (VIS) was calculated [18]. EuroSCORE II is a widely
used risk stratification system for the cardiac surgical population using patient (clinical
preoperative state, mobility), operation (urgency, operation at thoracic aorta), and cardiac
risk factors (LV function, recent myocardial infarction, pulmonary hypertension). VIS is
calculated using vasopressor (norepinephrine, epinephrine, vasopressin) and inotropic
(dobutamine, dopamine, levosimendan, milrinone) medication doses.

2.3. Ultrasound Analysis

The ultrasound examinations were performed by board-certified cardiologists (AK, BL)
and were recorded on the same machine and analyzed by the same person after completion
of the study (CE). Standard 2D parameters recorded were ejection fraction, tricuspid
annular plane systolic excursion, atrial and ventricular diameters, and the occurrence of
any valvular pathology. The physicians managing the patients during the postoperative
period were blinded to the results of the study-specific measurements.

Blood flow was measured in the common hepatic vein right before draining into
the inferior vena cava using pulse-waved Doppler ultrasound. The normal hepatic vein
waveform has four components: a retrograde A, an anterograde S, a transitional V (which
may be anterograde, retrograde, or neutral), and an anterograde D wave [15,19]. (Figure 2)
We recorded the maximal velocities and velocity-time integrals (VTI) of the standard four
waves (A, S, V, D) [19,20] (Figures 3 and 4). The baseline ratios of the retrograde and
anterograde waves were calculated preoperatively and their change in the postoperative
measurement (20–24 h after surgery), is expressed as a delta ratio. The ratios of retrograde
to anterograde VTIs were also calculated.
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Figure 3. Hepatic venous flow pattern (The left image was done before operation, the right image in
the postoperative 24th hour. On the postoperative image, A and V waves appear increased, while the
S wave is smaller than the D wave. (A VTI: 6.47 to 8.29, S VTI: 12.31 to 8.12, V VTI: 5.98 to 7.98 and D
VTI: 11.12 to 9.39).
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Figure 4. Hepatic venous flow pattern (The left image was done before operation, the right image in
the postoperative 24th hour. On the postoperative image, A and V waves appear increased, while the
S wave is smaller than the D wave. (A VTI: 6.47 to 8.29, S VTI: 12.31 to 8.12, V VTI: 5.98 to 7.98 and D
VTI: 11.12 to 9.39).

2.4. Outcome Variables

We investigated the correlations between echocardiographic parameters and the
changes in hepatic venous flow parameters. Changes of serum creatinine, bilirubin, and
transaminase levels from their baseline values were also correlated with changes of the
VTI ratios. Fluid overload and the amount of vasoactive support were analyzed both as
continuous parameters and comparison between groups who had growth in the VTI ratio
compared to those without growth.

2.5. Statistical Analysis

Normality was assessed using the Kolmogorov–Smirnov test. Normally distributed
values were described as means and standard deviations (SD) and skewed distributions
as medians and interquartile ranges (interquartile range 25–75) and were compared using
the Mann–Whitney U test. Continuous variables were first expanded with restricted cubic
splines and were only used in linear form if the deviation from linearity was not significant, as
indicated by the global F test (p > 0.05). Multivariable models were tested for multicollinearity.
To test the diagnostic ability of the binary (hepatic venous congestion and non-VTI growth)
classifier system, receiver operating characteristic curves were generated. Statistical tests
were two-sided, and p < 0.05 was considered statistically significant. Statistical analyses were
performed with SPSS software, Version 27.0 (IBM, Armonk, NY, USA).

3. Results

Of the 41 patients, 20 (48.7%) were male. The median age of the patients was 65.9 years
(IQR: 59.8–69.9 years). The baseline demographic and clinical characteristics of the study
population are shown in Table 1. The average increase in the retrograde/anterograde wave
VTI ratio was 0.04 (from 15.5/20.8 = 0.77 to 19.7/24.4 = 0.81), which means that the pro-
portion of retrograde VTIs increased by 4% on average in the first 24 postoperative hours.
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After examining the waves, we found that the majority of the population had an increased
retrograde VTI growth (24/41 = 59%), as indicated by an increase in the VTIs of the retro-
grade waves compared to the baseline values. After analyzing the retrograde/anterograde
VTI ratios, the preoperative value showed a significant correlation with the postoperative
VTI ratio (Figure 5). R square was 0.147 F 6.21 p = 0.017. In the retrograde VTI growth
group, delta D decreased, and there was a tendency toward an increase in delta A and delta
V waves (Figures 6–8).

Table 1. Demographic and clinical parameters (operation time and risk factors).

Parameters All Patients (n = 41) No Retrograde VTI
Growth (n = 17)

Retrograde VTI
Growth (n = 24) p

Age (years) 65.9 (10.8) 63.7 (11.3) 67.1 (10.4) 0.272

Weight (kg) 72.0 (10.2) 73.4 (11.1) 71.1 (10.3) 0.845

Diabetes 19 (46.3%) 9 (53%) 10 (41.6%) 0.53

Sex female 21 (51.2%) 9 (53%) 12 (50%) 0.466

EUROSCORE II 4.7 (1.3) 4.9 (0.9) 4.5 (1.0) 0.197

NYHA III/IV 24 (58.5%) 10 (58.8%) 14 (58.3%) 0.456

Operation time (min) 182.4 (39.1) 178.1 (41.1) 188. 8 (39.1) 0.88

Aorta cross-clamp
time (min) 47.8 (7.1) 40.8 (9.1) 48.1 (7.6) 0.73

Operation type

MVR 9 (22%) 3 (17.6%) 6 (25%) 0.234

AVR 14 (34.1%) 6 (35.2%) 8 (33.3%) 0.199

CABG 15 (36.6%) 7 (41.1%) 8 (33.3%) 0.342

Combined 3 (7.3%) 1 (5.9%) 2 (8.4%) 0.544
NYHA: New York Heart Association; MVR: mitral valve repair; AVR: aortic valve repair; CABG: coronary artery
bypass graft; EUROSCORE II: European System for Cardiac Operative Risk Evaluation II.
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Figure 7. Waveform changes in the no retrograde VTI growth group. The triangles represent the
preoperative waves, the columns the postoperative waves. The anterograde S and D waves increased,
while the retrograde waves remained the same.
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After comparing the echocardiographic parameters between the two subgroups, the
postoperative right ventricular and atrial diameters were significantly greater in the “ret-
rograde VTI growth” group (Table 2). The ejection fractions and the decreases in ejection
fractions were significantly different between the two groups. (p = 0.001 and 0.009).

Table 2. Preoperative and postoperative echocardiographic parameters (mean or median (IQR or SD)).

Echo
parameter

Non-VTI
Growth (n = 17)

VTI Growth
(n = 24) p Non-VTI

Growth (n = 17)
VTI Growth

(n = 24) p

Preoperative Postoperative

EF 53.7 (10.5) 51.5 (12.4) 0.277 59.4 (11.2) 48.5 (10.7) 0.001

TAPSE (mm) 24.6 (5.1) 22.6 (5.9) 0.127 14.3 (4.2) 15.2 (5.4) 0.251

LVEDD (mm) 51.1 (9.2) 53.1 (10.4) 0.255 44.6 (4.1) 47.4 (6.8) 0.08

LVESD (mm) 39.9 (14.1) 38 (10.1) 0.431 28.4 (9.1) 33.3 (8.7) 0.022

RV (mm) 32.7 (4.4) 32.9 (3.9) 0.457 32.5 (5.1) 35.1 (4.9) 0.01

LA1 (mm) 44 (8.5) 46.6 (8.0) 0.168 43.1 (8.7) 45.2 (8.8) 0.06

LA2 (mm) 49 (10.2) 52.1 (10.1) 0.166 54.1 (8.7) 53.9 (9.1) 0.09

RA1 (mm) 42.7 (6.3) 42.4 (7.1) 0.451 39.5 (6.7) 43.9 (5.9) 0.01

RA2 (mm) 49.3 (9.1) 47.3 (7.9) 0.254 53.5 (6.9) 55.1 (7.1) 0.144

RASA (mm2) 2131.1 (644.1) 1916.2 (577.6) 0.134 2314.2 (498.2) 2278.5 (514.3) 0.646

Delta EF 2.8 (19.4) −12.1 (3.2) 0.009
EF: ejection fraction; TAPSE: tricuspid anular plane systolic excursion; LA: left atrium; LVEDD: left ventricle
end-diastolic diameter; LVESD: left ventricle end-systolic diameter; RA: right atrium; RV: right ventricle; RASA:
right atrium systolic area.

We analyzed the vasoactive and inotropic scores, respiratory parameters, central
venous pressures (CVP), and fluid balance.

Ten patients needed inotropic support on the first postoperative day. Among the standard
laboratory parameters, postoperative GFR values were lower, and blood urea nitrogen and bilirubin
levels were higher in the “VTI ratio increased” subgroup. (Supplementary Materials File S3).



Diagnostics 2022, 12, 3175 9 of 12

After analyzing the respiratory parameters and ventilation times, we found that the
VTI growth subgroup had longer ventilation duration (the median value was over 24 h)
and needed higher positive end-expiratory pressures (p = 0.003) (Table 3).

Table 3. Respiratory parameters.

Respirator Parameter Non-VTI Growth (n = 17)) VTI Growth (n = 24) p

Mechanical ventilation
over than 24 h 7 (41.1%) 13 (54.1%) 0.091

Resp. time (hours) 20.9 (2.1) 25 (3.2) 0.081

Tidal volume (mL) 470.5 (43.5) 490.5 (44.0) 0.079

RR (/min) 13.4 (2.0) 12.9 (1.9) 0.122

PEEP (cmH2O) 6.5 (1.3) 7.7 (1.9) 0.003

FIo2 (%) 38.5 (4.5) 39 (4.8) 0.051
Resp: respiratory; RR: respiratory rate; PEEP: positive end-expiratory pressure; FIo2: fraction of inhaled oxygen;
cmH2O: centimeters of water.

Retrograde VTI growth showed a 0.89 (95% CI 0.785–0.995) C-index relationship with
positive fluid balance.

In the univariable linear regression model, the postoperative/baseline delta VTI
ratio of the hepatic vein correlated with fluid balance, maximum central venous pressure,
and delta ejection fraction (Table 4). There was no correlation between the bilirubin and
creatinine levels and VIS scores. In the multivariable linear regression model, none of the
variables had independent association with the delta VTI ratio.

Table 4. Linear regression of the delta VTI ratio (postop–preop retrograde/anterograde VTI ratio).

Perioperative parameters B 95% CI p Value

Delta EF −0.099 −0.022 −0.002 0.022

Fluid balance/body weight at
POP 24 h (mL/kg) 0.011 0.001 0.021 0.022

CVP POP 24 h (mmHg) 0.094 0.052 0.213 0.002
EF: ejection fraction; CVP: central venous pressure; POP 24 h: postoperative 24 h.

4. Discussion

We found that higher preoperative retrograde VTI ratios were associated with higher
postoperative retrograde VTI ratios. In the first 24 h, the increase of the retrograde flow in
the hepatic veins was associated with worse ejection fraction, higher positive fluid balance,
increased right atrial and ventricular diameters, and higher central venous maximum
filling pressures.

The link between congestive heart failure, right ventricular failure, and liver dys-
function has been highlighted in the past decades [21–23]. Right ventricular failure can
lead to hepatic dysfunction, ranging from mild enzyme elevations to severe hepatic fi-
brosis [7,24,25]. Congestion can impair kidney function and can cause gastrointestinal
ischemia due to high backward pressures and lower effective organ pressure gradients. The
change in the renal venous flow pattern (but not the right atrial pressure) was associated
with a higher one-year mortality in patients with advanced heart failure [26]. In our study,
we also found a close relationship between the presence of preexisting retrograde flow
and an increased retrograde flow after cardiac surgery. The increase in the retrograde flow
was associated with the severity of fluid overload, reduced ejection fraction, and reduced
right-sided cardiac function. It is not clear whether fluid overload leads to an increase in
retrograde flow, or it is caused by preexisting venous insufficiency (such as varicosities in
the lower limb) or both [26].
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Measuring venous flow patterns with ultrasound is an easy and noninvasive method
that can help guide fluid management. These new diagnostic concepts, such as the in-
spection of the venous flow patterns in the renal and hepatic veins, can help in the early
detection of fluid overload. It can be different from and nonparallel with right-sided cardiac
dysfunction, and it cannot be predicted by the volume or cardiac output changes on the
arterial side [14]. In our study, we measured the VTIs instead of the maximum velocities
of the waveforms, which might be more useful for volume estimation. Using ratios for
the expression of the retrograde and anterograde flows has the advantage of negating the
effects of vessel shape and diameter and might reduce potential individual errors.

Fast track management after cardiac surgery can be beneficial, as early return of
spontaneous breathing and extubation will promote negative thoracic pressure, increasing
the venous return, preloading, and helping to maintain cardiac output [27]. Prolonged
positive pressure ventilation is associated with a reduction and redistribution of cardiac
output, decreased splanchnic blood flow, and reduced blood supply to the liver [27–29].
Our data also support that the level of PEEP might be associated with a decrease in the
anterograde flow in the hepatic veins.

In the postoperative period, preload optimization can lead to fluid overload, particu-
larly in low cardiac output states, preexisting or newly developed right-sided heart failure,
and pulmonary hypertension. In other words, monitoring the hepatic venous waveform
can help in the early detection of abdominal congestion states and fluid overload.

5. Conclusions

Measurement of venous congestion or venous abdominal insufficiency seems to be
an important tool in guiding fluid management and vasoactive therapy [29]. Volume
and pressure monitoring on the arterial side does not yield sufficient hemodynamic data,
and right atrial pressure monitoring alone provides inadequate information about the
venous side of the circulation. Monitoring abdominal venous waveforms is an easy and
inexpensive noninvasive method that can help to detect fluid overload earlier.
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