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Abstract: Circulating cfRNA in plasma has emerged as a fascinating area of research with poten-
tial applications in disease diagnosis, monitoring, and personalized medicine. Circulating RNA
sequencing technology allows for the non-invasive collection of important information about the
expression of target genes, eliminating the need for biopsies. This comprehensive review aims to
provide a detailed overview of the current knowledge and advancements in the study of plasma
cfRNA, focusing on its diverse landscape and biological functions, detection methods, its diagnostic
and prognostic potential in various diseases, challenges, and future perspectives.

Keywords: cell-free RNA; liquid biopsies

1. Introduction

In recent times, there has been a rapid advancement in liquid biopsy technology. In
comparison to conventional tissue biopsy, liquid biopsy technology offers several advan-
tages, including reduced invasiveness, enhanced repeatability, the ability to overcome
tumor molecular spatial heterogeneity, and the capacity to dynamically reflect tumor
changes [1]. Consequently, it has found extensive application in early cancer screening,
guiding patients towards adjuvant therapy, evaluating the effectiveness of chemother-
apy, and providing insights into tumor prognosis [2]. Liquid biopsy technology, a highly
anticipated early-detection technology for cancer [1,3,4], encompasses markers such as
circulating tumor cells (CTCs), extracellular DNA (cfDNA) and its methylation, extracellu-
lar cell-free RNA (cfRNA), and exosomal proteins [5]. Among the various liquid biopsy
samples, plasma cell-free DNA (cfDNA) and plasma cfRNA in peripheral blood have
garnered significant attention. These DNA or RNA molecules are products of normal cell
metabolism and apoptosis, as well as tumor cell activity, and they hold substantial value
for clinical applications.

cfRNA, also known as extracellular RNA (exRNA), is found in bodily fluids such as
blood, urine, alveolar lavage fluid, and pleural fluid. As showed in Figure 1, it primarily
consists of various types of RNA, including messenger RNA (mRNA), small RNA (miRNA),
long non-coding RNAs (lncRNAs), and circular RNA (circRNA). Circulating free RNA is
the predominant form of free RNA existing in blood. The exact source of cfRNA remains
uncertain. Zhou et al. conducted an in vitro study which revealed that the concentration
of exRNA can increase under conditions of hypoxia and increased cell metabolism [6].
This finding may offer a possible explanation for the elevated levels of cfRNA observed in
cancer patients. However, this has not yet been validated through in vivo testing. cfRNA
originates from cellular activities such as apoptosis, necrosis, or active secretion, and
can be released from the nucleus, cytoplasm, or extracellular vesicles (e.g., exosomes).
Circulating cfRNA, released into the extracellular environment and present in body fluids
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such as plasma, holds immense promise as a non-invasive source of genetic information.
The analysis of plasma cfRNA offers a unique opportunity for early disease detection,
monitoring treatment responses, and understanding disease progression.
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of RNA such as miRNA, mRNA, lncRNA, and circRNA. Furthermore, various techniques like RT-
qPCR have been developed to detect and analyze cfRNA in plasma, as we show in the first part of 
this paper. Also, cfRNA represents a complex and actively researched area within biology. These 
RNA molecules exist as fragments of varying lengths and are associated with multiple potential 
biological functions. Due to its abundant biological functions, this group of cfRNA could be applied 
in various diseases to diagnose patients, predict their progression, and assess their prognosis. 

As a biomarker, cfRNA is sensitive and functional. The expression of many RNAs, 
including those from human and microbial sources, is tissue-specific [7]. Changes in spe-
cific RNA expression profiles in different tumors can be reflected in plasma. Therefore, 
biomarkers based on cfRNA not only have many signals in patient plasma at the early 
stage of cancer [8], but also provide more functional information and can be used as an 
early diagnostic tool for a variety of diseases, including cancer [9]. Plasma cfRNA is de-
rived from many tissues in the body [10], and its detection can help in indirectly observing 
pathogeneses in real-time and identifying physiological changes associated with the 
prephase of subtypes. RNA can more actively enter the environment outside of the cell 
through cellular efflux mechanisms, such as exosomes [11]. This aspect is particularly sig-
nificant as it allows for liquid biopsies to serve as a potential means of indirectly observing 
the pathogenesis in real time and identifying physiological changes associated with the 
prephase of subtypes. Moreover, effective cfRNA sequencing targeting cancer signals has 
a lower cost than cfDNA and its methylation sequencing, making it more beneficial to the 
popularization of early screening and early diagnosis [12]. In addition, compared with 
cfDNA, cfRNA analysis provides more valuable information on gene expression, splicing, 

Figure 1. An overview of cfRNA in plasma for medicine. cfRNA in plasma includes various types of
RNA such as miRNA, mRNA, lncRNA, and circRNA. Furthermore, various techniques like RT-qPCR
have been developed to detect and analyze cfRNA in plasma, as we show in the first part of this
paper. Also, cfRNA represents a complex and actively researched area within biology. These RNA
molecules exist as fragments of varying lengths and are associated with multiple potential biological
functions. Due to its abundant biological functions, this group of cfRNA could be applied in various
diseases to diagnose patients, predict their progression, and assess their prognosis.

As a biomarker, cfRNA is sensitive and functional. The expression of many RNAs,
including those from human and microbial sources, is tissue-specific [7]. Changes in
specific RNA expression profiles in different tumors can be reflected in plasma. Therefore,
biomarkers based on cfRNA not only have many signals in patient plasma at the early
stage of cancer [8], but also provide more functional information and can be used as
an early diagnostic tool for a variety of diseases, including cancer [9]. Plasma cfRNA
is derived from many tissues in the body [10], and its detection can help in indirectly
observing pathogeneses in real-time and identifying physiological changes associated
with the prephase of subtypes. RNA can more actively enter the environment outside
of the cell through cellular efflux mechanisms, such as exosomes [11]. This aspect is
particularly significant as it allows for liquid biopsies to serve as a potential means of
indirectly observing the pathogenesis in real time and identifying physiological changes
associated with the prephase of subtypes. Moreover, effective cfRNA sequencing targeting
cancer signals has a lower cost than cfDNA and its methylation sequencing, making it more
beneficial to the popularization of early screening and early diagnosis [12]. In addition,
compared with cfDNA, cfRNA analysis provides more valuable information on gene
expression, splicing, and post-transcriptional regulation. Under specific conditions, such as
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inflammation, an immune response caused by microbial infection or a tumor, changes in
the microenvironment will produce plenty of specific cfRNA molecules [7].

Despite the advancements in high-throughput sequencing instruments, library prepa-
ration techniques, and bioinformatics pipelines documented over the last 15 years, and the
evidence showing that cfRNA has great potential in cancer diagnosis [13,14], treatment [15],
and personalized medicine [16], the implementation of cfRNA diagnostics in clinical en-
vironments remains limited. This can be attributed, at least in part, to the absence of a
singular dominant technology that effectively, easily, and economically tackles all of the
associated obstacles. In this review, we discuss the current knowledge and advancements
in the study of plasma cfRNA, focusing on detection methods, its diagnostic and prognostic
potential in various diseases, its biological functions, challenges, and future perspectives
(Figure 1).

2. Diverse Landscape of Plasma cfRNA

Compared with urine, cerebrospinal fluid (CSF), and other body fluids, blood encom-
passes a rich composition of both universal and specialized characteristics. Its universal
characteristics involve the facilitation of fluid transport within the circulatory system [17],
the regulation of body temperature [18,19] and acid–base balance [20], and the transporta-
tion of oxygen and carbon dioxide [21,22]. Additionally, blood plays a crucial role in
immune responses [23], demonstrating its essential function in maintaining physiological
homeostasis. On the other hand, blood’s particularity includes specific cellular components,
such as red blood cells, white blood cells, and platelets, each with unique functions. The red
blood cells are designated for carrying oxygen, while leukocytes are engaged in immune
responses, and platelets contribute significantly to the coagulation process. Another distinc-
tive feature is the presence of plasma, which is the liquid component of blood containing
water, electrolytes, and proteins [24,25]. Consequently, it plays a crucial role in nutrient and
hormone transportation, as well as in the process of blood coagulation. Additionally, blood
has a special coagulation mechanism allowing it to rapidly form blood clots in response to
an injury or vascular damage, thanks to the involvement of coagulation factors, platelets,
and related components. Lastly, blood is involved in nutrient metabolism by transporting
nutrients such as glucose and amino acids, as well as by eliminating metabolites like urea
and lactic acid, thereby participating in the overall nutrient metabolism of the body [26,27].
Blood is universal in terms of its circulation, oxygen transport, and immune defense. How-
ever, its unique cell composition, clotting mechanism, and nutrient transport function result
in particularities that distinguish it from other body fluids. As a result, blood plays a dis-
tinctive and irreplaceable role in maintaining overall physiological balance and responding
to external changes.

The plasma cfRNA landscape includes a diversity of RNA molecules, detection meth-
ods, and clinical roles, and covers various diseases. The diversity of cfRNA is characterized
by the presence of various RNA molecules in the bloodstream, encompassing a range of
RNA types and functions. Notably, this diversity constitutes a crucial attribute of cfRNA
as a potential biomarker. One type of RNA found in plasma is messenger RNA (mRNA),
which originates from different cells and holds information about the expression of specific
genes. As a result, mRNA in plasma has the potential to serve as a valuable indicator of
cellular activity in disease states and therapeutic responses [28]. Another class of RNA
found in plasma is miRNA, typically composed of 20–22 nucleotides. miRNA plays a
key role in regulating gene expression and can impact the level of gene expression by
targeting specific mRNA. Therefore, miRNA present in plasma can be utilized as a potential
marker for disease diagnosis and prognosis [29]. Additionally, long non-coding RNAs
(lncRNAs), a type of long RNA molecule that does not code for proteins, are involved
in the regulation of gene expression and cellular function. Certain lncRNAs detected in
plasma are associated with the development and progression of diseases, such as tumors
and cardiovascular diseases [30,31]. Another distinctive type of RNA present in plasma is
circular RNA (circRNA), a special closed-loop RNA molecule. CircRNA found in plasma
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is believed to be closely linked to the occurrence and development of various diseases,
particularly tumors [32]. Furthermore, several other types of RNA, including piRNA [33],
snRNA [34], and snoRNA [35], have been identified in plasma. Although ongoing research
is investigating their functionality and effects, these types of RNA may hold significant
implications for the diagnosis and treatment of specific diseases. Collectively, the diverse
array of cfRNA molecules reflects the intricate regulation of gene expression in cellular
activity and disease states. Realizing their potential value in disease diagnosis, prognostic
evaluation, and therapeutic monitoring depends on gaining an in-depth understanding of
their diversity and functionality. Thus, further research is essential to discern their specific
applications and significance in clinical practice.

3. Biological Functions of cfRNA

As showed in Figure 1, cfRNA represents a complex and actively researched area
within biology. These RNA molecules exist as fragments of varying lengths and are
associated with multiple potential biological functions. Firstly, cell-to-cell communication
may occur via cfRNA, which acts as a vector transmitting RNA fragments through the
bloodstream to affect the biological processes of distant cells. Extensive research has
shown that cfRNA can be transmitted between cells through mechanisms such as urinary
bubble RNA-binding proteins, which serve as carriers of information. This intercellular
communication serves the purpose of regulating cellular function at locations far from
where the cells were produced, such as during damage repair, disease states, and immune
responses [36,37]. However, the exact mechanisms and influence of cfRNA in intercellular
communication remain subject to ongoing investigation. Therefore, further experiments
and studies are necessary to uncover its detailed molecular mechanisms and biological
function.

Secondly, plasma cfRNA can directly participate in gene regulation in target cells,
with miRNA, for example, inhibiting gene translation or inducing gene degradation by
binding to the mRNA of target genes, thereby impacting the functional immune regulation
of the target cells [38,39]. The gene regulation function of cfRNA is an actively evolving
field of research, characterized by continuous discoveries and insights. Plasma cfRNA
molecules serve a critical role in intercellular communication and gene regulation. miRNA,
for example, acts through a mechanism wherein it binds to the mRNA of target genes,
leading to the inhibition of gene translation or the promotion of mRNA degradation [40].
Exosome bubbles or binding proteins facilitate the release of RNA into the extracellular
environment, where they exert a regulatory influence on distant cells. The interactions of
RNAs with target genes in plasma play a pivotal role in various biological processes such as
cell proliferation [41], apoptosis [42], differentiation [39], metabolism [43], and immune re-
sponses [44], thereby significantly impacting disease pathogenesis and progression. On the
other hand, long non-coding RNAs (lncRNAs) are characterized as long-length non-coding
RNAs that impact gene expression through various regulatory mechanisms, including
chromatin modification [45] and transcriptional regulatory protein stability [46]. Similar
to other RNAs, lncRNAs can be transferred to other cells in plasma through extracellular
vesicles, such as exosomes, to exert a distant regulatory influence. Notably, lncRNA is
instrumental in tumor development, the regulation of the cell cycle, and other key cellular
processes [46,47]. Additionally, small RNA fragments present in plasma may regulate
protein translation by binding to mRNA, thereby influencing gene expression. These small
RNA fragments are capable of being transferred between cells, affecting cellular func-
tion by regulating gene expression levels [48,49]. Ultimately, the regulatory functions of
cfRNA molecules have far-reaching implications in various physiological and pathological
processes, underpinning their significance in cellular and molecular biology research.

Furthermore, several studies indicate that cfRNA may influence immune system
responses by modulating the activity of immune cells, thereby affecting immune responses
to combat infection and control tumors [50,51]. cfRNA has an immunomodulatory function
that impacts the regulation of immune cells. miRNA in plasma can be released into the
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environment through exosomes or bubbles and taken up by other cells, including immune
cells [52]. Once internalized, RNAs have the potential to regulate the expression of target
genes, affect the development and differentiation of immune cells, and inhibit inflammation.
Some RNAs are particularly important in inhibiting the inflammatory response by reducing
the inflammatory response and maintaining the immune system balance through the
regulation of inflammation-related genes [53,54]. Furthermore, plasma miRNA’s effects
on the immune system extend to T-cell regulation, wherein it may influence the antiviral
immunity by regulating the function of T-cells, including promoting or inhibiting their
proliferation, differentiation, and apoptosis [55–57]. Certain RNAs may play a key role in
regulating antiviral immunity by influencing the expression level of antiviral genes and
immune cells’ responses to viruses, thereby affecting the overall function of the immune
system by regulating the expression of immunoregulatory factors, such as interferon
chemokines [58,59]. In addition, cfRNA can impact the polarization of immune cells, such
as M1/M2 macrophage polarization, thereby affecting the balanced immune tolerance of
inflammatory responses and immune regulation [60]. Furthermore, studies have indicated
that cfRNA molecules are associated with T-cell tolerance by affecting T-cell development
and function, regulating the immune system’s tolerance to autoantigens, and preventing
the occurrence of autoimmune diseases [61]. Abnormal expressions of cfRNA are linked to
the occurrence and development of autoimmune diseases, such as rheumatoid arthritis [62]
and systemic lupus erythematosus [63].

Additionally, certain cfRNA molecules may also be involved in apoptosis and cell
survival, which are crucial for tissue homeostasis. The regulation of apoptosis by miRNA
is a multifaceted process that encompasses both the promotion and inhibition of cell death.
Some RNAs have been identified as proponents of apoptosis, achieving this by either
inhibiting anti-apoptosis genes or augmenting the expression of apoptosis-inducing fac-
tors [64]. These specific RNAs are present in plasma and may be transported to target cells
through exosomes or other carriers, resulting in a direct impact on cell survival. Moreover,
the interaction of RNAs with apoptosis-related genes such as Bcl-2 [65] and Caspases [66]
serves to modulate the expression levels of these genes, subsequently influencing the
susceptibility of cells to apoptosis. Conversely, there are RNAs that exhibit anti-apoptotic
properties, exerting their effect by promoting the expression of anti-apoptosis genes or ham-
pering the activity of apoptosis-inducing factors to sustain cell survival. This dichotomy
highlights the role of cfRNA in delicately regulating the balance between cell survival
and apoptosis [67]. Additionally, cfRNA can influence cell survival states through the
modulation of survival signaling pathways, including the PI3K/AKT and MAPK path-
ways [68,69]. Beyond miRNA, other small RNA fragments in plasma may also partake
in the regulation of cell survival and apoptosis by interacting with mRNA or proteins to
modulate intracellular signaling pathways. This underscores the intricate nature of miRNA
and other small RNA fragments in orchestrating the delicate intertwined processes of cell
survival and apoptosis regulation [70–72].

Additionally, alterations in cfRNA may serve as potential biomarkers for diseases,
notably apoptosis and survival in cancer and other diseases, reflecting biological changes
in cells and tissues. Moreover, some studies have shown that they may regulate pathways
related to angiogenesis [73], impacting the development and maintenance of the vascular
system, as well as playing a regulatory role in neurodevelopmental, neuroprotection, and
neurodegenerative diseases [74,75]. Importantly, it is crucial to recognize that the specific
function of cfRNA may vary depending on its species, and different types of RNA may
play distinct roles in the body. Consequently, ongoing research is imperative to uncover
the numerous unknowns and fully understand the biological function of cfRNA, given its
complex nature and the need for thorough and continuous investigation.

4. Methods of cfRNA Detection

Various techniques have been developed to detect and analyze cfRNA in plasma. The
detection of cfRNA involves several methods, beginning with RNA extraction as the initial
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step. Due to the low concentration of RNA in plasma, efficient extraction methods such as
the phenol/chloroform silica gel column and magnetic bead methods are commonly em-
ployed to ensure sufficient RNA yields. Following extraction, reverse transcription (RT) is
essential to convert the single-stranded RNA in plasma into complementary DNA (cDNA),
a key step in the detection process. Common RT methods include reverse transcription poly-
merase chain reaction (RT-PCR) and reverse transcriptase chain amplification (RT-qPCR).
Subsequently, quantitative PCR, including real-time fluorescent quantitative PCR (qPCR),
is employed to amplify and detect specific RNA molecules, enabling the quantification of
mRNA and miRNA in plasma. Additionally, the traditional method of Northern Blotting,
though less commonly used than PCR techniques, remains valuable in specific instances for
separating RNAs via electrophoresis and detecting specific RNAs via membrane transfer
and probe hybridization. Next-generation sequencing (NGS) technology provides compre-
hensive information about different RNA species and their relative abundance in plasma,
thereby facilitating the discovery of new RNA markers and understanding of the overall
diversity of cfRNA [76]. Furthermore, flow cytometry, a cytological technique, can rapidly
and accurately quantify specific cfRNA molecules by combining them with a fluorescently
labeled probe [77]. When selecting the detection method, consideration must be given to
the sensitivity, specificity, and availability of laboratory technology and equipment. In
general, a combination of detection approaches may provide a more holistic understanding
of the diversity and abundance of free RNA in plasma.

As showed in Table 1, various methods are used for the detection of cfRNA, each with
distinct advantages and limitations. Real-time fluorescence quantitative PCR (RT-qPCR) is a
widely utilized method due to its high sensitivity, good quantification, and suitability for the
detection of specific RNA sequences [78]. However, it is limited to the detection of known
RNA sequences and requires prior knowledge of the target RNA’s sequence information [79,
80]. Next-generation sequencing (NGS) provides the ability to comprehensively detect RNA
sequencing (RNA-seq) in plasma with high throughput, including known and unknown
sequences, making it suitable for the discovery of new RNA markers and offering detailed
transcriptomic information [10,81]. Despite these advantages, it comes with relatively high
costs and data analysis difficulties, particularly in large-scale epidemiological studies [76,
82]. Polyadenylation ligation-mediated sequencing (PALM-Seq), also known as RNA
sequencing, is a technique used to study RNA molecule sequences and is often associated
with the presence of Polyadenosine (PolyA) in RNA. This technique offers numerous
advantages and disadvantages that are important for researchers to consider. PALM-
Seq offers several advantages, such as the ability to quantify transcription and discover
new transcripts, as well as the ability to detect variable splicing events and study RNA
modifications. However, it is important to consider the associated drawbacks, including
the high cost and stringent RNA quality and integrity requirements. Furthermore, PALM-
Seq does not provide absolute gene expression levels and necessitates the use of complex
bioinformatics tools and algorithms for data analysis [83,84]. Digital PCR, specifically
droplet digital PCR (ddPCR), is a widely used technology for achieving more accurate
detection. It falls under the third-generation PCR category, and it offers four primary
application directions, including absolute quantification [85], rare copy detection [86], copy
number variation analysis [87], and the determination of gene expression levels [88]. ddPCR
provides more accurate quantitative information, particularly for low-copy-number RNA
detection, making it suitable for rare events [89,90]. On the other hand, mass spectrometry
can be used to detect a variety of RNA modifications and provide detailed RNA structure
information [91,92], albeit with the requirement of complex instruments, professional
techniques, high costs, and a limited scope of application [93,94]. Flow cytometry can be
applied to detect cfRNA, which includes the analysis of RNA expressions of specific cell
subsets. This technique can also be combined with appropriate antibodies or fluorescent
probes to identify modifications on RNAs, such as m6A (N6-methyadenylate), as well
as for investigating intracellular RNA localization and dynamics [95]. Flow cytometry
is primarily advantageous in the detection of cell surface markers and proteins, whereas
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its applications in RNA detection are somewhat limited. When compared to other RNA
analysis techniques like RT-qPCR or RNA sequencing, flow cytometry may present some
drawbacks, particularly for complex RNA expression analyses [43,96]. Furthermore, the
limitations of RNA distribution in tissues highlight the need for suitable methods to study
such distributions, as the detection of free RNA in plasma may not be sensitive enough
and is more appropriate for tissue sample selection. Ultimately, selecting the appropriate
method depends on the specific purpose of the study, the budget, the sample size, and the
available laboratory equipment and technology. Combining multiple methods can provide
a more comprehensive understanding of free RNA in plasma. We summarized the methods
of cfRNA detection in recent research (Table 2).

Table 1. The advantages and limitations of different methods for detecting cfRNA in plasma.

Detection Method Advantages Limitations

RT-qPCR Real-time fluorescence
Quantitative PCR

High sensitivity
Good quantification

Detects specific RNA sequences
Limited by unknown RNA sequences

NGS Next-generation
sequencing

High throughput
Includes known and unknown

sequences

High costs
Data analysis difficulties

PALM-Seq
Polyadenylation

ligation-mediated
sequencing

Quantifies transcription
Discovers new transcripts
Variable splicing events

RNA modifications

High costs
Stringent RNA quality
Integrity requirements

Less gene-expression levels

ddPCR Droplet digital PCR

Absolute quantification
Detects a variety of RNA modifications

Provides detailed RNA structure
information

Complex instruments
Professional techniques

High costs
Limited scope of application

Flow cytometry Detects cell surface markers
and proteins

Less suitable for complex RNA
expression analyses

Table 2. Summary of detection methods for cfRNA in recent research.

Detection Method Biomarker Type Disease Value Reference

qRT-PCR

mRNA HCC/MM and related
pre-malignant diseases Identification [81]

mRNA Colorectal cancer Monitoring progression [78]
mRNA Preterm birth (PTB) Predication [82]

mRNA Thyroid cancer Quantification of thyroid volume
Recurrence predication [80]

mRNA Glioma Identification [97]
cfRNA Preeclampsia Predication [98]

mRNA Pregnancy infections
Monitoring immune response and

microbial infections during
pregnancy

[99]

mRNA Melanoma Identification of novel therapeutic
targets or biomarkers [100]

qRT-PCR and
PCF RNA testing

mRNA
miRNA

Embryonic trisomy 21
in the first trimester Diagnosis [79]

NGS

mRNA
rRNA

Non-small-cell lung
cancers

Monitoring progression
Disease prognosis prediction [101]

Total cfRNA Lung cancer Early diagnosis [102]
cfRNA Lung cancer Diagnosis [103]
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Table 2. Cont.

Detection Method Biomarker Type Disease Value Reference

NGS
RT-ddPCR Solid cancers Early diagnosis [76]

PALM-Seq

miRNA
tRNA

mRNA
COVID-19 Prediction [84]

mRNA
miRNA Preeclampsia Predication [83]

ddPCR
mRNA Neuroblastoma Diagnosis [89]
mRNA
ctDNA Pediatric solid tumors Potential biomarker identification [90]

5. Circulating cfRNA in Disease Diagnosis

Plasma cfRNA has shown great promise as a diagnostic tool in various diseases. In
cancer, cfRNA analysis enables the detection of tumor-specific genetic alterations, facilitat-
ing early diagnosis and the monitoring of treatment responses [81]. In certain instances,
cancer cells release specific RNA or miRNA molecules that can be identified in plasma.
This makes cfRNA a potential marker for early cancer diagnosis, even in small tumors
without clear symptoms [76]. The analysis of free RNA has emerged as a valuable tool with
significant potential in cancer diagnosis, cancer detection, the prediction of tumor origin
tissues, and the identification of cancer subtypes [97,98]. This promising analyte offers a
unique opportunity to uncover tissue- and subtype-specific biomarkers in breast and lung
cancer patients [101]. It is essential to establish a baseline cell-free transcriptome in the ab-
sence of cancer, facilitating the identification of tissue specificity and subtype specificity in
breast and lung cancer patients [16]. After cancer treatment, monitoring changes in cfRNA
can help detect cancer recurrence earlier. Regular testing of plasma samples from patients
can lead to the timely treatment of potential recurrences. One study found that plasma
miR-4442 levels were associated with colorectal cancer (CRC) recurrence and showed an
incremental increase with earlier recurrence dates. Furthermore, miR-4442 demonstrated
high sensitivity and specificity as a potential biomarker for early CRC recurrence. Subse-
quent analyses indicated that the expression of miR-4442 in cancer tissues of patients with
metastatic liver cancer from CRC was higher than that in normal liver, CRC, and normal
colorectal tissues. Notably, the overexpression of miR-4442 promoted the proliferative,
migratory, and invasive activities of CRC cells, while also resulting in decreased levels of
RBMS1 and E-cadherin, and increased levels of N-cadherin and Snail1. These findings
underscore the clinical utility of plasma miR-4442 as a biomarker for predicting the early
recurrence of CRC [104]. In addition, cfRNA has shown to have a potential biomarker role
in a variety of cancers. The study of cfRNA has made significant progress in the field of
breast cancer, and several miRNA and long-stranded RNA molecules in cfRNA have been
found to be abnormally expressed in breast cancer patients [105,106]. These RNAs have the
potential for use in the diagnosis of early breast cancer, prediction of patient prognoses,
and monitoring of treatment responses [107,108]. Furthermore, changes in the expression
levels of specific miRNA molecules in the plasma of lung cancer patients have been linked
to the occurrence and development of lung cancer, indicating potential clinical applications
for early diagnosis [102,103]. Additionally, some miRNA and mRNA expression levels
in plasma exhibit significant variation in patients with gastric cancer [109,110] and liver
cancer [111,112], presenting promising prospects for early diagnosis and treatment moni-
toring of these cancers. Similarly, research focusing on prostate cancer has been seeking
potential biomarkers to aid in diagnostic and therapeutic monitoring [113,114], while stud-
ies on colorectal cancer have indicated associations between certain miRNA molecules in
plasma and the development and progression of this disease [7,115]. Moreover, scientists
are actively exploring the potential application of cfRNA as a biomarker in other cancer



Diagnostics 2024, 14, 1045 9 of 20

types, emphasizing the need for further in-depth research and validation in this area. It is
important to note that despite promising research results, the application of these markers
in clinical practice still requires additional validation and standardization.

In infectious diseases, the presence of pathogen-specific RNAs in plasma cfRNA can
aid in the identification of the causative agent [116,117]. Furthermore, cfRNA analysis
has potential applications in cardiovascular diseases [47,118,119] and neurodegenerative
conditions [120]. The detection and analysis of cfRNA as a potential biomarker in disease
diagnosis can provide valuable insights into the development and treatment responses of
diseases. Changes in the expression levels of cfRNA are associated with the onset and pro-
gression of various diseases, including cancer, cardiovascular diseases, infectious diseases,
and neurological diseases. Identifying these changes enables the identification of potential
biomarkers for early diagnosis and disease monitoring in diverse conditions. Notably, in
cancer diagnosis, cfRNA released by tumor cells can be detected in the blood, making it
a non-invasive cancer marker. Studies have explored the potential application of cfRNA
in various cancer types, such as breast cancer, lung cancer, and gastrointestinal tumors.
Moreover, the analysis of cfRNA in detecting infectious diseases, such as viral infections,
has potential clinical applications for early diagnosis and monitoring [99]. Additionally, the
alteration of neurosystem-related RNAs in neurological diseases, such as Alzheimer’s [121]
and Parkinson’s disease [122,123], provides potential biomarkers for diagnosis and thera-
peutic response monitoring. It is essential to acknowledge that while cfRNA holds potential
in disease diagnosis, further research and validation are needed. Consideration of the
sensitivity and specificity of the technology available is crucial to ensure its reliability in
clinical practice as this field continues to evolve.

6. Circulating cfRNA in Disease Prognosis

cfRNA plays a crucial role in disease prognosis assessments, serving as a prognostic
marker, monitoring treatment responses, and providing insights into disease progression.
Specifically, in diseases like cancer, alterations in cfRNA levels can be indicative of disease
prognosis. For instance, the types and quantity of tumor-associated free RNA in a patient’s
plasma can be linked to the risk of disease progression and recurrence, as well as the overall
prognosis [60]. Furthermore, monitoring changes in cfRNA during treatment can offer
valuable information regarding a treatment’s effectiveness and a disease’s progression.
Treatment-induced fluctuations in specific RNA levels can be utilized to evaluate a pa-
tient’s response to treatment and forecast disease progression rates and severity [2]. By
scrutinizing cfRNA, medical professionals can gain a deeper understanding of a patient’s
pathophysiological state and disease characteristics, and can tailor individualized treatment
plans based on RNA marker variations. Despite the potential of cfRNA in disease prognosis,
extensive research and clinical validation are imperative to identify the most predictive
RNA molecules for specific diseases and ensure the accuracy and reliability of correspond-
ing detection methods. This comprehensive approach will enable the optimization of
treatment strategies and enhance the overall treatment effectiveness.

The examination of cfRNA’s role in disease prognosis, particularly miRNA and other
RNA molecules influencing disease therapeutic responses and patient prognoses, is cur-
rently a focal point of research. Specific levels of cfRNA are associated with the clinical
features, survival, and treatment responses of tumors, presenting a crucial role in tumor
prognosis. The analysis of miRNA expression in plasma through survival analysis provides
valuable information for patient prognosis, with particular RNAs indicating a favorable
prognosis and others signaling a worsening prognosis. Tumor-associated RNAs, found
in plasma, are crucial for tumor prognosis. Several studies have linked specific miRNA
expression levels to tumor clinical features, survival, and responses to treatment [55,74].
cfRNA also substantially impacts the prognosis of cardiovascular diseases. Changes in the
expression of certain RNAs in plasma following myocardial infarction are closely linked to
a patient’s prognosis and can predict cardiovascular events, enabling the use of specific
cfRNA molecules to forecast the risk of cardiovascular events and facilitate the early in-
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tervention and treatment of neurological outcomes [47,119]. Furthermore, alterations in
miRNA expression in plasma are associated with the prognosis of neurological diseases
and patient outcomes, including the development of neurodegenerative diseases. cfRNA
molecules are also biomarkers for assessing a patient’s prognosis post stroke and have the
potential to serve as biomarkers for predicting the prognoses of infectious diseases, reflect-
ing immune responses and disease progression [74]. Additionally, cfRNA is correlated with
the treatment responses and progression of immune system diseases, offering insights into
predicting long-term patient outcomes. The role of cfRNA in disease prognosis spans vari-
ous categories, including tumors, cardiovascular diseases, neurological diseases, infectious
diseases, and immune system diseases [23,46]. Consequently, changes in the expression
patterns and levels of these RNA molecules hold the potential to serve as biomarkers for
enhancing prognostic assessments of diseases, guiding treatment decisions, and supporting
personalized medicine. Nevertheless, additional research and validation are required to
elucidate their precise mechanisms and specific clinical applications.

7. Circulating cfRNA in Disease Treatment

The potential role of cfRNA in disease treatment encompasses several crucial aspects.
Firstly, certain expression patterns of cfRNA bear substantial implications for the prognosis
and therapeutic response of specific diseases. This analysis aids in the prediction of disease
progression, formulation of treatment plans, and assessment of treatment effectiveness.
Moreover, alterations in cfRNA during treatment can function as a biomarker of therapeutic
effects, affording valuable insights into therapeutic responses and guiding the adaptation of
treatment protocols. Importantly, the potential utility of cfRNA extends beyond diagnosis,
serving as a tool to identify new therapeutic targets linked to diseases [100]. Systematic
analyses of cfRNA can yield information conducive to the discovery of novel drugs or
treatments that enhance the efficacy of disease-specific treatments. Furthermore, the ex-
amination of cfRNA contributes to an enhanced understanding of disease biology. By
scrutinizing the expression patterns and function of these RNA molecules, researchers
can garner insights into the biological mechanisms of diseases, thereby informing the
development of more efficacious treatment strategies [15,106].

cfRNA plays a pivotal role in therapeutic monitoring, fulfilling various functions
in this process. Firstly, the evaluation of therapeutic responses relies on the expression
pattern or level of cfRNA, which may change as treatment progresses. By regularly testing
cfRNA, doctors can assess a patient’s response to treatment. In cases where treatment is
effective, the RNA associated with a particular disease may decrease or disappear, while
its expression may increase if treatment is less effective or if the disease relapses. Conse-
quently, this monitoring aids in tracking treatment effectiveness and disease progression.
Moreover, cfRNA analysis facilitates the early prediction of treatment effects. Specifically,
it allows doctors to anticipate a treatment’s efficacy in the initial stage, offering insights
into whether the patient has positively responded to the treatment. This early knowledge
enables adjustments to the treatment plan, thereby enhancing the likelihood of treatment
success. Notably, individual variations in patients’ responses to the same treatment due to
differing pathophysiological characteristics make it essential to monitor cfRNA [19]. This
approach enables doctors to grasp the patient’s condition better and tailor their treatment
plan based on individual differences, thereby enhancing treatment targeting and effective-
ness. Furthermore, monitoring cfRNA serves as a useful way to detect disease recurrence
after treatment completion. Some diseases may experience remission post treatment, and
continuous monitoring of RNA changes helps doctors identify signs of disease recurrence
promptly. This timely detection enables necessary measures to be taken to mitigate disease
resurgence. Lastly, the monitoring of cfRNA minimizes the likelihood of unnecessary
treatments being administered for patients unsuitable for or not benefiting from a specific
treatment. By adjusting treatment plans based on monitoring results, doctors can better
manage patients’ treatment, reducing unnecessary side effects and costs [95].
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cfRNA plays an important role in the discovery of drug targets and new therapies, as
reflected in several key aspects. Firstly, changes in cfRNA are closely related to the develop-
ment and progression of diseases, making it possible to identify biomarkers associated with
specific disease states through the analysis of free RNA in the plasma. These biomarkers
can serve as potential drug targets or indicators of therapeutic responses, facilitating a
better understanding of the molecular mechanisms of diseases [124]. Additionally, studying
the abnormal expression of free RNA in disease states enables researchers to identify key
molecules associated with disease progression that may become new drug targets. This
understanding helps in developing more targeted and effective pathophysiological drug
mechanisms [41]. Furthermore, analyzing the expression profile of cfRNA in different
disease states provides insights into the molecular basis of diseases, revealing their key
signaling pathways and biological processes. This understanding supports the design of
new therapeutic strategies and individualized treatment plans based on the expression
patterns of specific RNAs in a patient’s plasma, aiming to improve treatment targeting,
reduce side effects, and increase treatment success rates. Lastly, the analysis of cfRNA
can be utilized to assess the efficacy and safety of drugs, enabling the full assessment of
drug effectiveness and the timely detection of potential adverse reactions or toxicity by
monitoring changes in the RNAs in a patient’s plasma during treatment [15,106].

Despite its potential applications in disease treatment, the application of cfRNA
is fraught with challenges related to the stability of standardized RNAs obtained from
samples, standardized analytical techniques, and clinical validation. Nonetheless, with the
continuous advancement of technology and comprehensive research, the potential role of
cfRNA as a biomarker in disease treatment will attract considerable attention. We have
summarized the clinical value of cfRNA and methods for its detection according to recent
research in Table 2.

8. Challenges and Future Perspectives

Despite the potential clinical applications of cfRNA in disease diagnosis and prognostic
assessments, practical challenges hinder its effective implementation. One such challenge
is the sourcing and handling of samples. The content of cfRNA is relatively low and is
susceptible to interference from external factors. Hence, ensuring the integrity of RNA
molecules requires meticulous attention when selecting the conditions for sample collection,
processing, and storage. Improper treatment can result in RNA degradation, undermining
the reliability of subsequent analyses. Various types of RNases are present in the blood, such
as endonucleases and exonucleases. These enzymes can significantly affect the detection of
mRNA. RNase enzymes in the blood are responsible for breaking down free RNA molecules,
including mRNA. Consequently, if blood samples become contaminated with RNases
during collection, processing, or storage, the mRNA contained within them can undergo
rapid degradation, leading to compromised experimental accuracy [125]. To mitigate
the detrimental effects of RNases on mRNA integrity, a range of protective measures are
typically implemented during RNA sample handling and storage. These precautions
may include incorporating RNase inhibitors, storing the samples at low temperatures,
and minimizing the samples’ exposure to room temperature. Blood samples should be
processed promptly following collection, and precautions should be taken to prevent
contact with RNase-containing materials during sample handling in order to minimize
RNA sample degradation attributable to RNase activity [126,127].

Moreover, the lack of standardized sample processing and analysis methods presents
a hurdle, as different laboratories and research teams employ varied techniques. This diver-
sity complicates result comparison and integration, emphasizing the need for standardized
experimental procedures. Furthermore, the biological diversity across populations con-
tributes to significant variations in cfRNA expression levels among individuals and over
time. Therefore, large-scale clinical studies must account for these differences to establish
biomarkers with reliable specificity and sensitivity. In this context, the criticality of ensur-
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ing assay specificity and sensitivity in early disease diagnosis and prognostic assessments
becomes evident. The accurate detection of small RNA changes is crucial for precise results.

When performing RNA sequencing, the fragmented nature of circulating nucleic acids
poses a significant challenge, particularly for shorter miRNA and other small non-coding
RNA fragments. This nature of fragmentation may potentially affect the efficacy of certain
RNA types, such as mRNA and miRNA, as detected with sequencing technology [55,67]. To
address this challenge and enhance RNA detection, various strategies can be implemented.
These strategies include optimizing sample processing and extraction methods to mini-
mize the fragmentation of circulating nucleic acids. Additionally, utilizing specific RNA
extraction kits or methods can help safeguard the integrity of RNA molecules. Selecting
appropriate sequencing technologies and analytical methods is crucial for maximizing
the sensitivity and accuracy of circulating nucleic acid detection. Moreover, integrating
bioinformatics analyses with existing knowledge of RNA structures and functions can aid
in the interpretation of sequencing data, leading to the more precise identification and
quantification of circulating nucleic acids [35]. Various methods exist for extracting free
RNA from plasma or serum samples, as these samples contain free RNA molecules. One
common method is the plasma/serum total RNA extraction method, which is known for its
versatility in extracting RNAs of different lengths, including small and long RNA molecules.
This method boasts a high extraction efficiency, making it suitable for larger sample sizes.
Commercial kits designed for this purpose are readily available in the market, enabling
the extraction of RNAs suitable for a range of downstream applications, such as RT-qPCR
and RNA sequencing. However, the drawbacks of this method include the relatively high
costs of the kits, the complexity of the operation process, the requirement for specialized
laboratory equipment, and the need for advanced technology. Another specialized method
is the miRNA extraction method, specifically tailored for extracting small RNA molecules,
such as miRNA, from plasma or serum samples. This method is particularly advantageous
for capturing low-abundance miRNA. Nonetheless, it is characterized by its high cost
and limitations on the types and lengths of RNAs it can extract, making it unsuitable for
the extraction of long RNA molecules [1]. The magnetic bead separation method is also
commonly employed due to its use of magnetic bead binding technology, which facilitates
easy operation and fast extraction. This method is suitable for extracting RNA molecules
of varying lengths from plasma or serum samples. However, it requires the use of special
equipment, such as a magnetic bead separator, leading to increased experimental costs.
Additionally, some methods may exhibit limitations in terms of the purity and extraction
efficiency of the RNA molecules obtained. For those seeking a rapid extraction process,
there is the rapid extraction method, characterized by its simplicity and quick extraction
of free RNA. This method is ideal for extracting RNAs from small sample volumes, but it
may not achieve extraction efficiencies comparable to those achieved with other methods
and comes with a higher cost [128]. In summary, each extraction method has its own set
of advantages and disadvantages. Researchers must carefully assess their experimental
requirements, sample characteristics, and laboratory capabilities to select the most suitable
method for their specific needs.

Moreover, interpreting the biological significance of cfRNA and linking it to specific
disease states poses a complex challenge, necessitating independent validation of the
discovered biomarkers and clinical validation in large-scale studies. Ethical and regulatory
considerations add another layer of complexity, encompassing issues such as privacy and
lawful sample use. Furthermore, the cost of detecting cfRNA in practical applications
may be a limiting factor, underscoring the need for affordable assays for wider clinical
use. Notwithstanding these challenges, ongoing scientific efforts are aiming to address
these issues, fueling advancements in the application of cfRNA as a biomarker for disease
diagnosis and prognosis assessments. With advancing technology and increased clinical
validation, cfRNA is anticipated to emerge as a valuable tool in future clinical practice.

When analyzing circulating free RNA, the choice between using plasma or serum
as the sample source significantly impacts research and diagnostic outcomes. Both have
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distinct characteristics affecting the analysis, composition, and handling. Plasma offers ad-
vantages in terms of its high circulating cell-free RNA (cfRNA) integrity due to the reduced
RNA enzyme content resulting from the removal of cellular components like platelets dur-
ing processing [2]. Furthermore, due to cell lysis, platelet activation, and various proteins
and factors changing during coagulation, more nucleic acids are released, and the target
cfRNA may be degraded, which can lead to more data noise and analytical complexity
in serum compared to plasma [7,74]. cfRNA in plasma is more stable as it is isolated in
the presence of an anticoagulant, minimizing coagulation. However, processing plasma
can be complex, requiring the addition of anticoagulants that may complicate subsequent
analysis steps. On the other hand, serum preparation is simpler as it does not necessitate
anticoagulants and the serum can be separated via centrifugation post natural coagulation.
However, serum poses a greater risk of cfRNA degradation due to the potentially higher
RNA enzyme levels, which can impact analysis outcomes [12]. Alternatively, platelets may
act as a carrier, carrying a certain amount of cfRNA and further decreasing the cfRNA
in platelet-free serum during centrifugation. In conclusion, the choice between plasma
and serum for cfRNA analyses hinges on various factors such as the sample handling,
research objectives, and anticipated results, requiring careful consideration from investi-
gators. The potential of cfRNA as a biomarker for disease diagnosis and prognosis has
a wide-ranging impact on the future of clinical practice. The following are some poten-
tial future applications and directions for this promising biomarker. Early diagnosis and
screening represent a key area where cfRNA holds great promise. By detecting subtle RNA
changes, this biomarker can identify a patient’s risk prior to disease onset or the mani-
festation of symptoms, thus enabling earlier interventions and treatments. Personalized
therapy is another valuable application of cfRNA analysis. By examining a patient’s RNA
profile, healthcare professionals can tailor treatment plans, choose personalized and more
effective strategies, and enhance treatment success rates. Additionally, cfRNA has the
potential to monitor treatment responses in real time, facilitating timely adjustments to
treatment plans, improving treatment outcomes, and minimizing treatment-related adverse
events. In large-scale epidemiological studies, the analysis of cfRNA can be beneficial for
simultaneously detecting and differentiating multiple diseases, given the shared molec-
ular biomarkers across various diseases. The analysis of cfRNA plays a crucial role in
advancing precision medicine, which can provide personalized prevention, diagnostic,
and treatment options based on an individual’s genetic, physiological, and environmental
characteristics [1]. A comprehensive understanding of cfRNA can improve the awareness
of disease pathogeneses, disease progression patterns, and individual treatment responses,
thereby optimizing the accuracy and effectiveness of healthcare. Specifically, the benefits
of cfRNA analysis may include personalized diagnoses and treatment planning, the pre-
diction of therapeutic responses and adverse effects, the promotion of targeted therapies
and drug development, and the facilitation of interdisciplinary collaboration and data
integration. Personalized diagnoses and treatment planning involve a closer examination
of individual cfRNA profiles, allowing a deeper understanding of disease-specific biol-
ogy [19]. This enables customizable diagnoses and treatment options in order to achieve
improved therapeutic efficacy, unlike traditional medical methods that often follow a “one-
size-fits-all” strategy, neglecting individual variations in genetic composition, physiological
conditions, and environmental influences. Predicting therapeutic responses and adverse
effects through changes in cfRNA levels can guide treatment decisions by indicating a
patient’s responses to specific therapies, therapeutic effects, and potential adverse effects.
This analysis can help in predicting patient responses to treatment modalities, optimizing
treatment selection, and minimizing unnecessary treatments and adverse effects. cfRNA
analysis supports targeted therapy and drug development by identifying molecular targets
for diseases and offering insights for designing targeted therapeutic drugs to enhance the
precision and efficacy of treatments. Evaluating drug efficacy and safety through cfRNA
analysis accelerates the development and clinical application of new therapies. Further-
more, promoting interdisciplinary collaboration and data integration in cfRNA analysis is
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essential for realizing precision medicine. Collaboration across interdisciplinary fields such
as biology, medicine, and bioinformatics is necessary, involving experts from different do-
mains. Integrating various clinical, genomic, and epigenomic datasets establishes a robust
data platform for precision medicine, facilitating personalized diagnostic and therapeutic
strategies [129–131].

The wide adoption of cfRNA could serve as a valuable tool for these studies, offer-
ing insights into disease pathogenesis and influential factors. Continued technological
advancements, including the use of high-throughput sequencing and bioinformatics tools,
are likely to enhance the sensitivity and accuracy of cfRNA detection, addressing concerns
around standardization and repeatability, and advancing its application in clinical practice.
As clinical validation and trials progress, the integration of cfRNA with other diagnostic
and monitoring methods may offer more comprehensive patient management. Ultimately,
cfRNA is poised to be a pivotal tool in disease management, supporting precise and per-
sonalized medicine. However, the widespread utilization of cfRNA in clinical practice
warrants addressing challenges such as standardizing ethical and regulatory protocols, an
initiative that scientists and medical professionals are actively working on to realize its
broader application.

9. Conclusions

cfRNA has garnered considerable attention regarding its potential for diagnosing,
treating, and assessing the prognoses of diseases, positioning it to serve as a biomarker and
regulator that can drive the advancement of precision medicine. Despite its promise, the
complexity of cfRNA underscores the need for extensive and ongoing research to unravel
its many unknown aspects and attain a comprehensive understanding of its biological
function. Simultaneously, the continuous development in this field necessitates considering
the sensitivity and specificity of detection technology to ensure its reliability in clinical
applications. As clinical validation and trials progress, the combination of cfRNA with other
diagnostic and monitoring methods holds promise for bolstering patient management and
facilitating a more comprehensive approach to disease management, thereby supporting
the progress of precision and personalized medicine. To enable the widespread clinical
use of cfRNA, the challenges related to regulatory ethics and protocols must be addressed.
Scientists and medical professionals are actively pursuing initiatives aimed at surmounting
these challenges and expanding the implementation of cfRNA analysis methods in clinical
practice. This review comprehensively discusses the role of cfRNA in various diseases and
biological processes to establish a systematic framework of knowledge that can advance
the utilization of cfRNA molecules as biomarkers or therapeutic targets by researchers.
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