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Abstract: Cataracts, known for lens clouding and being a common cause of visual impairment, persist
as a primary contributor to vision loss and blindness, presenting notable diagnostic and prognostic
challenges. This work presents a novel framework called the Cataract States Detection Network
(CSDNet), which utilizes deep learning methods to improve the detection of cataract states. The aim
is to create a framework that is more lightweight and adaptable for use in environments or devices
with limited memory or storage capacity. This involves reducing the number of trainable parameters
while still allowing for effective learning of representations from data. Additionally, the framework is
designed to be suitable for real-time or near-real-time applications where rapid inference is essential.
This study utilizes cataract and normal images from the Ocular Disease Intelligent Recognition (ODIR)
database. The suggested model employs smaller kernels, fewer training parameters, and layers to
efficiently decrease the number of trainable parameters, thereby lowering computational costs and
average running time compared to other pre-trained models such as VGG19, ResNet50, DenseNet201,
MIRNet, Inception V3, Xception, and Efficient net B0. The experimental results illustrate that the
proposed approach achieves a binary classification accuracy of 97.24% (normal or cataract) and an
average cataract state detection accuracy of 98.17% (normal, grade 1—minimal cloudiness, grade
2—immature cataract, grade 3—mature cataract, and grade 4—hyper mature cataract), competing
with state-of-the-art cataract detection methods. The resulting model is lightweight at 17 MB and has
fewer trainable parameters (175, 617), making it suitable for deployment in environments or devices
with constrained memory or storage capacity. With a runtime of 212 ms, it is well-suited for real-time
or near-real-time applications requiring rapid inference.

Keywords: cataract; visual impairment; pre-trained convolutional neural networks; classification;
detection

1. Introduction

The eye is prone to various disorders, notably cataracts, causing vision loss if un-
treated [1,2]. Factors like aging, diabetes, UV radiation, genetics, pollutants, eye trauma,
and habits contribute to cataracts [3]. Diagnosis involves a comprehensive eye exam, and
treatment includes removing the clouded lens and implanting an artificial one. Cataracts
are graded based on cloudiness and vision impact, with stages as follows: grade 1, charac-
terized by an incipient cataract with minimal vision impact; grade 2, an immature cataract
featuring noticeable cloudiness and slight vision blurring; grade 3, a mature cataract sig-
nificantly impairing vision, particularly at night; and grade 4, a hyper mature cataract,
exhibiting lens changes, reduced vision, and potential complications such as glaucoma.
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Deep learning has revolutionized eye medical imaging across various tasks [4–9],
automating cataract detection and classification for precise diagnosis [9]. It aids in diabetic
retinopathy screening, identifying severity for timely intervention [10], and enables early
glaucoma detection through optic nerve analysis [11]. Deep learning segments retinal
vessels and optic discs, assisting in vascular change analysis and glaucoma diagnosis [12]. It
identifies age-related macular degeneration early and monitors eye conditions via OCT [13],
analyzes corneal diseases through corneal images [14], and guides surgeries like cataract
surgery precisely [15]. In telemedicine, it monitors changes for timely intervention and
facilitates algorithm development through synthetic image generation [16].

Enhanced cataract state classification and detection are crucial for precise diagnosis
and treatment, potentially improving patient outcomes and healthcare efficiency. Convolu-
tional neural networks (CNNs) are commonly used for image classification and detection,
benefiting from data preparation, model selection, and augmentation for improved gener-
alization [17,18].

Several deep learning methods in the literature aim to advance cataract state detection,
as outlined below. In ref. [19], the authors achieve a high training accuracy of 99.47% and
validation accuracy of 97.94% using NasNet Mobile for cataract classification. Ref. [20]
categorizes cataracts into normal and cataract groups, with average accuracies ranging from
91.06% to 93.50% using models like VGG19 and ResNet. Transfer learning is applied in [21],
where an ensemble technique combining VGG19, ResNet101V2, and InceptionV3 achieves
an F1_score of 95.90% on a test dataset. In ref. [22], the EYENET model, serving as a self-
diagnosis tool for five eye disorders, achieves an accuracy of 92.3%, potentially alleviating
doctor burden and enabling the rapid detection of ailments. In the literature, several
pre-trained CNN models such as VGG [23], ResNet [24], DenseNet [25], Inception [26],
MIRnet [27], Xception [28,29], and EfficientNet [30] have been utilized to train large image
datasets, as outlined in Table 1.

Table 1. Pre-trained CNN models for large image datasets (ALs—architecture layers; P—parameters
(millions); INT1A—ImageNet Top-1 Accuracy (%); INT5A—ImageNet Top-5 Accuracy (%); CE—
computational efficiency; R—reliability; PE—power efficiency; I—interpretability; TL—transfer
learning; DA—data augmentation; HPs—hyper parameters; RTs—regularization techniques; L—low;
M—moderate; H—high; NS—not specified).

Model ALs P INT1A INT5A CE R PE I TL DA HPs RTs

VGG19 [23] 19 143.67 ~71 ~89 L M L H Yes Yes Yes Yes

ResNet 50 [24] 50 25.6 ~76 ~93 M H M M Yes Yes Yes Yes

DenseNet 201 [25] 201 20.0 ~77 ~93 M H M M Yes Yes Yes Yes

Inception V3 [26] Variable 23.8 ~77 ~93 M M M H Yes Yes Yes Yes

MIRNet [27] Variable NS NS NS M M M H Yes Yes Yes Yes

Xception [28,29] Variable 22.9 ~79 ~94 M H M H Yes Yes Yes Yes

EfficientNet B0 [30] 20 5.3 ~77 ~93 H H H M Yes Yes Yes Yes

However, efforts to improve cataract classification and detection have faced challenges
in detecting early stages accurately, reducing overall accuracy. Variations in image quality
and patient characteristics further complicate classification. Simpler models may face
challenges in understanding complex data patterns, which can lead to lower performance in
tasks requiring intricate relationships. Underfitting becomes a concern when the model fails
to represent the data patterns effectively. Nonetheless, simpler models offer advantages in
memory-constrained environments, with fewer parameters yet still-capable representation
learning. This feature renders them suitable for real-time applications where rapid inference
is essential.

The depicted model in Figure 1 introduces an enhanced framework of improved
cataract state classification, addressing the aforementioned issues in detecting cataracts and
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their severity by utilizing a combination of convolutional layers, dense layers, and dropout
layers. The framework comprises three main stages: dataset preparation for binary (normal
or cataract) and multi-class (normal, grade 1—minimal cloudiness, grade 2—immature
cataract, grade 3—mature cataract, and grade 4—hyper mature cataract) classification, data
augmentation and preprocessing, and the Cataract States Detection Network (CSDNet) for
the precise classification and detection of cataract states.
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Figure 1. The proposed framework of improved cataract state classification.

This proposed architecture enhances the model’s capability to discern intricate patterns
within data, capturing subtle cataract indications and accurately identifying cataracts
while predicting their severity. It achieves this by learning stage-specific features, thus
enabling the categorization of cataract progression from early to severe stages. Evaluation
metrics such as accuracy, precision, F1_score, and recall are employed for cataract state
classification. Furthermore, the model is designed to be lightweight and suitable for
deployment in memory-constrained environments or devices with limited storage capacity,
maintaining a reasonable number of parameters for learning from data while being efficient
in memory consumption and computational resources. These attributes enable the model
to excel in tasks like image recognition and classification, rendering it suitable for real-time
applications.

The remainder of this paper is organized as follows: The next section provides a
detailed explanation of the proposed model for enhanced classification and detection,
while Section 3 presents the detailed results and metrics evaluation. Section 4 offers
detailed discussions and conclusions of the paper.

2. Proposed Model

The CSDNet model is designed for efficient deployment on memory-constrained
devices, featuring tailored customization for enhanced detection capabilities. It employs
global average pooling and reshaping layers to capture essential global features, while
dropout regularization prevents overfitting and ReLu activation functions aid convergence.

The proposed model consists of 14 layers, including a flattened layer and a sigmoid
activation function, providing a balance between accuracy and complexity for efficient
deployment. The input layer is optimized for 224 × 224 images with three channels (RGB).
Functional, dense, and dropout layers are integrated, leveraging pre-trained models for
feature extraction. Functional layers integrate pre-trained models or complex sub-networks
into the architecture, enabling the reuse of established architectures as building blocks.
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Dense layers, also known as fully connected layers, perform linear transformations on input
data followed by non-linear activation functions, connecting each neuron to every neuron
in the previous layer. Dropout layers prevent overfitting by randomly deactivating neurons
during training, encouraging the learning of robust features and improving generalization.
Activation functions introduce non-linearity to the model. They are, in general, employed
to acquire high-level representations and patterns within the data. Typically found in
the hidden layers of feedforward neural networks, they play a common role in capturing
intricate features.

The model, as illustrated in Figure 2, begins by passing the input through a functional
layer for feature extraction. The number of filters in a CNN is crucial and influenced by
multiple factors. More filters enhance the model’s capacity to detect intricate patterns,
beneficial for tasks needing fine detail for accurate detection. Moreover, employing more
filters helps the network learn diverse feature representations per layer, facilitating the
extraction of hierarchical features necessary for understanding input data. Starting with a
larger number of filters allows the network to capture various low-level features initially,
which are then abstracted into higher-level features in subsequent layers.
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To select the optimal model configuration, a series of experiments were conducted,
varying the number of blocks and filters (presented in the results section as Table 2. Model
accuracy with various combinations of blocks and filters). The findings revealed that the
most effective model consists of four blocks with varying filter sizes (64, 128, 256, 512)
and is the proposed model. The proposed model comprises four convolutional layers,
with ascending filter dimensions of 64, 128, 256, and 512, respectively. It accepts input of
shape (224, 224, 3), with each convolutional layer followed by ReLU activation to maintain
spatial information. Consequent to the convolutional layers, a functional layer executes
convolution operations, resulting in an output shape of (7, 7, 512). Following this, three
dense layers are integrated, with decreasing neuron quantities: 256, 128, and 64. Each dense
layer is paired with a dropout layer (with dropout rates of 0.5, 0.2, and 0.1, respectively) to
mitigate overfitting, resulting in an output (7, 7, 64). This output is then processed through a
flattened layer, converting the previous output shape (7, 7, 64) into a one-dimensional array
of size 3136. Finally, a dense layer with sigmoid activation, suitable for binary classification
tasks, is employed. For the detection of cataract states, softmax is utilized.

Table 2. Model accuracy with various combinations of blocks and filters.

Blocks Filter Set Accuracy

3 16, 32, 64 90.56%

4 32, 64, 128, 256 95.41%

4 64, 128, 256, 512 97.24%

5 32, 64, 128, 256, 512 94.03%
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3. Results and Discussion

In this section, a detailed description of the dataset chosen, data preparation, imple-
mentation details, evaluation metrics, and results of the proposed model in comparison
with the existing models are discussed in detail.

Data: This study uses the Ocular Disease Intelligent Recognition (ODIR) database [31],
containing structured ophthalmic data from 5000 patients, including age details and color
fundus images of both eyes. Each patient record includes diagnostic keywords provided by
medical professionals. The database mirrors real-world patient data collected from various
hospitals and medical facilities across China by Shanggong Medical Technology Co., Ltd.
Fundus images exhibit resolution variations due to different camera usage. Trained human
readers meticulously annotated the dataset to ensure quality control. Patients are classified
into 8 distinct categories: Normal, Diabetes, Glaucoma, Cataract, Age-related macular
degeneration, Hypertension, Pathological myopia, and other diseases/abnormalities.

As the emphasis is on enhancing cataract state classification and detection, only
categories Cataract (C, 1168 images) and Normal (N, 1000 images), 2168 images in total,
were chosen for further analysis. On the removal of the noisy and blurry images—data
cleaning, the total number was images is 2000 (C—1100 (grade 1—230; grade 2—137; grade
3—469; grade 4—264) and N—900 images).

Preprocessing: The preprocessing procedures involve the following steps: Image
resizing, which standardizes all images to a uniform size to reduce computational com-
plexity and ensure compatibility with the model’s architecture. Normalization, which
adjusts pixel values of the images to a standardized range (typically 0 to 1) to stabilize the
training process and potentially improve model convergence. Finally, data augmentation
encompasses rotating, flipping, and shifting images to produce supplementary samples,
thereby enlarging the dataset. As a result of the data augmentation, the dataset is expanded
to 8000 images and is included in further analysis.

Data for training, testing, and validation: The preprocessed dataset comprising
8000 color fundus images, reflecting diverse eye conditions and demographic profiles,
underwent a meticulous process of preparation and partitioning for training, testing, and
validation. Through label encoding, diagnostic terms were numerically represented, with
0 denoting normal eyes and 1 indicating the presence of cataracts in binary classification.
In this analysis, we explored different splitting strategies (90/05/05; 80/10/10; 70/15/15;
60/20/20) to assess classification accuracy. For instance, following an 80/10/10 split strat-
egy, the dataset was divided, allocating 80% (6400 images) for training, 10% (800 images)
for testing, and another 10% (800 images) for validation purposes.

Implementation details: All experiments were conducted on a computer with the
following properties: Intel(R) core i3 processor, 7th Generation, and 8 GB RAM. We utilized
Google Collab with a T4 GPU to accelerate our model training and experiments, resulting
in faster processing. Preprocessing, augmentation, VGG19, ResNet 50, DenseNet 201,
inception v3, MIRNet, Xception, and Efficient net B0 models were implemented using
Python (Google Collab), Keras environment. The proposed model was optimized using
Adam Optimizer with a learning rate of 0.001, and a batch size of 15 for memory efficiency.

Evaluation criteria: In this paper, accuracy, recall (also known as the sensitivity or
true positive rate), precision (the model’s ability to properly identify positive cases), and
F1_score (harmonic mean of precision and recall to provide a balanced assessment of a
model’s performance) are the metrics used as evaluation indicators. They are defined
as follows:

Accuracy =
TP + TN

TP + TN + FP + FN
(1)

Recall =
TP

TP + FN
(2)

Precision =
TP

TP + FP
(3)
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F1_score =
2 ∗ (Precision ∗ Recall)
(Precision + Recall)

(4)

where TP is true positive, TN is true negative, FP is false positive, and FN is false negative.
Performance of the proposed model: In this section, we extensively analyze the

performance of the proposed model. We evaluate our model alongside eight other pre-
trained models for cataract classification and detection using identical datasets. We compare
the experimental outcomes with state-of-the-art methods for cataract classification and
detection.

First, to select the most suitable model configuration, a series of experiments were
conducted using an 80/10/10 split strategy, varying the number of blocks and filters, which
are tabulated in Table 2. The results show that the most effective model consists of four
blocks with varying filter sizes (64, 128, 256, 512) and is the proposed model.

The proposed CSDNet, along with several pre-trained CNN models such as VGG19,
ResNet50, DenseNet201, InceptionV3, MIRNet, Xception, and EfficientNetB0, were devel-
oped and tested for binary classification (cataract or normal) using a dataset comprising
8000 images (4400 cataract and 3600 normal) after preprocessing. The evaluation metrics
and accuracies of all models were compared and are tabulated in Table 3—metrics com-
parison of existing and proposed model for the classification of cataract and normal data.
Various training, testing, and validation set combinations (90/05/05; 80/10/10; 70/15/15;
60/20/20) were employed. The results indicate that the 80-10-10 split ratio consistently
yielded better accuracy, precision, recall, and F1_score across most models, including the
proposed CSDNet, thus becoming the chosen splitting strategy.

Table 3. Metrics comparison of existing and proposed models for the classification of cataract and
normal data.

Normal vs. Cataracts Model Accuracy Precision Recall F1_Score

Training set (90%), testing set (5%), and
validation set (5%)

Vgg19 95.41 0.94 0.97 0.96

ResNet 50 94.03 0.97 0.92 0.95

DenseNet 201 93.11 0.92 0.95 0.94

InceptionV3 94.03 0.93 0.96 0.94

MIRNet 95.41 0.98 0.94 0.96

Xception 95.41 0.94 0.98 0.96

EfficientNet B0 95.87 0.97 0.94 0.96

CSDNet 96.79 0.98 0.97 0.97

Training set (80%), testing set (10%), and
validation set (10%)

Vgg19 95.87 0.95 0.97 0.96

ResNet 50 97.24 1.00 0.95 0.97

DenseNet 201 90.82 0.86 1.00 0.93

InceptionV3 97.24 0.95 1.00 0.98

MIRNet 94.50 0.98 0.91 0.94

Xception 91.74 0.91 0.95 0.93

EfficientNet B0 98.16 0.97 1.00 0.98

CSDNet 97.24 0.97 0.99 0.98



Diagnostics 2024, 14, 983 7 of 12

Table 3. Cont.

Normal vs. Cataracts Model Accuracy Precision Recall F1_Score

Training set (70%), testing set (15%), and
validation set (15%)

Vgg19 92.04 0.92 0.92 0.92

ResNet 50 92.66 0.90 0.96 0.93

DenseNet 201 95.10 0.96 0.96 0.96

InceptionV3 95.72 0.93 0.99 0.96

MIRNet 92.66 0.95 0.91 0.93

Xception 91.13 0.93 0.90 0.91

EfficientNet B0 95.71 0.95 0.97 0.96

CSDNet 92.35 0.89 0.98 0.93

Training set (60%), testing set (20%), and
validation set (20%)

Vgg19 95.07 0.95 0.97 0.96

ResNet 50 94.03 0.94 0.95 0.94

DenseNet 201 94.27 0.93 0.98 0.95

InceptionV3 92.43 0.95 0.91 0.93

MIRNet 93.81 0.95 0.93 0.94

Xception 87.61 0.88 0.89 0.88

EfficientNet B0 94.18 0.94 0.95 0.95

CSDNet 95.18 0.94 0.97 0.96

With the chosen model and split strategy, the cataract states were now classified
using the same model, transitioning from binary classification to multi-class classification
(replacing sigmoid with softmax). Each class is represented by the following number of
preprocessed images: grade 1—920; grade 2—548; grade 3—1876; grade 4—1056; and
Normal (N)—3600. To address class imbalance, 548 images per class (totaling 2740 images)
were randomly selected, given that grade 2 had only 548 images after preprocessing. Using
the 80-10-10 split ratio, the evaluation metrics and accuracies for all models, including
the proposed CSDNet, in the cataract state detection task were tabulated in Table 4—
metrics comparison of existing and proposed model for cataract state detection. The results
indicate that the proposed CSDNet outperformed others, achieving an average cataract
state detection accuracy of 98.17%.

The collective experimental findings demonstrate that the proposed method attained
a binary classification accuracy of 97.24% (distinguishing normal from cataract) and an
average cataract state detection accuracy of 98.17% (encompassing normal, as well as grades
1 through 4 of cataract severity). This performance matches top cataract detection methods
and consistently surpasses other models in all evaluation aspects.

To assess efficiency in terms of model size, layer count, and average running time, all
pretrained models were compared alongside the proposed model, and the results were
tabulated in Table 5—model comparison of existing and proposed models. The findings
highlight several advantages of the proposed model: 1. Model Size—it has a relatively
smaller size compared to most other models listed, with only 17 MB. This compactness
renders it more lightweight and adaptable for deployment in memory-limited environments
or devices with constrained storage capacity; 2. Trainable parameters—despite having
fewer trainable parameters than most models, it maintains a reasonable count of parameters
(1, 75, 617), enabling effective learning from data; 3. Average run time—with an average run
time of 212 ms, it is well-suited for real-time or near-real-time applications requiring quick
inference. These characteristics make the proposed model efficient in terms of both memory
consumption and computational resources while still maintaining good performance in
various tasks like image recognition, classification, or other related tasks.
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Table 4. Metrics comparison of existing and proposed models for cataract state detection.

Normal, Grade 1 to 4 Model Accuracy Precision Recall F1_Score

Training set (80%), testing set (10%),
and validation set (10%)

Vgg19 97.04

Normal:0.98
Grade 1:0.96
Grade 2:0.96
Grade 3.0.96
Grade 4:0.99

0.99
0.96
0.97
0.96
0.97

0.99
0.96
0.97
0.96
0.98

ResNet 50 96.81

Normal:0.99
Grade 1:0.97
Grade 2:0.95
Grade 3.0.96
Grade 4:0.97

0.98
0.97
0.98
0.95
0.96

0.98
0.97
0.97
0.95
0.96

DenseNet 201 90.74

Normal:0.95
Grade 1:0.87
Grade 2:0.88
Grade 3:0.90
Grade 4:0.94

0.93
0.90
0.91
0.89
0.90

0.94
0.89
0.89
0.89
0.92

InceptionV3 96.17

Normal:0.98
Grade 1:0.98
Grade 2:0.93
Grade 3:0.95
Grade 4:0.97

0.97
0.96
0.98
0.95
0.95

0.97
0.97
0.96
0.95
0.96

MIRNet 93.54

Normal:0.97
Grade 1:0.91
Grade 2:0.92
Grade 3:0.93
Grade 4:0.95

0.95
0.95
0.96
0.90
0.92

0.96
0.93
0.94
0.91
0.93

Xception 91.23

Normal:0.93
Grade 1:0.91
Grade 2:0.88
Grade 3:0.90
Grade 4:0.95

0.94
0.90
0.91
0.90
0.91

0.94
0.90
0.89
0.90
0.93

EfficientNet B0 97.81

Normal:0.98
Grade 1:0.97
Grade 2:0.99
Grade 3.0.95
Grade 4:0.98

0.98
0.96
0.99
0.97
0.97

0.98
0.97
0.99
0.96
0.97

CSDNet 98.17

Normal:1.00
Grade 1:0.97
Grade 2:0.98
Grade 3.0.97
Grade 4:0.98

0.99
0.98
0.99
0.97
0.97

0.99
0.98
0.99
0.97
0.97

The confusion matrix, model accuracy, and model loss plots obtained by using the
CSDNet for binary classification are depicted in Figure 3. Additionally, Figure 4 provides an
example of actual versus predicted outcomes for normal and cataract classifications using
the CSDNet. The training and validation accuracy are plotted over 30 epochs, displaying
the model’s training progress alongside validation results for accuracy and loss metrics
across epochs. The proposed model achieved a classification accuracy of 97.24% and a loss
of 0.1368.
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Table 5. Model comparison of existing and proposed models.

Model Layers Trainable Parameters Model Size Average Run Time

VGG19 19 200, 49, 473 574 MB 267 ms

ResNet 50 50 3, 01, 057 98 MB 118 ms

DenseNet 201 201 488, 85, 505 80 MB 185 ms

MIRnet 45 3, 93, 217 128 MB 276 ms

Inception V3 48 51, 201 92 MB 226 ms

Xception 71 10, 49, 601 88 MB 207 ms

EfficientNet B0 214 6, 56, 385 29 MB 291 ms

CSDNet 14 1, 75, 617 17 MB 212 ms
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Similarly, the confusion matrix, model accuracy, and model loss plots for cataract state
detection using the CSDNet are presented in Figure 5. Furthermore, Figure 6 showcases an
instance of actual versus predicted states for normal and cataract conditions employing
the CSDNet. The training and validation accuracy are illustrated over 30 epochs, with the
curve representing the model’s training and validation performance concerning accuracy
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and loss metrics across epochs. The proposed model achieved an accuracy of 98.17%, with
a loss of 0.0983.
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4. Conclusions

In this study, we proposed a framework for classifying cataracts and detecting their
states. Our proposed CSDNet achieved an accuracy of 98.17% in detecting cataract states.
Comparison with pre-trained models revealed that the proposed method has improved the
accuracy of cataract state detection. Furthermore, we compared our proposed CSDNet for
cataract state detection with existing models and summarized the results in Table 6. The
findings indicate that our model either matches or surpasses existing ones. Additionally,
the lightweight nature of the CSDNet, requiring only 17 MB of memory, significantly lowers
the barriers to deploying advanced diagnostic tools in low-resource settings. With a rapid
inference time of 212 ms, the CSDNet holds promise for real-time diagnostic capabilities.
Its high detection accuracy despite limited trainable parameters illustrates the feasibility of
achieving precise diagnostics without extensive computational resources. Future work will
focus on real-time implementation for the detection of cataracts and its evolution into a
portable kit aimed at early cataract detection.
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Table 6. Accuracy comparisons of existing and proposed models for cataract state detection.

Model Dataset Accuracy

Cataract detection using deep learning [3] Mixed databases and internet images 92.7%

Early cataract detection using deep learning [10] 1600 images 93.10%

Computer-aided cataract severity diagnosis using
pre-trained CNNs for feature extraction [11] Online platforms 96%

CSDNet—proposed model with fewer layers and runtime Open-source dataset [31] 98.17%
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