
Citation: Shia, W.-C.; Kuo, Y.-H.; Hsu,

F.-R.; Lin, J.; Wu, W.-P.; Wu, H.-K.; Yeh,

W.-C.; Chen, D.-R. Evaluating the

Margins of Breast Cancer Tumors by

Using Digital Breast Tomosynthesis

with Deep Learning: A Preliminary

Assessment. Diagnostics 2024, 14, 1032.

https://doi.org/10.3390/

diagnostics14101032

Academic Editors: Maria Adele

Marino, Daly Avendano and

Elisabetta Giannotti

Received: 4 April 2024

Revised: 3 May 2024

Accepted: 14 May 2024

Published: 16 May 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

diagnostics

Article

Evaluating the Margins of Breast Cancer Tumors by Using
Digital Breast Tomosynthesis with Deep Learning:
A Preliminary Assessment
Wei-Chung Shia 1,2,*,† , Yu-Hsun Kuo 3,†, Fang-Rong Hsu 3 , Joseph Lin 4,5,6 , Wen-Pei Wu 7, Hwa-Koon Wu 7,
Wei-Cheng Yeh 8 and Dar-Ren Chen 4,6,*

1 Molecular Medicine Laboratory, Department of Research, Changhua Christian Hospital,
Changhua 500, Taiwan

2 School of Big Data and Artificial Intelligence, Fujian Polytechnic Normal University, Fuqing 350300, China
3 Department of Information Engineering and Computer Science, Feng Chia University, Taichung 407, Taiwan;

frhsu@o365.fcu.edu.tw (F.-R.H.)
4 Cancer Research Center, Department of Research, Changhua Christian Hospital, Changhua 500, Taiwan
5 Department of Animal Science and Biotechnology, Tunghai University, Taichung 407, Taiwan
6 Comprehensive Breast Cancer Center, Changhua Christian Hospital, Changhua 500, Taiwan
7 Department of Medical Image, Changhua Christian Hospital, Changhua 500, Taiwan
8 Department of Medical Imaging, Chang Bing Show Chwan Memorial Hospital, Changhua 505, Taiwan
* Correspondence: weichung.shia@gmail.com (W.-C.S.); 115045@cch.org.tw (D.-R.C.)
† These authors contributed equally to this work.

Abstract: Background: The assessment information of tumor margins is extremely important for the
success of the breast cancer surgery and whether the patient undergoes a second operation. However,
conducting surgical margin assessments is a time-consuming task that requires pathology-related
skills and equipment, and often cannot be provided in a timely manner. To address this challenge,
digital breast tomosynthesis technology was utilized to generate detailed cross-sectional images
of the breast tissue and integrate deep learning algorithms for image segmentation, achieving an
assessment of tumor margins during surgery. Methods: this study utilized post-operative tissue
samples from 46 patients who underwent breast-conserving treatment, and generated image sets
using digital breast tomosynthesis for the training and evaluation of deep learning models. Results:
Deep learning algorithms effectively identifying the tumor area. They achieved a Mean Intersection
over Union (MIoU) of 0.91, global accuracy of 99%, weighted IoU of 44%, precision of 98%, recall
of 83%, F1 score of 89%, and dice coefficient of 93% on the training dataset; for the testing dataset,
MIoU was at 83%, global accuracy at 97%, weighted IoU at 38%, precision at 87%, recall rate at 69%,
F1 score at 76%, dice coefficient at 86%. Conclusions: The initial evaluation suggests that the deep
learning-based image segmentation method is highly accurate in measuring breast tumor margins.
This helps provide information related to tumor margins during surgery, and by using different
datasets, this research method can also be applied to the surgical margin assessment of various types
of tumors.

Keywords: breast cancer; surgical precision; cancer surgery; deep learning

1. Introduction

Providing information on surgical margins during breast cancer surgery is crucial for
the success of the operation. The margin is defined as the distance from the tumor to the
cutting surface of the removed specimen. Currently, surgeons and radiation oncologists
agree that no tumor should be left within 1 to 2 mm of the surgical specimen’s surface. If
margins are still positive, there is a significant risk of tumor recurrence. This is particularly
important for patients undergoing breast-conserving therapy (BCT) [1] for early-stage
or ductal carcinoma in situ (DCIS), as it may lead to re-excision surgery. According to

Diagnostics 2024, 14, 1032. https://doi.org/10.3390/diagnostics14101032 https://www.mdpi.com/journal/diagnostics

https://doi.org/10.3390/diagnostics14101032
https://doi.org/10.3390/diagnostics14101032
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/diagnostics
https://www.mdpi.com
https://orcid.org/0000-0001-5351-840X
https://orcid.org/0000-0001-9791-317X
https://orcid.org/0000-0003-0623-816X
https://orcid.org/0000-0002-0897-4374
https://doi.org/10.3390/diagnostics14101032
https://www.mdpi.com/journal/diagnostics
https://www.mdpi.com/article/10.3390/diagnostics14101032?type=check_update&version=1


Diagnostics 2024, 14, 1032 2 of 13

previous studies, about 25% of patients with invasive cancer and one-third of DCIS patients
underwent re-excision surgeries [2,3].

Traditionally, determining whether cancer cells remain at the surgical margin is a
collaborative effort between surgeons and pathologists. Surgeons are responsible for
achieving sufficiently wide margins during surgery. Pathologists’ reports on clear margin
widths vary based on the number of slices examined, which involves marking the margins
with ink, including vertical incisions, scrapes, cavity edges, and compressing specimens for
X-ray analysis. However, many hospitals do not perform intraoperative margin assessments
for several reasons. The primary reason is that pathology-related techniques take a lot of
time and need specialized expertise and equipment. Frozen section analysis, particularly
for breast specimens, is technically challenging due to the high fat content that hampers
effective freezing of the tissue [4,5]. Additionally, detecting tumor lesions near surgical
margins (residual cells within <2 mm from the edge) is difficult, resulting in a higher rate
of false negatives [6].

Several different strategies have been researched and applied in the past to address the
issues mentioned above. For instance, methods utilizing Optical Coherence Tomography
(OCT) and Deep Neural Networks (DNNs) for automatic edge evaluation of patient tissues
have been explored. By using a dataset comprising 60 slices that include both healthy and
tumorous tissue samples, these approaches achieved a sensitivity of 89% and specificity of
71% for cancer tissue classification [7]. Additionally, multimodal spectroscopic pathology
that combines autofluorescence with Raman spectroscopy has been used to detect minute
residual tumors on the surface of excised breast tissue [8]. However, a major issue with
these studies is their reliance on specialized equipment such as OCT or Raman spectrom-
eters, which are not commonly available in breast surgery operating rooms or radiology
departments, thus limiting the practicality in clinical setting.

At this moment, we turn our attention to a technique known as Digital Breast To-
mosynthesis (DBT). The effectiveness of mammography in detecting breast cancer varies; it
is lower for women with heterogeneously dense or extremely dense breasts [9,10]. This is
due to the fact that high breast density can obscure lesions (as overlapping tissues create
a masking effect), or be misinterpreted as lesions due to the overlap of fibroglandular
tissue [11]. DBT was developed to overcome the issue of tissue overlap by positioning the
digital detector at specific angles relative to a pivot point and moving the X-ray source
along an arc at predetermined ratios [12]. This allows for linear tomographic imaging of
samples, with slight variations in detail depending on the imaging technique used. By
employing algorithms for reconstructing images, it is possible to generate images of each
tomographic plane. According to multiple retrospective studies, DBT has shown superi-
ority or equivalence in observing areas of abnormality and microcalcifications compared
to images produced by current full-field digital mammography (FFDM) systems [13,14].
Therefore, in recent years, the trend of replacing traditional FFDM with DBT imaging has
begun to rise, significantly enhancing the clinical usability of such machines.

By leveraging DBT imaging’s ability to produce clear, unobstructed cross-sectional
images of breast tissue and simultaneously utilizing the well-developed research on deep
learning-based image region segmentation algorithms [15,16], we can effectively address
this issue. This study explores the application of deep learning techniques to enhance the
accuracy of tumor delineation in breast cancer surgery. The primary objective is to address
the challenge of accurately identifying the boundary between malignant and healthy tissues,
thereby facilitating more effective surgical procedures. The methodology used in this study
comprises the utilization of a DBT image dataset with manually identified tumor areas.
The results of the evaluation and performance metrics demonstrated the effectiveness of
the methodology in enhancing the precision and efficiency of tumor region marking during
breast cancer surgery [17,18].
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2. Materials and Methods

The steps of this study include acquiring patient tissue images, preprocessing of tissue
images, establishing a deep model (which includes dataset segmentation, model training
and validation), and performance evaluation. The overall workflow of this manuscript
has been illustrated in Figure 1. The details of the implementation at each stage will be
elaborated on in the following paragraphs.
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2.1. Image Data Collection Procedures

This study is a single-center, prospective study in which 50 patients who met the
inclusion criteria and underwent breast-conserving surgery were randomly selected. The
primary reason for selecting only 50 patients was due to the radiology department needing
to prepare additional personnel to handle the imaging scans of tissue samples directly
transmitted during surgery. After obtaining informed consent, post-operative tissue sam-
ples were sent to the radiology department for imaging collection before being forwarded
to pathology. This study approved by the institutional review board (IRB) of Changhua
Christian Hospital, Taiwan (No. 210624). Informed consent was collected, and the ethics
committee reviewed all experimental methods to ensure conducted in accordance with
the relevant guidelines and the Declaration of Helsinki. The inclusion criteria for this
study were women aged 35–75 who were diagnosed with breast cancer at our hospital and
underwent breast-conserving surgery from August 2021 to June 2023. Exclusion criteria
include those who did not undergo breast-conserving surgery after diagnosis, or those
who did undergo such surgery but had a tumor size of less than one centimeter. The
pathological data of the organization were collected together to serve as the final standard
for whether the tumor margins are positive and the actual size of the margins.

The imaging collection for patient tissues uses the Hologic Selenia® Dimensions®

Mammography System (Hologic Inc., Marlborough, MA, USA). After the patient’s tissue
was removed through breast-conserving surgery and sent to the radiology department,
it was positioned on the DBT device according to three directions (12 o‘clock, 3 o‘clock,
6 o‘clock) pre-marked by the surgeon on the tissue for imaging. These organizations have
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been aseptically covered and uncompressed to prevent tissue damage or deformation. The
height of each slice was set at 1 mm. Relevant aseptic and tissue transfer processes are
conducted in accordance with the institution’s internal regulations. Due to the fact that the
composition of DBT images is created by correcting the final image through X-rays shot
from multiple angles, a two-centimeter diameter coin is placed as a scale and reference for
image deformation while capturing tissue images.

2.2. Image Data Preprocessing

To prepare the data, the first step is to remove extraneous elements unrelated to model
learning, including directional markers and potentially distracting annotations, to ensure
that images remain clear and suitable for evaluation. At the same time, image sizes are
adjusted to a uniform dimension to meet the input requirements of deep learning models
and avoid the impact of different resolutions and aspect ratios on diagnostic accuracy.

Next, suitable images are selected from the DBT image dataset. As shown in Figure 2,
within the sequence of images produced by DBT, those located at the beginning and end of
the sequence tend to be more blurred. About 10–15 images situated in the middle of the
sequence have the highest resolution and precise focus, allowing for clear differentiation
between tumor tissues and normal tissues. We use manual inspection to select images from
the DBT image sets of subjects that are suitable for training data. Depending on the actual
size of the tumor, the actual number of images in the DBT image sets varies but, on average,
about 10–15 images are selected for each subject.
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Figure 2. Images of the same tumor tissue presented on different sectional planes. This example
dataset contains a total of 50 images. (a) The 1st slice, (b) the 7th slice, (c) the 14th slice, (d) the 21st
slice, (e) the 28th slice, (f) the 35th slice.

For the selected images, the next step is to delineate the regions of interest (ROI) [19]
based on surgical records, primarily depicting the image parts of tumor areas. This ensures
that during model training, the algorithm focuses on relevant areas and improves the accu-
racy of tumor area labeling [20]. After extracting ROIs, generating the corresponding image
masks completes the construction of the dataset. Data augmentation is also performed on
the dataset, including stretching length and width at a fixed magnification and changing
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exposure among other methods to expand the sample size [21]. Figure 3 is a schematic
diagram of some dataset images and the corresponding generated mask images.
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Figure 3. Masking of the tumor boundary. The column marked as “true_image” consists of orig-
inal DBT images that display the internal characteristics of breast tissue. The column labeled as
“true_mask” consists of corresponding mask images generated based on tumor areas manually
annotated by experts.

2.3. Deep Learning Model

This study employs Unet3+ [22] as the deep learning model for identifying and
segmenting tumor regions. UNet3+ is a deep learning algorithm and model for segmenting
target images based on semi-supervised techniques. The U-Net3+ architecture makes
significant improvements over the original U-Net model [23], primarily through the use
of an enhanced U-shaped pyramid-dilated network algorithm. By training the UNet3+
network on annotated datasets, it establishes a model capable of detecting specific image
features and providing segmented areas. The training process includes iteratively adjusting
network parameters through appropriate optimization algorithms and minimizing selected
loss functions to enhance accuracy. By incorporating full-scale skip connections, deep
supervision, and dense connections into the decoder, it becomes suitable for complex image
segmentation tasks. Full-scale skip connections are crucial for merging multi-scale feature
maps from various stages of the network, ensuring efficient use of both high-level and
low-level features.

Figure 4 is the network architecture diagram of Unet3+. Internally in U-Net3+, di-
rectly comparing differences between intermediate network outputs and real situations
at multiple levels plays a significant role in promoting gradient flow and significantly
improving segmentation accuracy [24]. It also employs max pooling to reduce the size
of the feature maps, ultimately achieving a full-size feature fusion. This characteristic
is not possessed by Unet. According to the direction of the dashed lines, we can find
that Unet3+ integrates feature maps of different sizes at every encoder layer through the
use of full-size skip connections. This feature harmonization allows the network to fully
perceive the visual environment across multiple scales, which is essential for accurately
delineating boundaries.
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2.4. Training Protocol and Infrastructure

The computational environment used in this study is established on a virtual machine
allocated by a virtual computing platform. The allocated virtual machine includes an
8-core virtual CPU (provided by Intel® Xeon® Gold Series 61 processors) (Intel, Santa
Clara, CA, USA), 100 GB of virtual hard disk, 90 GB of virtual memory, and an NVIDIA®

Tesla V100 GPU (NVIDIA, Santa Clara, CA, USA) with 32 GB of video RAM assigned in
physical form. The operating system used is Ubuntu 20.04 LTS. The graphics processing
unit accelerated computing environment was built using NVIDIA Compute Unified Device
Architecture (CUDA) version 12.2 and the NVIDIA CUDA Deep Neural Network library
version 8.9.2.26.

Image enhancement techniques were applied to the dataset to improve model adapt-
ability; these include random scaling (from 0.8× to 1.2×), rotation (from −90◦ to +90◦),
cropping, vertical/horizontal flipping, and elastic deformation. The epochs are set to 100,
batch size is set to 6, and the learning rate (lr) is 3 × 10−4. After argumentation, the dataset
is divided into a training set, validation set, and testing set in a ratio of 7:3:1 for training
and validation.

Deep learning programs and performance evaluation metric programs in this study
were implemented using Python 3.6 (Python Software Foundation) and PyTorch 2.0 [25].
Relevant learnable parameters (such as weights and biases) are also stored in the model
file. By using the built-in functions of the PyTorch framework, the trained model can be
read and load easily and applied for inference purposes.

2.5. Performance Evaluation

In this study, the trained model was evaluated by using ground truth images data
set masked manually to find the Mean Intersection over Union (MIoU). This computes
the average intersection over union (IoU) scores for all classes, as global accuracy. It is
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usually computed as the proportion of correctly categorized pixels to the total number of
pixels in image dataset. Precision evaluates a model’s ability to make accurate positive
predictions. It is defined as the ratio of true positive predictions to the overall number of
positive predictions (including true positives and false positives).

Recall (also known as sensitivity) evaluates a model’s ability to find all relevant
instances in a dataset. It is defined as the ratio of genuine positive predictions to total
positives (true positives and false negatives combined). The F1 score is the harmonic
mean of precision and recall, resulting in a single statistic that balances a model’s precision
and recall, which is especially beneficial when class label distribution is unequal. The F1
score has its highest value at 1 (perfect precision and recall) and lowest at 0. The dice
coefficient measures the overlap between two samples. It is frequently used to evaluate the
effectiveness of picture segmentation techniques. The dice coefficient is comparable to the
F1 score, except it is used to assess the similarity of two samples. It ranges from zero (no
overlap) to one (complete overlap) [26].

3. Results

After screening 121 patients who underwent breast-conserving surgery from August
2021 to June 2023, we randomly selected 50 patients who met the inclusion criteria and
obtained tissue samples and informed consent. Four patients were excluded from this
study because informed consent could not be obtained. In the end, we obtained 48 DBT
image sequence data generated from tissue samples of 46 patients who underwent breast-
conserving surgery. Although receiving neoadjuvant chemotherapy was not an exclusion
criterion for this study, none of the 46 patients received neoadjuvant chemotherapy. The
process of patient inclusion and exclusion in this study is shown in Figure 5.
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In terms of clinical characteristics, the average size of the maximum diameter of all
excised tissue specimens is 6.01 cm. Based on the actual size differences of the tumors
excised from each patient, the number of slices in each imaging sequence ranges from about
40 to 60. Following the descriptions in previous research methods, for each patient, 10 to
15 slices with clear focus and tissue contours are selected for ROI extraction. Pathological
data indicate that the average widths of the tumor margins in four directions (3‘, 6‘, 9‘, and
12’ o‘clock) are 1.3 cm, 1.03 cm, 1.15 cm, and 1.29 cm, respectively. There are five patients
with a margin of resection less than or equal to 0.2 cm in any one direction. Table 1 lists all
the clinical characteristics of the enrolled patients, including clinical staging data, lymph
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node metastasis status, and tumor size information. The tumor size is reported based on
the results of the pathology report.

Table 1. Characteristics of all enrolled patients.

Characteristics Total (n = 46)

Pathology
IDC 32
ILC 4

DCIS/LCIS 6
MUC 4

Lymph node status
Negative 12
Positive 34

Histologic grade
1/2 43
≥3 3

Tumor Size
≥2 cm 32

1 to 2 cm 11
≤1 cm 3

IDC: invasive ductal carcinoma, ILC: invasive lobular carcinoma, DCIS: ductal carcinoma in situ, LCIS: lobular
carcinoma in situ, MUC: mucinous carcinoma.

After these slice images were augmented, a total of 1292 images were obtained. We
divided them into a training dataset (containing 1140 images) and a test dataset (containing
152 images), where the training dataset was used for model training and validation. On the
training data set: Mean Intersection over Union (MIoU) 0.91, global accuracy 0.99, precision:
0.98, recall: 0.83, F1 score: 0.89, dice coefficient: 0.93. On the test set, the number of images
is 152; Mean Intersection over Union (MIoU): 0.83, global accuracy: 0.97, precision: 0.87,
recall: 0.69, F1 score: 0.76, dice coefficient: 0.86. Table 2 shows the training outcomes and
performance of the model on both the training dataset and test dataset.

Table 2. The performance comparison is based on training and test data set.

U-Net3+ Training Dataset Test Dataset

Mean Intersection over Union (MIoU) 0.91 0.83
Global accuracy 0.99 0.97

Precision 0.98 0.87
Recall 0.83 0.69

F1 score 0.89 0.76
Dice coefficient 0.93 0.86

Data size 1140 152

As shown in Figure 6, the first column, labeled ‘true_img’, contains the original DBT
images that reveal the internal features of breast tissue. The second column, ‘true_mask’,
presents manually annotated ground truth data by experts outlining the tumor area within
each image. These masks serve as a benchmark for identifying tumor locations. The
“Ground truth + predict” column displays an overlay of model predictions on top of the
ground truth, where intersections appear in a mixed hue (green, in this case), allowing
for a visual assessment of prediction accuracy against actual data. The final column
shows predicted masks generated by Unet3+, depicted as binary images with white areas
representing predicted regions of interest. Based on the three randomly selected slice
images shown in Figure 6, along with their corresponding ground truth and the predicted
masks, except for a small discrepancy in the tumor boundary of the first image (indicated
in red) from the ground truth, the other four images almost perfectly align with the ground
truth. This demonstrates that the trained Unet3+ model has an exceptional ability to detect
tumor boundaries.
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As shown in Figure 7, the blue curve represents the training score, while the orange
curve depicts the test score, including both MIoU and dice scores. The MUoU training
score starts high, but experiences a sharp decline during the first epoch, continuing until
around epoch 20. This indicates rapid learning from the training data. After an initial
steep decrease, the test score begins to mirror the training score; however, it levels off after
21 epochs, suggesting that model performance on test data has stabilized. For dice scores,
both training and test scores follow a similar trend until after 25 epochs when the training
score increases as the test score plateaus. In both cases, test loss eventually converges with
training loss, demonstrating good model generalization to new and unseen data.
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4. Discussion

Due to the fact that this type of research currently belongs to a relatively novel field,
there is not much prior literature available for direct comparison, and there are differences
in the methodology as well. Therefore, comparisons regarding efficacy should only be used
as references. A recent review article thoroughly explores the initial progress of various
technologies implemented in real-time margin assessment during breast-conserving surgery
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in recent years, including the use of OCT, specific fluorescent tissue staining, ultrasound,
and traditional radiographic histology imaging [27]. Using OCT imaging for positive
and negative margin determination, its specificity is reported in the literature to range
from approximately 82% [28]. A meta-analysis on OCT-related research, which combined
18 studies and samples from 782 patients, estimated the specificity of detecting margins to
be as high as 0.88. However, the OCT technologies utilized in this study encompass four less
common types of OCTs that claim high resolution and are currently less available (FF-OCT,
UHR-OCT, SS-OCT, and PS-OCT), thus cannot be directly compared the performance with
the recently OCT-related research [29]. Imaging using Raman spectroscopy combined with
sampling and data algorithms (also named multimodal spectral pathology) has a sensitivity
and specificity of approximately 95% and 82%, respectively [8]. Using ultrasound imaging
combined with deep learning for margin assessment, the prior literature indicates its
specificity is about 76% [30].

This study does not directly judge the positive or negative margins; instead, by
combining DBT images that provide multiple slices of a single tissue and the ability of deep
models to accurately delineate tumor margins in images, using trained models to infer and
outline the edges on DBT images of excised tissues allows for an intuitive understanding
of whether the margin depth is sufficient. The extraction of areas of interest is conducted
with pathology reports and circled by experienced physicians to ensure that algorithms
focus on key areas, thereby improving the accuracy of tumor area markings. In our training
and testing results, the MIoU of up to 0.83 and a dice coefficient of 0.86 were achieved in
the test dataset, indicating high congruence between this model and actual tumor areas.
The methodology of this study holds promise for improving the precision and efficiency of
margin determination during breast-conserving surgery.

This study still has areas for future improvement, which have been outlined as our
next steps. Firstly, the determination of margins in this research is based on physicians’
experience and radiographic presentation to depict optimal outcomes, without the ability
to judge whether sample images’ margins are positive or negative. It also does not assess if
the actual margin is sufficient (e.g., greater than 0.2 cm), due to several technical challenges
that are currently insurmountable. One such challenge arises from the imaging principle
of breast tomosynthesis, where images in the middle of a sequence exhibit more severe
distortion compared to those at the beginning (closest to the first image) which show mini-
mal deformation, and those at the end (closest to the last image) which display maximum
distortion. Typically, images with clearest focus are located in the middle of a sequence;
hence it is impossible to avoid issues related to deformation. Figure 8 demonstrates this
with a random patient’s imagery (a total of 50 tomographic images produced); by cropping
the scale parts from images at different positions in the sequence and viewing them together,
one can intuitively observe the differences in how the images are affected by deformation.
In Figure 8a (at position one in an image sequence), it can be observed that while the coin
appears nearly circular while in Figure 8b (position 17) and Figure 8c (position 32), its shape
distorts into an ellipse due to compression. Figure 8d, located at the end of the sequence (at
position 47), is the image most severely affected by the deformation. Although there are
algorithms designed for correcting distorted imagery today [31,32], they involve modifying
original images, making it uncertain whether compensated images accurately reflect true
tumor margin widths; thus, we will not delve further into this matter here.

In terms of determining the margins between positive and negative results, the current
best practices still rely on pathological staining of cells about 2 mm from the margin surface
for determination, and merely using image features for analysis presents its challenges.
Regardless, these open questions provide us with ideas for further improvements and
advancements in this research area. Nonetheless, these open questions provide valuable
insights for refining and advancing our research further.
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Artificial intelligence technology delivers precise and sensitive image analysis results,
greatly benefiting breast cancer management. Currently, many studies have applied AI in
various aspects of breast cancer and even other cancers’ management [33–35], including
digital pathology [36], clinical prognosis, and biopsy result analysis, among others. It is
worth mentioning that although the imaging source used in this study is based on DBT
images of breast cancer tumor tissues, the principle of determining margins is not unique
to breast cancer. This also suggests that, for surgeries involving the removal of solid tumors
with positive margin concerns, like ovarian and prostate cancers [37], leveraging tissue
image samples from various cancers to develop deep learning models could extend this
research to additional cancer types. This approach could also aid in intraoperative margin
evaluations for other cancers. However, this will also require further exploration into
different types of tumor images and imaging technologies in the future.

5. Conclusions

The preliminary assessment results show that the deep learning-based image segmen-
tation method proposed in this paper has high accuracy in positioning, delineating, and
measuring breast tumor margins. It reduces the uncertainty in surgical procedures, and has
strong potential in clinical applications. The combination of this method with digital breast
tomosynthesis can further improve the accuracy and stability of the margin delineation,
which is worth exploring in future work.
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