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Abstract: The aim of this study is to examine the precision of semi-automatic, conventional and
automatic volumetry tools for pulmonary nodules in chest CT with phantom N1 LUNGMAN. The
phantom is a life-size anatomical chest model with pulmonary nodules representing solid and
subsolid metastases. Gross tumor volumes (GTVis) were contoured using various approaches:
manually (0); as a means of semi-automated, conventional contouring with (I) adaptive-brush
function; (II) flood-fill function; and (III) image-thresholding function. Furthermore, a deep-learning
algorithm for automatic contouring was applied (IV). An intermodality comparison of the above-
mentioned strategies for contouring GTVis was performed. For the mean GTVref (standard deviation
(SD)), the interquartile range (IQR)) was 0.68 mL (0.33; 0.34–1.1). GTV segmentation was distributed
as follows: (I) 0.61 mL (0.27; 0.36–0.92); (II) 0.41 mL (0.28; 0.23–0.63); (III) 0.65 mL (0.35; 0.32–0.90);
and (IV) 0.61 mL (0.29; 0.33–0.95). GTVref was found to be significantly correlated with GTVis
(I) p < 0.001, r = 0.989 (III) p = 0.001, r = 0.916, and (IV) p < 0.001, r = 0.986, but not with (II) p = 0.091,
r = 0.595. The Sørensen–Dice indices for the semi-automatic tools were 0.74 (I), 0.57 (II) and 0.71 (III).
For the semi-automatic, conventional segmentation tools evaluated, the adaptive-brush function
(I) performed closest to the reference standard (0). The automatic deep learning tool (IV) showed
high performance for auto-segmentation and was close to the reference standard. For high precision
radiation therapy, visual control, and, where necessary, manual correction, are mandatory for all
evaluated tools.

Keywords: radiation oncology; radiotherapy; target volume; contouring; semi-automation; N1
LUNGMAN phantom; lung cancer; pulmonary nodules; deep learning algorithm; Syngo.via RT
image suite

1. Introduction

While automatic contouring of organs at risk (OAR) has been extensively examined
and is increasingly established in radiation therapy departments [1], the automatic delin-
eation of targets remains a significant challenge, even in the context of online onboard
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adaptive planning [2]. Accurate target definition requires expertise to convert recommen-
dations and clinical information into a high precision treatment plan. The aim of facilitating
the auto-contouring of targets nonetheless seems attractive for many reasons, and continues
to be a subject of ongoing research [3–5]. The issue of microscopic extension of malignant
tumors is a crucial and challenging one in target volume definition in radiation therapy.
Necessary margins need to be constantly reevaluated, particularly when advancing the
development of medical techniques. In radiation therapy, planning concepts have moved
away from using point prescription towards marginal prescription methods [6].

The most evident development in treatment planning is probably stereotactic radiation
therapy. According to the treatment protocols of previous clinical trials, and following
the current recommendations in the ESTRO guidelines, a 0 mm CTV margin is accepted
for stereotactic radiotherapy in early-stage cancer., A 5 mm to 8 mm margin for curative
irradiation is necessary for locally advanced non-small cell lung cancer [7–9].

Lung lesions show a large variation in size, location, involvement of surrounding
tissues and contours. There are previous reports on algorithms for the segmentation of a
wide variety of lung lesions, ranging from the large tumor formations found in patients with
advanced lung cancer to the small nodules detected by lung cancer screening programs [10].

Many models for nodule classification have been examined and trained [11–17]. With
respect to automatic contouring, the best agreement was found for lungs [18]. When
characterizing nodules, it is crucial to examine how detection and auto-contouring tools
implemented in clinical treatment planning systems function.

Nevertheless, questions regarding accurate segmentation and final verification persist
and may vary across different contouring tools and techniques. Phantom measurements
with dedicated examination of radiation therapy contouring tools are lacking.

Thus, we took as a reference for geometrical measurement an anthropomorphic phan-
tom with precisely known implanted lung lesions. We semi-automatically contoured the
nodules using a clinically certified treatment planning system.

2. Materials and Methods

Semi-automatic, conventional, and automatic segmentation of pulmonary lung nod-
ules in an anthropomorphic phantom were contrasted and compared with the manually
contoured geometrical volume as a reference standard. Additionally, the volumes provided
by the manufacturer were paralleled.

2.1. Antrophomorphic Phantom

This study was conducted using an anthropomorphic multipurpose phantom, the N1
LUNGMAN phantom PH-1 R16511 (Kyoto Kagaku Co., Ltd., Kyoto, Japan). The phantom
represents a life-size anatomical chest model (size: approx. 43W × 20D × 46H cm, chest
girth: 94 cm, weight: approx. 18 kg, water-equivalent diameter: approx. 23.5 cm). Its
anatomical components were calibrated using Hounsfield values (HU) corresponding to
real human tissue. The chest wall comprises synthetic bones based on measurements of
clinical data. The internal phantom components are heart, trachea, pulmonary vessels,
abdomen (diaphragm) block, representing the upper abdomen. Furthermore, the phantom
contains 9 pulmonary nodules, which represent metastases. In total, 3 pulmonary nodules
are subsolid, and 6 pulmonary nodules are solid. Of note, spherical nodules without
spiculae were used in the present phantom study, as described earlier [19,20]. The phantom
was scanned in a supine and arms-abducted position, taken head first into the CT scanner,
with a dedicated chest CT protocol. The CT scan was acquired using a multi-slice CT
scanner (Siemens Healthineers, Erlangen, Germany) with a Stellar Infinity detector. The
scan field of the chest covers the whole thorax, from the upper aperture to the diaphragm.
The field of view was set to 380 mm. Scan length was set to 62 slices with a slice thickness
of 5 mm for chest scans.
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2.2. Radiation Oncology Workflow

When contouring GTVis, viz. the phantom pulmonary nodules, CT imaging data was
imported to Aria Oncology Information System® (Varian Medical Systems Inc., Palo Alto,
Santa Clara, CA, USA), which is similar to a workflow in clinical radiation oncology. First,
the phantom pulmonary nodules were lined manually. Two radiation oncologists approved
the manually drawn contours (0). These served as a reference GTV for comparison with the
semi-automatically contoured GTVis. Next, GTVis were contoured by means of three semi-
automatic, conventional tools. First, nodules were segmented using the “adaptive brush”
function in the lung window (I). For the “flood fill”-GTVis, flood fill volume growing
intensity (%) was applied as indicated in Table 1 in the Results Section (II). Another tool
for semi-automated conventional contouring was applied with the image thresholding
function within the depicted density thresholds (HU) (Table 1) (III). For comparison of the
above-mentioned strategies and contouring tools, Sørensen–Dice indices were calculated
as described elsewhere [21].

Table 1. For the “flood fill”-GTVis, flood fill volume growing intensity (%) was applied as indicated.
Another tool for semi-automated, conventional contouring was applied with the image thresholding
function within the depicted density thresholds (HU).

Flood Fill Volume
Growing Intensity (%)

Image Thresholding
Lower Limit (HU)

Image Thresholding
Upper Limit (HU)

GTV 1 20 −326.07 544.18
GTV 2 15 −754.29 −118.86
GTV 3 17 −298.44 295.54
GTV 4 26 −685.22 530.37
GTV 5 27 −312.25 599.44
GTV 6 25 −740.48 530.37
GTV 7 27 −837.17 −302.12
GTV 8 26 −892.43 −312.25
GTV 9 15 −629.97 571.81

Additionally, automatic contouring implemented in 3D Pulmo of the Syngo.via RT
Image Suite (Siemens Healthineers, Forchheim, Germany)) was applied (IV). The automatic
contouring algorithm is based on a convolutional neural networks (CNN) architectural
workflow. CNN is used for feature computation for each potential lesion. First, the input
image patch is processed by batch normalization. Subsequently, three blocks of operations
are computed. In each block, a convolution with stride 2 is used for down-sampling instead
of max-pooling. Semantic features from image features are computed using two fully
connected layers. A soft-max function, when applied to each potential lesion, assigns
2 values corresponding to the probability of the finding being a nodule or a false positive.
Finally, a weighted sum of the scores from this phase and the results from the prior step are
computed. Findings above a certain threshold score are labeled as pulmonary nodules.

The performance of the contouring tools is classified on a 4-point scale, ranging
from 0–3, categorized as minor if modifications are required to a few CT slices (<10%),
intermediate if many slices require modification, and major if many slices require larger
edits or the structure needs a complete recontouring

For intermodality, comparison contouring time and geometrical concordance (volume
variation, Dice Similarity Coefficient (DSC)) were evaluated.

2.3. Statistical Analysis

Descriptive analysis was performed to compare the evaluated contouring tools.
Kolmogorov–Smirnov and Shapiro–Wilk tests were used to examine normal distribution.
The Wilcoxon test was performed to determine the intermodality difference. A p-value
lower than 0.05 was considered statistically significant. Statistics were performed using
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SPSS, version 29.0.1.0 (IBM Corp., Armonk, NY, USA). Graphs were created using Prism
version 9 (Graph Pad Inc., San Diego, CA, USA).

3. Results

For contouring of the pulmonary nodules (gross tumor volume (GTVi)), the CT imag-
ing data was imported to Aria Oncology Information System® (Varian Medical Systems
Inc., Palo Alto, Santa Clara, CA, USA). GTVis were contoured by various means: manually
by two radiation oncologists (0), and as means of semi-automated, conventional contouring
with (I) adaptive brush function, (II) flood fill function, and (III) image thresholding func-
tion. Furthermore, a deep-learning algorithm for automatic contouring was applied (IV).
An intermodality comparison of the above-mentioned strategies for contouring GTVis was
performed with the manually contoured volume as the reference standard (GTVref), and
the manufacturer provided original volumes. Representative images of the N1 LUNGMAN
phantom and CT images of solid and subsolid lung nodules are depicted in Figure 1.

Mean GTVref (cm3) (standard deviation (SD); interquartile range (IQR)) was 0.68 (0.33;
0.34–1.1); GTV segmentation was distributed as follows: (I) 0.61 (0.27; 0.36–0.92); (II) 0.41
(0.28; 0.23–0.63); (III) 0.65 (0.35; 0.32–0.90); and (IV) 0.61 (0.29; 0.33–0.95) (Figure 2).

For the flood fill tool (II), a mean growing intensity of 21.7% (median 22.5%, range
15–27%) for segmentation of the solid nodules was applied. For (II) segmentation of the sub-
solid nodules, a mean growing intensity of 22.7% (median 26%, range 15–27%) was used. For
the image thresholding tool (III) for segmentation of the solid nodules, a lower Hounsfield
unit limit of mean −498.7 HU (median −478.0 HU, range −740.5–−298.4 HU) and an upper
Hounsfield unit limit of mean 511.9 HU (median 537.3 HU, range 295.5–599.4 HU) was
set. For (III) segmentation of the subsolid nodules, a lower Hounsfield unit limit of mean
−827.9 HU (median −837.2 HU, range −892.4–−754.3 HU) and an upper Hounsfield unit
limit of mean −244.4 HU (median −302.1 HU, range −312.3–−118.9 HU) was set (Table 1).

The intermodality comparison shows that GTVref correlates highly with the volume
provided by the manufacturer, p < 0.001, r = 0.997 [95% CI: 0.988–0.999]. When differenti-
ating the nodules according to texture, it emerged that the correlation of GTVref and the
volume provided by the manufacturer were highly significant for both solid and subsolid
volumes: p < 0.001, r = 0.999 and p = 0.009, r = 1.000. Detailed analysis revealed that overall
GTVref significantly correlated with segmented GTVis: (I) p < 0.001, r = 0.989 [95% CI:
0.946–0.998] and (III) p = 0.001, r = 0.916 ** [95% CI: 0.643–0.982], (IV) p = 0.001, r = 0.986, but
not with (II) p = 0.091, r = 0.595 [95% CI: −0.114–0.903]. When differentiating the nodules
according to texture, it emerged that the correlation of segmented solid GTVis with GTVref
was significant for (I) p < 0.001, r = 0.990, (III) p = 0.015, r = 0.897, (IV) p < 0.001, r = 0.994, but
not with (II) p = 0.190, r = 0.619. Correlation of segmented subsolid GTVis with GTVref was
significant for (I) p = 0.014, r = 1.000, but not for (II) p = 0.543, r = 0.658 and (III) p = 0.058,
r = 0.996, and (IV) p = 0.090, r = 0.990.

Overall, when differentiating different types of textures, viz. solid vs. subsolid, the
exact Wilcoxon test showed that the volumes of solid nodules significantly differed between
(II) and GTVref, p = 0.031. There was no significant difference between the volumes of solid
nodules created by (I), (III), (IV) and GTVref, p = 0.219, p = 0.688, and p = 0.063. There was
no significant difference between volumes of subsolid nodules created by (I), (II), (III) as
well as (IV) and GTVref, p = 0.250, p = 0.500, p = 1.000, and p = 0.250.

Sørensen–Dice indices were 0.74 overall for (I), 0.57 for (II), and 0.71 for (III) (Table 2).
Differentiating solid and subsolid pulmonary nodules for solid GTVs Sørensen–Dice indices
were 0.72 for (I), 0.55 for (II), and 0.70 for (III), and for subsolid GTVs Sørensen–Dice indices
were 0.79 for (I), 0.62 for (II), and 0.74 for (III). Meanwhile, contour evaluation revealed that
auto-segmented GTVs required either none or minor editing in 55.6% and 44.4% for (I);
minor and major editing in 11.1% and 89.9% for (II); and intermediate and major editing
in 77.8% and 22.2% for (III). Segmentation time was shortest for (I) compared to the other
semi-automatic tools, p < 0.001. Segmentation time for (I) was 120 s, 180 s for (II), and 240 s
for (III).
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Figure 1. Representative images of the N1 LUNGMAN phantom (a,b) and CT scans of solid or
subsolid lung nodules (c–e). (a) N1 LUNGMAN phantom overview. (b) Spherical nodules. (c) Solid
nodule, transversal. (d) Subsolid nodule, frontal. (e) Subsolid nodule, sagittal. Different contouring
techniques are indicated in red: manual contouring; green: adaptive brush function; cyan: flood fill
function; yellow: image thresholding function. Scale bars: 1 cm.
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brush function; cyan: flood fill function; yellow: image thresholding function) and with a deep learn-
ing algorithm for automatic contouring (Syngo3D). 

Figure 2. Individual volumes of the pulmonary nodules (GTVi 1–9) as described by the manufacturer
(Phantom), the different contouring techniques (red: manual contouring; green: adaptive brush
function; cyan: flood fill function; yellow: image thresholding function) and with a deep learning
algorithm for automatic contouring (Syngo3D).

Table 2. Calculated Sørensen–Dice indices for the contouring techniques. Manual contouring was
considered the reference standard for calculation.

Adaptive Brush Flood Fill Image Thresholding

GTV 1 0.39 0.58 0.60
GTV 2 0.74 0.60 0.62
GTV 3 0.85 0.46 0.74
GTV 4 0.79 0.80 0.75
GTV 5 0.81 0.41 0.73
GTV 6 0.80 0.43 0.65
GTV 7 0.83 0.78 0.82
GTV 8 0.79 0.47 0.77
GTV 9 0.70 0.63 0.71

4. Discussion

The aim of this phantom study was to examine the precision of semi-automatic,
conventional, and automatic volumetry tools for contouring pulmonary nodules with
dedicated radiation treatment techniques in the chest for high-end multi-slice CT scans
with the phantom N1 LUNGMAN. In the present study, of the semi-automatic conventional
segmentation tools evaluated, the adaptive brush function performed closest to the refer-
ence standard. The evaluated automatic deep learning tool showed a high performance
for auto-segmentation and was also close to the reference standard. Nonetheless, for the
design of high precision radiation therapy treatment plans, a final visual control and poten-
tially manual corrections remain mandatory for all evaluated tools. Currently, a particular
challenge in the application of different segmentation tools is the need to specifically adjust
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the input parameters to obtain the desired results. Therefore, a thorough knowledge of
anatomy and the workflow specifications is essential.

By default, the brush tool adapts to the grayscale values on the image plane and the
brush diameter varies automatically in both 2D and 3D while drawing (ARIA OIS for
RO version 16.0, Varian Medical Systems Inc., Palo Alto, CA, USA). The smallest brush
diameter corresponds to the width of four image pixels for normal resolution structures or
two image pixels for high-resolution structures. In contrast to the adaptive brush, the static
brush does not adapt to the grayscale values on the image plane and the brush diameter
does not change automatically while drawing. The adaptive brush tool performed best
of all the semi-automatic segmentation tools examined, probably due to the option to
immediately adjust the diameter automatically during the contouring procedure.

The flood fill tool is a conventional, semi-automatic contouring tool implemented
in the treatment planning system that generates structures by merging adjacent pixels
based on their similarity to an initial point. Connectivity is determined by the adjacent
pixel, and a preset 2D or 3D volume growing intensity. The segmentation operation can be
controlled by a growing factor, the effect of which can be visually verified (ARIA OIS for RO
version 16.0, Varian Medical Systems Inc., Palo Alto, Santa Clara, CA, USA). Finding the
proper volume growing intensity by systematic testing of different values (%) is a workflow
challenge which makes the tool less applicable for the segmentation of particularly small
lesions, such as pulmonary nodules. Likewise, this explains the longer time needed to
complete the contouring process compared to the other tool evaluated.

Image thresholding is a segmentation tool designed for searching voxels with CT
values within defined limits. The CT values in the image thresholding tool are shown by
the units defined in the image (for example, HUs or pixels). It is important to visually
identify the proper CT value range and then the tool automatically searches the voxels
within that range. It partitions the input image by applying one or more cut-off values
(thresholds) on the grey-level intensities (ARIA OIS for RO version 16.0, Varian Medical
Systems Inc., Palo Alto, USA). A particular challenge for the imaging thresholding tool
is to find the proper threshold for segmentation of pulmonary nodules. Furthermore,
for different types of texture it is important to find the most appropriate grayscale range
for accurate segmentation. As in the lung window, solid nodules are like the adjacent
vessels, and they are often incidentally included in the gross target volume. Thus, manual
post-processing correction of these contours is necessary. On the other hand, subsolid
nodules and vessels are better discriminated by Hounsfield units. However, its margin to
the surrounding parenchyma may be less clearly definable.

There are different automatic, computed aided techniques for the identification and
classification of pulmonary nodules. Some help to detect pulmonary lesions, while oth-
ers try to characterize the type of lesion. In the present study, the 3D Pulmo Syngo.via
automatic segmentation tool was applied relying on deep learning. The automatic seg-
mentation proved valid for pulmonary nodule segmentation. The lesion quantification
tool implemented provides automatic 3D segmentation of lung nodules based on lung
nodule texture. The workflow is designed as a computer-aided detection method and
second reader toolkit to assist in the detection of pulmonary lesions during review of CT
examinations of the chest (https://marketing.webassets.siemens-healthineers.com/180000
0000080437/d0a5bae38837/syngo_lungcare-00080437_1800000000080437.pdf (accessed on
9 November 2023)).

Multiple studies have examined the performance of segmentation tools with different
results, depending on the method and technique [1,11–15,17]. To segment different types
of lung nodules correctly, a whole range of networks are put forward.

Pang et al. acknowledge that segmentation of tumors is far more challenging than seg-
mentation of normal tissue [22]. The authors propose a unified and end-to-end adversarial
learning framework for automatic segmentation of any kinds of tumors, including lung,
liver, and kidney lesions identified from CT scans. These scans are called CTumorGAN, and

https://marketing.webassets.siemens-healthineers.com/1800000000080437/d0a5bae38837/syngo_lungcare-00080437_1800000000080437.pdf
https://marketing.webassets.siemens-healthineers.com/1800000000080437/d0a5bae38837/syngo_lungcare-00080437_1800000000080437.pdf
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consist of a Generator network and a Discriminator network. The authors state that their
data may be generalized to address any kinds of tumor datasets with superior performance.

Zhang et al. propose an U-Net network, which has practical value in terms of helping
radiologists segment lung nodules and diagnose lung cancer [23]. The authors claim that
their proposed method represents the best segmentation performance in terms of Sørensen–
Dice indices compared to previous studies, which assessed state-of-the-art techniques.

Kang et al. examined the classification of lung nodules using 3D multi-view convo-
lutional neural networks with both chain architecture and directed acyclic graph archi-
tecture [11]. The authors conducted a classification according to benign, malignant and
metastatic malignant nodules on CT images from Lung Image Database Consortium and
Image Database Resource Initiative database (LIDC-IDRI). The authors concluded that
the evaluated multi-view-one-network strategy may achieve a lower error rate than the
one-view-one-network strategy.

Baldwin et al. validated a lung nodule convolutional neural network (LN-CNN) in
1187 patients with 5–15 mm nodules, achieving an AUC of 89.6% [15]. Likewise, Hunter
et al. developed a radiomics signature to classify nodules according to malignancy risk [17].

Interestingly, Ardila et al. propose a deep learning-based algorithm to predict the
risk of lung cancer in low-dose CT scans of the chest in patients undergoing screening
examinations [13]. The authors state that their algorithm outperformed 6 radiologists
included in a reader study, in terms of sensitivity and specificity, when prior CT imaging
was not available in a relatively large number of cases (507).

In addition to lesion identification and classification, another important point is the
maintenance of contouring quality. A large review on deep learning techniques, excluding
segmentation and contouring tasks, showed a rather sober picture of artificial intelligence
in clinical workflow [24]. According to Nagendran et al., the overall risk of bias was
high in the majority of the evaluated studies, and adherence to reporting standards was
suboptimal. Contrary to automatic segmentation tools, the semi-automatic, conventional
tools examined in our study present radiation oncology contouring tools as part of a
certified and clinically approved treatment planning system. They are used routinely in our
clinic and they are established in clinical practice. Furthermore, the evaluated contouring
tools, though semi-automatically applied, still do not comprise any deep learning, machine
learning techniques or neuronal networks for contouring, but rather rely on the experience
of a radiation oncologist.

From a clinical point of view, it is important to mention the limited data on the
extension of microscopic lung tumor margins. In non-small-cell lung cancer, the potential
expansion of CTV beyond radiographic visibility to include potential microscopic disease,
and thus improve treatment outcomes, is under constant discussion [25,26]. The individual
anatomical situation, for example, tumor formations adjacent to larger blood vessels,
requires individual adaptation of contouring strategies [25]. Of note, there are uneven
definitions of suitable CTV margins even in large-cohort clinical trials. For instance, in the
RTOG 0813 study no expansion of the GTV for potential microscopic disease in early-stage
lung cancer was used [27]. Additionally, a high inter-individual variability in contouring
strategies was reported between clinicians [28]. In the present study, spherical pulmonary
nodules without spiculae were used as comparable to lung metastases. In contrast to
automated contouring tools for organs at risk [1], the use of auto-contouring tools for GTVs
or CTVs is not yet a commonly established clinical routine.

Issues about semi-automatic and automatic segmentation are under constant debate,
and performance may vary between manufactures and techniques. It must be assumed that
a combination of different technical settings will lead to different results, while some settings
are consistent between different CT scans. More robust retrospective and prospective
studies will be required to ensure clinical applicability.

For this study, a thorax phantom was chosen to provide a test subject with stable size
and composition for the evaluation of CT pulmonary nodules. The advantages of using
this phantom are that it is similar to human patients, as its anatomical components are
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calibrated with the Hounsfield values of human tissue and last but not least, no real patient
was exposed to ionizing radiation.

5. Conclusions

For high-precision radiotherapy, final validation of pulmonary nodule segmentation
is essential for all tools evaluated. Of the semi-automatic tools evaluated, the adaptive
brush function came closest to the reference standard. Likewise, the automatic deep
learning tool showed a high performance in automatic segmentation and was close to the
reference standard.
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