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Abstract: Artificial intelligence (AI) models have received considerable attention in recent years for
their ability to identify optical coherence tomography (OCT) biomarkers with clinical diagnostic
potential and predict disease progression. This study aims to externally validate a deep learning (DL)
algorithm by comparing its segmentation of retinal layers and fluid with a gold-standard method for
manually adjusting the automatic segmentation of the Heidelberg Spectralis HRA + OCT software
Version 6.16.8.0. A total of sixty OCT images of healthy subjects and patients with intermediate and
exudative age-related macular degeneration (AMD) were included. A quantitative analysis of the
retinal thickness and fluid area was performed, and the discrepancy between these methods was
investigated. The results showed a moderate-to-strong correlation between the metrics extracted by
both software types, in all the groups, and an overall near-perfect area overlap was observed, except
for in the inner segment ellipsoid (ISE) layer. The DL system detected a significant difference in the
outer retinal thickness across disease stages and accurately identified fluid in exudative cases. In more
diseased eyes, there was significantly more disagreement between these methods. This DL system
appears to be a reliable method for accessing important OCT biomarkers in AMD. However, further
accuracy testing should be conducted to confirm its validity in real-world settings to ultimately aid
ophthalmologists in OCT imaging management and guide timely treatment approaches.

Keywords: age-related macular degeneration; artificial intelligence; retinal layer segmentation;
fluid segmentation; deep learning; machine learning; optical coherence tomography; diagnosis;
external validation

1. Introduction

Age-related macular degeneration (AMD) is a leading cause of moderate-to-severe
visual impairment (MSVI) [1] and irreversible vision loss in adults aged 50 years and
older, in high-income countries [2]. It is estimated to be responsible for 8.7% of the global
blindness cases, and, because of population aging, its prevalence is expected to increase [3].

AMD primarily affects the macula, the region of the retina responsible for central vision.
This metabolic–inflammatory–vascular disease [4–6] is associated with ageing, genetic
predisposition [7], and environmental risk factors [8] and is characterised by the deposition
of lipid-rich extracellular metabolites within and/or beneath the retinal pigment epithelium
(RPE), known as drusen [9]. AMD can be classified into three stages: early, intermediate,
and late. Early AMD is defined by the presence of small drusen, while intermediate AMD
is associated with medium-sized drusen and retinal pigmentary abnormalities. Late AMD
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presents in two major forms: geographic atrophy (GA) and neovascular AMD (nAMD) [10].
The latter is caused by macular neovascularisation (MNV), which leads to the accumulation
of subretinal fluid (SRF), sub-RPE fluid (sRPEF), and/or intraretinal fluid (IRF).

Optical coherence tomography (OCT) is currently the gold standard for AMD man-
agement [11]. Cross-sectional scans of the retina at the micron scale are acquired, where
structural features—imaging biomarkers—are identifiable. Central retinal thickness was
one of the earliest described; however, others, such as drusen volume, hyperreflective foci
quantification [12,13], fluid volume, and pigment epithelial detachment (PED) [14,15], have
also been recognised for their insight into disease activity.

Since the rise of artificial intelligence (AI) in medical imaging, retinal OCT has been
at the forefront of ophthalmology research [16]. Deep learning (DL) models are currently
the state-of-the-art among AI technologies, and they have been shown to be capable for
assisting in AMD classification, diagnosis, and prognosis [17,18]; in the ongoing monitoring
of the treatment efficacy [19]; and in predicting disease progression [20].

Automated scan analysis using these algorithms is a faster, cost-effective, and fatigue-
free process. However, it may have some limitations that affect the quality and accuracy of
the results. Therefore, it is crucial to test recently developed and trained methods, such as
the BioImagingLab/INESC TEC model [21], on new datasets and externally validate them
for their applicability in real-world clinical practice.

This research article contributes to knowledge in the field of optical imaging in di-
agnosis assisted by AI algorithms, as it presents a novel comparison of the segmentation
accuracy to a manually adjusted gold standard. In addition, this article seeks to iden-
tify and analyse sites of failure in the DL system, which could represent areas for future
improvement of the software.

Thus, the present study aims to evaluate the performance of a DL algorithm in iden-
tifying and quantifying retinal layers’ thickness and fluid areas in OCT scans of healthy
and AMD eyes. First, quantitatively compare the DL system’s segmentation with the gold
standard of the manual adjustment of the Heidelberg Spectralis HRA + OCT automatic seg-
mentation. Subsequently, study whether there is a clear relationship between the thickness
layer values extracted and the disease stage, as well as the DL method accuracy in detecting
fluid in nAMD. Finally, investigate if the discrepancies between the segmentation methods
are related to the disease severity and to the subjective difficulty degree, as perceived by
the human eye.

2. Materials and Methods
2.1. Study Design

A validation study was conducted on normal eyes and eyes with AMD. The study
was single-centre, observational, retrospective, and cross-sectional.

The Ethics Committee of the Centro Hospitalar Universitário of São João approved
the study protocol for access to and analysis of the patients’ data. Informed consent from
patients was not applicable because all the clinical data and OCT images were anonymised
by investigators at the Ophthalmology Service. A code number, independent of the partici-
pants’ personal data, was generated to protect the patients’ identity. This clinical study was
conducted in accordance with the principles outlined in the Declaration of Helsinki.

2.2. Setting

OCT scans were collected from healthy eyes and patients diagnosed with intermediate
and exudative AMD and who presented for routine clinical care at the Ophthalmology
Service of the Centro Hospitalar Universitário of São João, a tertiary referral hospital,
between January 2010 and December 2023.

2.3. Study Population

A total of 60 fovea-centred cross-sectional OCT B-scans were included from 60 different
patients, comprising 20 healthy controls, 20 with intermediate AMD (iAMD), and 20 with
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exudative AMD (eAMD). Each patient was exclusively assigned to one of the three groups,
and only one eye per subject was studied.

A randomised numerical sequence was automatically generated, and each patient was
assigned a number at the baseline within their designated group. Inclusion and exclusion
criteria were applied until a total of 20 participants were obtained. If the random sequence
resulted in the selection of an eye from a patient whose contralateral eye was already
included, only one—the one with better visual acuity (whether right or left)—was chosen.

Male and female subjects were evenly distributed, with a 10:10 ratio per group. Con-
trols were required to be 50 years of age or older at the time of the image acquisition,
while AMD patients were included if they were 50 years of age or older at the time of
the diagnosis. Additionally, an adequate follow-up duration of at least one year after the
disease diagnosis was required.

Exclusion criteria for the study included images from patients diagnosed with diabetic
retinopathy, high myopia (refractive error ≤ −6.0 dioptres), and/or chorioretinal diseases
other than AMD. Patients with OCT scans with poor technical quality due to excessive
background noise, imaging artifacts, poor image centration, or reduced visualisation of the
retinal layers were also excluded.

In December 2023, 798 participants were assessed for eligibility, including 160 images
from healthy controls, 176 scans from individuals diagnosed with iAMD, and 630 OCTs
from patients with eAMD. The selection of patients and their allocation to each of the three
groups are shown in Figure 1. It is important to note that the retina.pt database contains
data from both eyes of each patient. Some cases of unilateral eAMD diagnosis occurred,
and the numerically sequenced chosen eye belonged to the contralateral eye, which was
either healthy or, more frequently, had intermediate AMD. This scenario was identified in
84 cases, which were also selectively excluded from the third group analysis.
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2.4. Identification and Image Data Collection

Controls and patients with iAMD were recruited from the electronic health records of
the Centro Hospitalar Universitário of São João by applying predefined filters: “Controlos”
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and “DMI Intermédia”, respectively, which mean “Controls” and “Intermediate AMD”.
Participants with eAMD were selected from the online database retina.pt under the category
“DMI Avançada (Membrana Neovascular Coroideia)”, which translates to “Late AMD
(Choroidal Neovascular Membrane)”.

The OCT images were selected from 6-, 18-, 19-, or 25-line horizontal volume scans
acquired using the automatic real-time (ART) function, always centred on the fovea.
Enhanced-depth-imaging (EDI) volume scans were not used because of the reduced quality
of the retinal layers because this modality typically provides enhanced visualisation of the
choroid instead. All the images had a maximum image height of 496 pixels and a variable
length, with dimensions of 512 (high-speed mode) or 1024 (high-resolution mode) pixels.
No standardisation of the image size was conducted, as these variations do not introduce
bias or affect image processing.

The OCT B-scan obtained by the investigators consistently corresponded to the initial
image acquired during the first medical consultation. The Heidelberg Spectralis propriety
software Version 6.16.8.0 has the capability to conduct retinal segmentation directly within
its interface and provides tools to manually adjust each boundary. All the original and
segmented images were exported as TIF files. Additionally, images of nAMD were imported
into a different platform, the MATLAB system, to complement fluid segmentation. Finally,
the original images were imported into the DL software, which performed fully automated
segmentation and compared the segmentation results with the gold standard at INESC
TEC—Institute for Systems and Computer Engineering, Technology, and Science.

2.5. Algorithm Description

Retinal layer segmentations were performed using two distinct methods.

2.5.1. Reference Standard

The first software that was used was Spectral-Domain Optical Coherence Tomography
(SD-OCT, Heidelberg Engineering GmbH, Heidelberg, Germany, Spectralis™ Acquisition
Software Version 6.16.8.0) provided with the Heidelberg Spectralis HRA + OCT. This is
the proprietary system available to assist ophthalmologists during clinical practice at the
Centro Hospitalar Universitário of São João. The software automatically detects ten retinal
boundaries. However, during adjusted automated segmentation, three boundaries were
omitted from the automated segmentation, as exemplified in Figure 2. This led to the
identification of eight final boundaries, thereby enabling a comparative analysis with the
segmentation performed by the DL software.

Only for the reference standard (RS) method, fluid segmentation was completed
using MATLAB R2023b Update 6 (23.2.0.2485118). The total retinal fluid, including the
subretinal fluid (SRF), sub-RPE fluid (sRPEF), and/or intraretinal fluid (IRF), was manually
segmented with some automatic suggestions as well.

This first described method was determined as the gold standard for validating the
DL model for retinal layers and fluid segmentation.

2.5.2. DL Software

The DL software that was tested was the BioImagingLab/INESC TEC model. The AI
algorithm itself identifies the corresponding eight boundaries, starting from the superior
limit: internal limiting membrane (ILM), nerve fibre layer/ganglion cell layer (NFL/GLC),
inner plexiform layer/inner nuclear layer (IPL/INL), inner nuclear layer/outer plexiform
layer (INL/OPL), outer plexiform layer/outer nuclear layer (OPL/ONL), inner segment
myoid/inner segment ellipsoid (ISM/ISE), outer segment/retinal pigment epithelium
(OS/RPE), and Bruch’s membrane (BM).

Thus, the seven retinal layers studied in all the groups and the fluid detected in nAMD
images are represented in Figure 3.
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Figure 2. Representative examples of retinal boundary segmentation on OCT B-scan for (a) controls,
(b) iAMD, and (c) eAMD patients: (a1,b1,c1) Automated segmentation generated by the Heidelberg
System. Retinal layers are as follows from the upper boundary to the lower boundary: internal
limiting membrane (ILM), retinal nerve fibre layer (RNFL), ganglion cell layer (GCL), inner plexiform
layer (IPL), inner nuclear layer (INL), outer plexiform layer (OPL), external limiting membrane
(ELM), ellipsoid zone (PR1), interdigitation zone (PR2), retinal pigment epithelium (RPE), and
Bruch’s membrane (BM); (a2,b2,c2) Adjusted automated segmentation, followed by the omission
of three layers: ganglion cell layer (GCL), external limiting membrane (ELM), and retinal pigment
epithelium (RPE).
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Figure 3. Examples of (a) control eye imaging, (b) iAMD eye imaging, and (c) eAMD eye imaging.
Representative examples of retinal layers and fluid segmentation using: (a1,b1,c1) the RS method
and (a2,b2,c2) the DL method.

2.6. Image Annotations

The adjusted automated segmentation was carried out by two examiners. Initially, the
retinal boundaries were established by a medical student. The annotations automatically
generated by the Heidelberg Spectralis software were reviewed and refined through manual
adjustments. This involved rearrangement when the system appeared to fail, the annotation
was considered to be inaccurate, or, in cases of doubt, the average of both suggestions was
represented. The segmentation was then corrected, if necessary, and validated by another
observer, an independent medical expert in the field.

During the annotation process, the student assigned a value to each OCT image to
reflect the perceived difficulty of the segmentation. This scale was determined subjectively,
taking into account the human perception of the image quality in the OCT scan, and was
based on a five-level scale: 1 = very easy (no difficulty in establishing any boundary),
2 = easy (difficulty in segmenting a region of the image into one or two boundaries),
3 = medium (difficulty in segmenting a region of the image into more than two boundaries),
4 = difficult (difficulty in segmenting one or two boundaries throughout the entire image),
and 5 = very difficult (difficulty in segmenting more than two boundaries throughout the
entire image).

The standard fluid segmentation also underwent revision and validation by the
same ophthalmologist.
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Finally, the fully automated segmentation of the retinal layers and fluid was gen-
erated by the AI system for the same 60 images. Figure 4 provides an overview of the
complete process.
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2.7. Outcomes

The primary outcomes were the agreement between the DL and RS evaluations and
the accuracy of DL software in detecting boundaries and quantifying the thickness of
the outer retina (ISE and OS-RPE) and fluid area in nAMD. The secondary outcome was
the variance in the disagreement observed between the methods across different image
categories: disease stage (objective score) and values of human-perceived difficulty of
segmentation (subjective score).

2.8. Statistical Analysis

The data were recorded and analysed using Microsoft Excel for Microsoft 365 MSO
(Version 2401 Build 16.0.17231.20236) and IBM SPSS Statistics 29.0.0.0 (241). A p-value of
less than 0.05 was assumed for statistical significance.

All the metrics were measured in pixels. The thickness of the segmented retinal layers
was converted to microns (µm) using a vertical scaling factor of 3.87 µm/pixel for all the
images. The fluid area was converted to square millimetres (mm2) using, additionally, one
of two different horizontal scaling factors: 11.35 µm/pixel for images taken in high-speed
mode or 5.7 µm/pixel for images captured in high-resolution mode.

Data normality was evaluated through the implementation of the Kolmogorov–Smirnov
test and the Shapiro–Wilk test.

To evaluate the performance of the DL system, a paired sample t-test was applied
to compare the means of the retinal layer thickness and fluid area between the DL and
RS methods. This was conducted to determine whether the observed differences were
statistically significant. Additionally, the Pearson correlation coefficient was calculated to
assess the level of correlation between the variables measured using the two methods. The
correlation strength (correlation coefficient value, r) was categorised as weak (0 < r < 0.3
or −0.3 < r < 0), moderate (0.3 ≤ r < 0.7 or −0.7 < r ≤ −0.3), or strong (0.7 ≤ r < 1 or
−1 < r ≤ −0.7). Finally, the Dice score, also known as the Dice similarity coefficient, was
obtained to evaluate the similarity between the segmentation results and the gold standard.
The Dice values range from 0 (no overlap) to 1 (perfect overlap).

To further evaluate the accuracy, the relationship between the thickness of the outer
retina extracted by the DL system and the disease stage was investigated through a one-
way ANOVA test. Furthermore, a Bland–Altman plot analysis with linear regression was
employed to evaluate the concordance between the AI software and RS assessment in
quantifying the fluid area.

Finally, the differences in the pairs of measures of the retinal thickness and fluid area
between the software types were compared using one-way ANOVA tests. The comparison
was made with respect to the degree of disease severity (controls, iAMD, and eAMD), as
well as the subjective classification assigned during the RS annotation (very easy, easy,
medium, difficult, and very difficult).

3. Results

A total of 60 images from 60 patients were included in this study, with 20 images
each from healthy controls (mean age ± standard deviation (SD): 63.15 ± 8.00 years,
range: 50–79 years), iAMD (mean age ± SD: 71.80 ± 7.72 years, range: 59–83 years),
and eAMD (mean age ± SD: 73.80 ± 9.99 years, range: 53–93 years) for a comparative
quantitative analysis.

The mean retinal thickness was 307.22 ± 82.99 µm (range: 277.34–332.50 µm) in
controls, 319.12 ± 109.79 µm (range: 279.00–395.74 µm) in iAMD, and 332.74 ± 156.91 µm
(range: 259.79–384.90 µm) in eAMD.

3.1. Performance Evaluation of the DL Software

The assessment of the AI algorithm’s performance involved comparing the automated
layer segmentation and the thickness values obtained through the DL system with the
measurements obtained from the RS method (Table 1).
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Table 1. Retinal layer thickness and fluid area obtained from healthy controls, iAMD, and eAMD
groups using both RS and DL software. The following layers were considered: ganglion cell
layer–inner plexiform layer (GCL–IPL), inner nuclear layer (INL), inner segment ellipsoid (ISE),
nerve fibre layer (NFL), outer nuclear layer–inner segment myoid (ONL–ISM), outer plexiform layer
(OPL), and outer segment–retinal pigment epithelium (OS–RPE). DL: deep learning; eAMD: exudative
AMD; iAMD: intermediate AMD; SD: standard deviation.

Reference Standard
(Mean ± SD)

DL Software
(Mean ± SD) Paired t-Test (p Value)

Pearson
Correlation

Coefficient (r)

Dice
Coefficient

Healthy Controls (n = 20)

NFL 20.10 ± 10.61 18.23 ± 11.24 <0.001 0.924 0.989

GCL–IPL 71.43 ± 23.32 70.78 ± 24.40 0.101 0.956 0.995

INL 33.00 ± 10.21 32.00 ± 11.38 <0.001 0.980 0.995

OPL 27.47 ± 9.55 26.21 ± 8.88 <0.001 0.971 0.978

ONL–ISM 89.82 ± 20.20 96.83 ± 20.22 <0.001 0.957 0.962

ISE 32.28 ± 5.29 20.91 ± 3.74 <0.001 0.395 † 0.783

OS–RPE 32.96 ± 3.78 42.43 ± 3.18 <0.001 0.227 † 0.928

iAMD (n = 20)

NFL 21.96 ± 12.39 19.91 ± 12.61 <0.001 0.382 † 0.978

GCL–IPL 71.11 ± 23.28 72.03 ± 26.46 0.711 0.496 0.972

INL 33.00 ± 10.07 29.14 ± 11.25 <0.001 0.952 0.951

OPL 27.24 ± 9.37 32.33 ± 11.34 0.002 0.695 0.923

ONL–ISM 89.49 ± 21.93 88.34 ± 22.96 0.274 0.930 0.989

ISE 28.48 ± 6.01 22.84 ± 6.83 <0.001 0.148 † 0.881

OS–RPE 45.46 ± 21.15 56.91 ± 23.94 <0.001 0.477 0.927

eAMD (n = 20)

NFL 22.08 ± 12.71 19.54 ± 12.69 <0.001 0.814 0.938

GCL–IPL 69.96 ± 25.27 77.76 ± 29.75 0.019 −0.061 † 0.964

INL 34.64 ± 13.01 30.06 ± 12.44 0.002 0.388 † 0.938

OPL 31.92 ± 12.33 28.29 ± 15.53 0.003 0.645 0.919

ONL–ISM 71.26 ± 20.54 80.82 ± 24.27 <0.001 0.889 0.922

ISE 24.42 ± 7.61 20.36 ± 18.32 0.003 0.781 0.878

OS–RPE 87.08 ± 62.10 67.28 ± 47.26 <0.001 0.733 0.992

Fluid 0.125 * 0.127 * 0.192 0.999 0.976

* The standard deviation (SD) for the fluid area was not extracted. † The results were not statistically significant.

The paired sample t-test assessment revealed that in the control group, there was no
significant difference between the RS evaluation and the segmentation generated by the
DL system in the GCL–IPL layer. However, significant differences were observed in all
the other layers (p < 0.05). In the iAMD group, only the segmentation of the GCL–IPL
and ONL–ISM layers showed no significant difference between the two methods, while
significant differences were noted in all the other layers (p < 0.05). When comparing
pairs of metrics for eAMD, the segmentation of all the retinal layers had significant dif-
ferences, although no significant difference was found in fluid areas between the RS and
DL measurements.

All the layers in the control group had strongly positive Pearson correlation coefficients
(0.7 ≤ r < 1), except for the ISE and OS–RPE. In the iAMD group, there was a strongly
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positive (0.7 ≤ r < 1) correlation for the INL and ONL–ISM layers. Similarly, in eAMD,
the NFL, ONL–ISM, ISE, and OS–RPE layers and fluid segmentation also showed the
same positive correlation range. All the other pairs of layer thicknesses in iAMD and
eAMD showed a moderate correlation (0.3 ≤ r < 0.7), except for two layers in each group.
Specifically, ISE and OS-RPE in controls, NFL and ISE in iAMD, and GCL–IPL and INL in
eAMD had correlation coefficients that were not statistically significant.

Finally, the segmented area showed a near-perfect overlap between the methods in all
three groups, as revealed by the Dice coefficient. The mean Dice coefficients for the layers
were 0.947 for controls, 0.946 for iAMD, and 0.936 for eAMD. In addition, the fluid had a
Dice coefficient of 0.976.

3.2. Accessing DL Software’s Accuracy
3.2.1. Retinal Layer Thickness Segmentation

The one-way ANOVA test showed a statistically significant difference in the mean
thickness of the outer retina in the adjusted automated segmentation (p < 0.001) and in
the AI automatic segmentation (p = 0.026) across different disease severities. Figure 5
provides a visual representation of this relationship, particularly in the OS–RPE layer,
which showed a mean thickening of 27.06 µm and 12.43 µm with disease, using the RS and
the DL methods, respectively.
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Figure 5. Mean outer retinal thicknesses measured by (a) the RS and (b) the DL systems across three
different disease stages: controls, iAMD, and eAMD. eAMD: exudative AMD; iAMD: intermediate
AMD; ISE: inner segment ellipsoid; OS-RPE: outer segment–retinal pigment epithelium.

3.2.2. Fluid Segmentation

To compare the results of the DL system with RS for fluid segmentation, a Bland–Altman
plot with differences in the fluid area detected in eAMD eyes is presented in Figure 6. The
mean obtained difference was 0.001 ± 0.004 mm2. All the measurements, except for one
potential outlier, were within the range of ±1.96 SD (0.007–0.009). No apparent trend was
observed, suggesting that the DL software tended to either overestimate or underestimate
the fluid area, depending on the magnitude of the exudation.
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Figure 6. Bland–Altman plot analysis comparing the fluid area measures obtained using the DL
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The results of the linear regression analysis did not exhibit any statistical significance
(p = 0.164), which corroborated the absence of the proportional bias.

3.3. Disagreement between Methods in Layers’ Segmentation

A one-way ANOVA test revealed statistically significant differences between both
methods for all three stages of the disease severity (p < 0.001). However, there was no
statistically significant difference across the levels of perceived difficulty in segmentation
(p = 0.625). Representative graphs illustrating the variance across the objective and sub-
jective scales are found in Figure 7. It was observed that the disagreement increased, as
expected, with the disease progression. In iAMD, the DL method gave rise to higher values
for the layers’ thickness compared to the RS (positive difference), whereas in eAMD, the
DL system resulted in comparatively lower values (negative difference).
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4. Discussion

This article evaluates the performance of a DL algorithm in the automatic detection
and segmentation of retinal layers and fluid in three OCT data groups: healthy controls
and two different stages of AMD, intermediate and exudative.

In the absence of an established gold standard, it is a common practice to compare
automated AI segmentations with manual annotations, which are typically conducted
by independent masked retinal experts, as seen in other published studies [22,23]. How-
ever, this approach may not be completely reliable and precise, because of interobserver
and intraobserver variability, which introduces some degree of subjectivity [24]. Man-
ual segmentation may also be influenced by limitations in imaging resolution detectable
by the human eye. Therefore, even though differences may still exist between human
perception and machine interpretation, their merged contribution was considered as be-
ing reasonable. Thus, this study innovated by combining human expertise with non-AI
automatic suggestions—generated by the Heidelberg Version 6.16.8.0 and the MATLAB
Version 23.2.0.2485118 software for the layers and fluid, respectively—to establish a gold
standard for comparison with the DL system.

Additionally, this study included real-world OCT images from routine clinical prac-
tise rather than images acquired proposedly for investigation purposes. Efforts were
made to retain scans of all the levels of complexity, to create balanced groups, ensuring a
representative sample to truly test the system.

First, the objective was to determine whether there was agreement in segmentation
between the two systems. Significant differences were observed in almost all the pairs of
metrics, and in six cases, the Pearson correlation coefficient was not statistically significant.
Upon further investigation of the scatter plots between the RS and DL measures, outliers
were found in all the cases, except for the ISE layer pairs in controls. Therefore, the non-
significant results could be attributed to the presence of outliers in a small sample size.
Additionally, in general, there was a moderate-to-strong correlation in all the groups,
and the overlap segmentation area of the layers and fluid between both methods was
consistently near-perfect. Manual segmentation is a time-consuming and exhaustive task
that requires knowledge, a learning curve, and skill. AI-based detection methods could
help to overcome the mentioned disadvantages [25]. These results may emphasise the
potential this DL method holds in the future as a valuable tool to assist clinics in medical
practice, offering a faster, less-fatiguing, and more-systematic approach.

Second, the software accuracy was specifically evaluated by examining the extracted
values of the outer retinal thickness. This measurement is expected to be higher in recently
diagnosed and treatment-naïve patients. In iAMD, this increase may be caused by basal
laminar deposits beneath the RPE, namely, drusen formation, and macula elevation. In
eAMD, this thickening may be due to the accumulation of fluid and/or detachment of
the RPE. The thinning of some retinal layers may also occur as a consequence of RPE
and photoreceptor degeneration, but it is expected to develop over a longer course of the
disease [26]. In this study, the outer retina was defined as consisting of the last two measured
retinal layers, ISE and OS-RPE, as they were considered as being the most representative
layers for this analysis. The results showed a statistically significant difference, particularly
because of an increase in the thickness of the OS-RPE layer, as expected. If this biomarker
is correlated with the disease stage, it supports this research in confirming its potential for
disease classification.

During the evaluation of the software’s capacity to detect and measure the fluid, one
outlier was identified. The authors confirmed that it resulted from a vertical shift difference
between the fully automatic segmented image (maintaining the original OCT scan position)
and the one resulting from the adjusted automated segmentation. This discrepancy likely
occurred during the acquisition of the latter image because of a system error, which did not
occur in any other case. Despite this outlier, the overall interpretation of results indicates
that the DL system’s performance was not affected by the degree of exudation and that
it had the capability to accurately detect and quantify the fluid area. Patients with AMD
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might suffer insidious or sudden painless loss of central or pericentral vision (scotomas)
and perception distortion (metamorphopsia) [27], as well as reduced visual acuity under
low-luminance conditions and impaired dark adaptation [28]. These symptoms can notably
impact daily activities and quality of life [29]. Thus, to ensure timely clinical approaches
and treatment decisions, it is essential to distinguish between nonexudative and exudative
AMD based on OCT evaluation. In nonexudative AMD, there are currently limited effective
therapies for managing atrophy. The disease progression may be slowed with dietary anti-
oxidant supplementation [30], and only recently, innovational therapies for atrophic disease
have been approved [31]. Therefore, OCT findings consistent with nAMD may be more
determinant of the prognosis. If this software tool could aid ophthalmologists in detecting
and quantifying retinal fluid, a critical hallmark for initiating anti-vascular endothelial
growth factor (anti-VEGF) injections [32,33], which are highly effective, particularly in
difficult cases with smaller fluid areas appearing in OCT scans, it could potentially improve
patient management.

Finally, a more in-depth investigation was conducted to understand the sources of
the discrepancies, exploring both the objective and subjective difficulty levels. This study
found an association between a late disease stage and increased disagreement between
these methods. However, no statistical difference was found across the values of the human
perception of the difficulty in segmentation. The investigation into retinal pathology at
different stages of AMD allowed for an understanding of whether the severity of the disease
could impact the capacity of the system to accurately recognise and segment retinal layers.
This analysis identified areas where the system encountered reasonably higher difficulty,
providing insights to guide future technical improvements in the DL algorithm.

Furthermore, the validation of this AI method could enable its application in real-
world settings in clinical practice or even serve as an educational tool for new medical
professionals, contributing to their learning curve and skill development in interpreting
OCT images accurately.

This study had several limitations. First, the enrolled sample size was relatively small,
particularly given the single-centre nature of the study. A sample size of 123 OCT images
would be required to study a population with an expected prevalence of 8.7%, with a
confidence level of 95% and a sample error of 5%. Future research could benefit from a
larger population to better assure the generalisability of the findings. Second, the absence
of 3D volume measurements for both the retinal layers and fluid because of the need for
multiple 2D scans and the segmentation of each image individually. Nevertheless, further
investigation should consider seeking volumetric analyses, as previous studies have shown
their valuable insights [34,35]. Third, this study was limited to diagnostic evaluation, as
longitudinal follow-up data were not collected. Gathering such data could provide a more
comprehensive understanding of the predictive capabilities of the developed segmentation
system, including its prognostic value [36,37]. Lastly, the study only focused on AMD
pathology. It would be important to further include other retinal diseases, such as diabetic
retinopathy, central serous chorioretinopathy, epiretinal membrane, and glaucoma, as is
conducted in other approaches [38–41]. Testing the proposed method on a wider range of
retinal pathologies would be a valuable challenge and a step towards simulating real-world
clinical conditions.

In the future, there is the prospect for training this system in disease classification
using biomarkers, such as those studied in this paper, ultimately enabling an autonomous
diagnosis that could potentially precede human visual discernment. In a study setting
with a considerable sample size, it would be interesting to test the accuracy of the system
in classifying diseases and diagnosing them based on the retinal thickness. This could
be performed by calculating sensitivities, specificities, and predictive values. Another
aspect to explore would be the discriminative capacity of the DL system in distinguishing
between the presence and absence of fluid in OCT scans. This could be accomplished by
determining a cutoff value and measuring the area under a receiver operating characteristic
(ROC) curve (AUC).
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In summary, upon the completed validation of this segmentation system, several
potential clinical applications may arise. Formal implementation could enable early and
more-precise diagnoses, thereby facilitating timely therapeutic interventions, particularly
in exudative cases, thus improving patients’ prognoses and quality of life.

5. Conclusions

In conclusion, this study contributes to the current knowledge of AI algorithms in
OCT imaging. This DL algorithm, when compared to a reference standard, demonstrated
moderate-to-strong correlation between metrics, overall high overlap in area segmentation,
and the ability to detect outer retinal thickening across disease progression and proved
to have high precision for detecting fluid in exudative cases. Moreover, an increased
discrepancy between methods was observed in more-advanced disease stages.

Overall, these systems hold the potential to overachieve the precision of the human
eye. They could serve as reliable tools that could initially complement existing methods
and eventually function autonomously to detect, segment, measure, classify, diagnose, and
predict prognoses. Lastly, their integration into patient care and therapeutic assessment
could improve clinical outcomes in the ophthalmology field.
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