CSDNet: A Novel Deep Learning Framework for Improved Cataract State Detection
Abstract
1. Introduction
2. Proposed Model
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pratap, T.; Kokil, P. Computer-Aided Diagnosis of Cataract Using Deep Transfer Learning. Biomed. Signal Process. Control 2019, 53, 101533. [Google Scholar] [CrossRef]
- Xu, X.; Zhang, L.; Li, J.; Guan, Y.; Zhang, L. A Hybrid Global-Local Representation CNN Model for Automatic Cataract Grading. IEEE J. Biomed. Health Inform. 2019, 24, 556–567. [Google Scholar] [CrossRef] [PubMed]
- Varma, N.; Yadav, S.; Kant, J. A Reliable Automatic Cataract Detection Using Deep Learning. Int. J. Syst. Assur. Eng. Manag. 2023, 14, 1089–1102. [Google Scholar] [CrossRef]
- Ting, D.S.W.; Pasquale, L.R.; Peng, L.; Campbell, J.P.; Lee, A.Y.; Raman, R.; Tan, G.S.W.; Schmetterer, L.; Keane, P.A.; Wong, T.Y. Artificial Intelligence and Deep Learning in Ophthalmology. Br. J. Ophthalmol. 2018, 103, 167–175. [Google Scholar] [CrossRef] [PubMed]
- Tong, Y.; Lu, W.; Yu, Y.; Shen, Y. Application of Machine Learning in Ophthalmic Imaging Modalities. Eye Vis. 2020, 7, 22. [Google Scholar] [CrossRef] [PubMed]
- Balyen, L.; Peto, T. Promising Artificial Intelligence-Machine Learning-Deep Learning Algorithms in Ophthalmology. Asia-Pac. J. Ophthalmol. 2019, 8, 264–272. [Google Scholar] [CrossRef] [PubMed]
- Razzak, M.I.; Naz, S.; Zaib, A. Deep Learning for Medical Image Processing: Overview, challenges and the future. Lect. Notes Comput. Vis. Biomech. 2017, 26, 323–350. [Google Scholar] [CrossRef] [PubMed]
- Lv, Q.; Zhang, S.; Wang, Y. Deep Learning Model of Image Classification Using Machine Learning. Adv. Multimed. 2022, 2022, 3351256. [Google Scholar] [CrossRef]
- Junayed, M.S.; Islam, M.B.; Sadeghzadeh, A.; Rahman, S. CataractNet: An Automated Cataract Detection System Using Deep Learning for Fundus Images. IEEE Access 2021, 9, 128799–128808. [Google Scholar] [CrossRef]
- Yadav, S.; Kant, J. Automatic Cataract Severity Detection and Grading Using Deep Learning. J. Sens. 2023, 2023, 2973836. [Google Scholar] [CrossRef]
- Yadav, J.K.P.S.; Yadav, S. Computer-Aided Diagnosis of Cataract Severity Using Retinal Fundus Images and Deep Learning. Comput. Intell. 2022, 38, 1450–1473. [Google Scholar] [CrossRef]
- Akter, N.; Fletcher, J.; Perry, S.; Simunovic, M.P.; Briggs, N.; Roy, M. Glaucoma Diagnosis Using Multi-Feature Analysis and a Deep Learning Technique. Sci. Rep. 2022, 12, 8064. [Google Scholar] [CrossRef]
- Ran, A.R.; Tham, C.C.; Chan, P.P.; Cheng, C.-Y.; Tham, Y.-C.; Rim, T.H.; Cheung, C.Y. Deep Learning in Glaucoma with Optical Coherence Tomography: A Review. Eye 2020, 35, 188–201. [Google Scholar] [CrossRef] [PubMed]
- Keenan, T.D.L.; Chen, Q.; Agrón, E.; Tham, Y.-C.; Goh, J.H.L.; Lei, X.; Ng, Y.P.; Liu, Y.; Xu, X.; Cheng, C.-Y.; et al. DeepLensNet: Deep Learning Automated Diagnosis and Quantitative Classification of Cataract Type and Severity. Ophthalmology 2022, 129, 571–584. [Google Scholar] [CrossRef] [PubMed]
- Tham, Y.-C.; Goh, J.H.L.; Anees, A.; Lei, X.; Rim, T.H.; Chee, M.-L.; Wang, Y.X.; Jonas, J.B.; Thakur, S.; Teo, Z.L.; et al. Detecting Visually Significant Cataract Using Retinal Photograph-Based Deep Learning. Nat. Aging 2022, 2, 264–271. [Google Scholar] [CrossRef]
- Schünke, L.C.; Mello, B.; da Costa, C.A.; Antunes, R.S.; Rigo, S.J.; de Oliveira Ramos, G.; da Rosa Righi, R.; Scherer, J.N.; Donida, B. A Rapid Review of Machine Learning Approaches for Telemedicine in the Scope of COVID-19. Artif. Intell. Med. 2022, 129, 102312. [Google Scholar] [CrossRef] [PubMed]
- Rawat, W.; Wang, Z. Deep Convolutional Neural Networks for Image Classification: A Comprehensive Review. Neural. Comput. 2017, 29, 2352–2449. [Google Scholar] [CrossRef] [PubMed]
- Valente, J.; António, J.; Mora, C.; Jardim, S. Developments in Image Processing Using Deep Learning and Reinforcement Learning. J. Imaging 2023, 9, 207. [Google Scholar] [CrossRef] [PubMed]
- El-Baz, A. Classification of Retinal Diseases Based on OCT Images. Front. Biosci. 2018, 23, 247–264. [Google Scholar] [CrossRef] [PubMed]
- Thakur, K.; Kaur, M.; Kumar, Y. A Comprehensive Analysis of Deep Learning-Based Approaches for Prediction and Prognosis of Infectious Diseases. Arch. Comput. Methods Eng. 2023, 30, 4477–4497. [Google Scholar] [CrossRef]
- Kora, P.; Ooi, C.P.; Faust, O.; Raghavendra, U.; Gudigar, A.; Chan, W.Y.; Meenakshi, K.; Swaraja, K.; Plawiak, P.; Rajendra Acharya, U. Transfer Learning Techniques for Medical Image Analysis: A Review. Biocybern. Biomed. Eng. 2022, 42, 79–107. [Google Scholar] [CrossRef]
- Liesegang, T.J.; Hoskins, H.D.; Albert, D.M.; O’Day, D.H.; Spivey, B.E.; Sadun, A.A.; Parke, D.W.; Mondino, B.J. Ophthalmic Education: Where Have We Come From, and Where Are We Going? Am. J. Ophthalmol. 2003, 136, 114–121. [Google Scholar] [CrossRef] [PubMed]
- Very Deep Convolutional Networks for Large-Scale Image Recognition. ar5iv. Available online: https://ar5iv.labs.arxiv.org/html/1409.1556 (accessed on 10 September 2023).
- Yu, L.; Chen, H.; Dou, Q.; Qin, J.; Heng, P.-A. Automated Melanoma Recognition in Dermoscopy Images via Very Deep Residual Networks. IEEE Trans. Med. Imaging 2017, 36, 994–1004. [Google Scholar] [CrossRef] [PubMed]
- Lodhi, B.; Kang, J. Multipath-DenseNet: A Supervised Ensemble Architecture of Densely Connected Convolutional Networks. Inf. Sci. 2019, 482, 63–72. [Google Scholar] [CrossRef]
- Szegedy, C.; Vanhoucke, V.; Ioffe, S.; Shlens, J.; Wojna, Z. Rethinking the Inception Architecture for Computer Vision. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 2818–2826. [Google Scholar] [CrossRef]
- Zhang, Z.; Li, G.; Wang, L. Seismic Random Noise Suppression Based on Mirnet with Dense Feature Fusion. IEEE Geosci. Remote Sens. Lett. 2022, 19, 8028005. [Google Scholar] [CrossRef]
- Chollet, F. Xception: Deep Learning with Depthwise Separable Convolutions. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017. [Google Scholar] [CrossRef]
- Chen, L.; Li, S.; Bai, Q.; Yang, J.; Jiang, S.; Miao, Y. Review of Image Classification Algorithms Based on Convolutional Neural Networks. Remote Sens. 2021, 13, 4712. [Google Scholar] [CrossRef]
- Zhou, A.; Ma, Y.; Ji, W.; Zong, M.; Yang, P.; Wu, M.; Liu, M. Multi-Head Attention-Based Two-Stream EfficientNet for Action Recognition. Multimed. Syst. 2022. [Google Scholar] [CrossRef]
- Available online: https://www.kaggle.com/code/matthewmaddock/ocular-disease-recognition-model-training/input (accessed on 7 August 2023).
Model | ALs | P | INT1A | INT5A | CE | R | PE | I | TL | DA | HPs | RTs |
---|---|---|---|---|---|---|---|---|---|---|---|---|
VGG19 [23] | 19 | 143.67 | ~71 | ~89 | L | M | L | H | Yes | Yes | Yes | Yes |
ResNet 50 [24] | 50 | 25.6 | ~76 | ~93 | M | H | M | M | Yes | Yes | Yes | Yes |
DenseNet 201 [25] | 201 | 20.0 | ~77 | ~93 | M | H | M | M | Yes | Yes | Yes | Yes |
Inception V3 [26] | Variable | 23.8 | ~77 | ~93 | M | M | M | H | Yes | Yes | Yes | Yes |
MIRNet [27] | Variable | NS | NS | NS | M | M | M | H | Yes | Yes | Yes | Yes |
Xception [28,29] | Variable | 22.9 | ~79 | ~94 | M | H | M | H | Yes | Yes | Yes | Yes |
EfficientNet B0 [30] | 20 | 5.3 | ~77 | ~93 | H | H | H | M | Yes | Yes | Yes | Yes |
Blocks | Filter Set | Accuracy |
---|---|---|
3 | 16, 32, 64 | 90.56% |
4 | 32, 64, 128, 256 | 95.41% |
4 | 64, 128, 256, 512 | 97.24% |
5 | 32, 64, 128, 256, 512 | 94.03% |
Normal vs. Cataracts | Model | Accuracy | Precision | Recall | F1_Score |
---|---|---|---|---|---|
Training set (90%), testing set (5%), and validation set (5%) | Vgg19 | 95.41 | 0.94 | 0.97 | 0.96 |
ResNet 50 | 94.03 | 0.97 | 0.92 | 0.95 | |
DenseNet 201 | 93.11 | 0.92 | 0.95 | 0.94 | |
InceptionV3 | 94.03 | 0.93 | 0.96 | 0.94 | |
MIRNet | 95.41 | 0.98 | 0.94 | 0.96 | |
Xception | 95.41 | 0.94 | 0.98 | 0.96 | |
EfficientNet B0 | 95.87 | 0.97 | 0.94 | 0.96 | |
CSDNet | 96.79 | 0.98 | 0.97 | 0.97 | |
Training set (80%), testing set (10%), and validation set (10%) | Vgg19 | 95.87 | 0.95 | 0.97 | 0.96 |
ResNet 50 | 97.24 | 1.00 | 0.95 | 0.97 | |
DenseNet 201 | 90.82 | 0.86 | 1.00 | 0.93 | |
InceptionV3 | 97.24 | 0.95 | 1.00 | 0.98 | |
MIRNet | 94.50 | 0.98 | 0.91 | 0.94 | |
Xception | 91.74 | 0.91 | 0.95 | 0.93 | |
EfficientNet B0 | 98.16 | 0.97 | 1.00 | 0.98 | |
CSDNet | 97.24 | 0.97 | 0.99 | 0.98 | |
Training set (70%), testing set (15%), and validation set (15%) | Vgg19 | 92.04 | 0.92 | 0.92 | 0.92 |
ResNet 50 | 92.66 | 0.90 | 0.96 | 0.93 | |
DenseNet 201 | 95.10 | 0.96 | 0.96 | 0.96 | |
InceptionV3 | 95.72 | 0.93 | 0.99 | 0.96 | |
MIRNet | 92.66 | 0.95 | 0.91 | 0.93 | |
Xception | 91.13 | 0.93 | 0.90 | 0.91 | |
EfficientNet B0 | 95.71 | 0.95 | 0.97 | 0.96 | |
CSDNet | 92.35 | 0.89 | 0.98 | 0.93 | |
Training set (60%), testing set (20%), and validation set (20%) | Vgg19 | 95.07 | 0.95 | 0.97 | 0.96 |
ResNet 50 | 94.03 | 0.94 | 0.95 | 0.94 | |
DenseNet 201 | 94.27 | 0.93 | 0.98 | 0.95 | |
InceptionV3 | 92.43 | 0.95 | 0.91 | 0.93 | |
MIRNet | 93.81 | 0.95 | 0.93 | 0.94 | |
Xception | 87.61 | 0.88 | 0.89 | 0.88 | |
EfficientNet B0 | 94.18 | 0.94 | 0.95 | 0.95 | |
CSDNet | 95.18 | 0.94 | 0.97 | 0.96 |
Normal, Grade 1 to 4 | Model | Accuracy | Precision | Recall | F1_Score |
---|---|---|---|---|---|
Training set (80%), testing set (10%), and validation set (10%) | Vgg19 | 97.04 | Normal:0.98 Grade 1:0.96 Grade 2:0.96 Grade 3.0.96 Grade 4:0.99 | 0.99 0.96 0.97 0.96 0.97 | 0.99 0.96 0.97 0.96 0.98 |
ResNet 50 | 96.81 | Normal:0.99 Grade 1:0.97 Grade 2:0.95 Grade 3.0.96 Grade 4:0.97 | 0.98 0.97 0.98 0.95 0.96 | 0.98 0.97 0.97 0.95 0.96 | |
DenseNet 201 | 90.74 | Normal:0.95 Grade 1:0.87 Grade 2:0.88 Grade 3:0.90 Grade 4:0.94 | 0.93 0.90 0.91 0.89 0.90 | 0.94 0.89 0.89 0.89 0.92 | |
InceptionV3 | 96.17 | Normal:0.98 Grade 1:0.98 Grade 2:0.93 Grade 3:0.95 Grade 4:0.97 | 0.97 0.96 0.98 0.95 0.95 | 0.97 0.97 0.96 0.95 0.96 | |
MIRNet | 93.54 | Normal:0.97 Grade 1:0.91 Grade 2:0.92 Grade 3:0.93 Grade 4:0.95 | 0.95 0.95 0.96 0.90 0.92 | 0.96 0.93 0.94 0.91 0.93 | |
Xception | 91.23 | Normal:0.93 Grade 1:0.91 Grade 2:0.88 Grade 3:0.90 Grade 4:0.95 | 0.94 0.90 0.91 0.90 0.91 | 0.94 0.90 0.89 0.90 0.93 | |
EfficientNet B0 | 97.81 | Normal:0.98 Grade 1:0.97 Grade 2:0.99 Grade 3.0.95 Grade 4:0.98 | 0.98 0.96 0.99 0.97 0.97 | 0.98 0.97 0.99 0.96 0.97 | |
CSDNet | 98.17 | Normal:1.00 Grade 1:0.97 Grade 2:0.98 Grade 3.0.97 Grade 4:0.98 | 0.99 0.98 0.99 0.97 0.97 | 0.99 0.98 0.99 0.97 0.97 |
Model | Layers | Trainable Parameters | Model Size | Average Run Time |
---|---|---|---|---|
VGG19 | 19 | 200, 49, 473 | 574 MB | 267 ms |
ResNet 50 | 50 | 3, 01, 057 | 98 MB | 118 ms |
DenseNet 201 | 201 | 488, 85, 505 | 80 MB | 185 ms |
MIRnet | 45 | 3, 93, 217 | 128 MB | 276 ms |
Inception V3 | 48 | 51, 201 | 92 MB | 226 ms |
Xception | 71 | 10, 49, 601 | 88 MB | 207 ms |
EfficientNet B0 | 214 | 6, 56, 385 | 29 MB | 291 ms |
CSDNet | 14 | 1, 75, 617 | 17 MB | 212 ms |
Model | Dataset | Accuracy |
---|---|---|
Cataract detection using deep learning [3] | Mixed databases and internet images | 92.7% |
Early cataract detection using deep learning [10] | 1600 images | 93.10% |
Computer-aided cataract severity diagnosis using pre-trained CNNs for feature extraction [11] | Online platforms | 96% |
CSDNet—proposed model with fewer layers and runtime | Open-source dataset [31] | 98.17% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
P.L, L.; Vaddi, R.; Elish, M.O.; Gonuguntla, V.; Yellampalli, S.S. CSDNet: A Novel Deep Learning Framework for Improved Cataract State Detection. Diagnostics 2024, 14, 983. https://doi.org/10.3390/diagnostics14100983
P.L L, Vaddi R, Elish MO, Gonuguntla V, Yellampalli SS. CSDNet: A Novel Deep Learning Framework for Improved Cataract State Detection. Diagnostics. 2024; 14(10):983. https://doi.org/10.3390/diagnostics14100983
Chicago/Turabian StyleP.L, Lahari, Ramesh Vaddi, Mahmoud O. Elish, Venkateswarlu Gonuguntla, and Siva Sankar Yellampalli. 2024. "CSDNet: A Novel Deep Learning Framework for Improved Cataract State Detection" Diagnostics 14, no. 10: 983. https://doi.org/10.3390/diagnostics14100983
APA StyleP.L, L., Vaddi, R., Elish, M. O., Gonuguntla, V., & Yellampalli, S. S. (2024). CSDNet: A Novel Deep Learning Framework for Improved Cataract State Detection. Diagnostics, 14(10), 983. https://doi.org/10.3390/diagnostics14100983