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Abstract: Spinal metastasis is exceedingly common in patients with cancer and its prevalence is
expected to increase. Surgical management of symptomatic spinal metastasis is indicated for pain
relief, preservation or restoration of neurologic function, and mechanical stability. The overall
prognosis is a major driver of treatment decisions; however, clinicians’ ability to accurately predict
survival is limited. In this narrative review, we first discuss the NOMS decision framework used
to guide decision making in the treatment of patients with spinal metastasis. Given that decision
making hinges on prognosis, multiple scoring systems have been developed over the last three
decades to predict survival in patients with spinal metastasis; these systems have largely been
developed using expert opinions or regression modeling. Although these tools have provided
significant advances in our ability to predict prognosis, their utility is limited by the relative lack
of patient-specific survival probability. Machine learning models have been developed in recent
years to close this gap. Employing a greater number of features compared to models developed with
conventional statistics, machine learning algorithms have been reported to predict 30-day, 6-week,
90-day, and 1-year mortality in spinal metastatic disease with excellent discrimination. These models
are well calibrated and have been externally validated with domestic and international independent
cohorts. Despite hypothesized and realized limitations, the role of machine learning methodology in
predicting outcomes in spinal metastatic disease is likely to grow.
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1. Introduction

The spinal column is the most common site of bony metastatic disease [1]. An esti-
mated 40–70% of all patients with cancer develop spinal metastasis, with 5–10% developing
metastatic epidural compression [1,2]. As the survival rates of most primary malignancies
increase, the prevalence of symptomatic spinal metastatic disease is expected to increase.
Patients with symptomatic spinal metastases may present with pain, radicular symptoms,
mechanical instability, or neurologic decline.

The treatment of spinal metastases is largely palliative, with a focus on pain relief,
preserving or restoring neurologic function, local oncologic control, and maintaining me-
chanical stability of the spinal column. Spinal metastases were historically treated with
conventional external beam radiation therapy with or without corticosteroids. Patients
with radiosensitive malignancies (e.g., multiple myeloma and prostate cancer) responded
well, while relatively radioresistant malignancies did not (e.g., sarcoma and colorectal
cancer) [3–5]. In 2005, Patchell and colleagues reported a randomized controlled trial com-
paring surgical decompression and radiation therapy in patients with metastatic epidural
compression. They found that surgical decompression combined with radiation yielded
improved survival, maintenance and recovery of ambulation, decreased opioid require-
ments, and improved neurologic outcomes compared to radiation therapy alone [6]. The
rate of surgical management of spinal metastatic disease has increased, with evidence that
palliative surgery is valued by patients and their families [7,8].
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Surgical treatment involves decompression and/or instrumented fusion. There is
a wide spectrum of invasiveness that surgical decompression may entail, ranging from
minimally invasive laminotomies to open laminectomy and even corpectomy. Similarly,
instrumented fusion may comprise open posterolateral fusion or percutaneous pedicle
screw fixation. Surgical management carries with it considerable perioperative morbidity
including incidental durotomy, wound infection, and venous thromboembolism [9]. It is
thus of great utility to determine a patient’s overall prognosis before deciding on a specific
treatment strategy.

In this narrative review, we aim to describe the tools that have been developed to
predict mortality in patients with extramedullary spinal metastasis. While there have been
numerous studies reviewing spinal oncology and artificial intelligence in spinal surgery,
we provide a focus on conventional and machine learning-driven methods for modeling
mortality in spinal metastasis specifically. We first explain the NOMS decision framework
that organizes the assessment of a patient with spinal metastatic disease into four categories.
This framework hinges on the patient’s prognosis. We detail the multiple prognostic
systems proposed for predicting mortality in spinal metastatic disease; these have been
largely developed with features derived from expert opinion or logistic regression. As
machine learning methods have been utilized in spinal surgery with great success, machine
learning-driven models have been built to predict mortality in spinal metastatic disease.
We describe the development and validation of these models. While these models represent
an important advance in our ability to predict valuable prognostic information for patients
with spinal metastasis, they carry specific risks and limitations. Finally, we discuss future
directions for how machine learning and artificial intelligence tools can continue to improve
our ability to predict mortality in patients with spinal metastasis.

2. NOMS Framework

The NOMS decision framework was developed to guide decision making for the
treatment of symptomatic spinal metastatic disease. It distills the assessment of spinal
metastases into four considerations: neurologic function, oncologic control, mechanical
stability, and systemic disease burden [10].

The neurologic considerations assess both clinical and imaging findings. Clinical
findings include myelopathy and functional radiculopathy. Bilsky and colleagues report
a validated magnetic resonance-based scoring system to evaluate the degree of epidural
spinal cord compression. Utilizing axial T2-weighted images, the extent of epidural com-
pression is graded into low-grade lesions without cord compression (grades 0 and 1a–c) or
higher grade lesions with an increasing degree of cord compression (grades 2 and 3) [11].
The oncologic consideration is based on the expected clinical response to radiation and/or
systemic therapy. Primary tumor histology is the most important predictor of response to
conventional external beam radiation therapy. Patients with radiosensitive malignancies
may be treated with conventional radiation therapy regardless of the degree of epidural
compression, whereas those with less favorable primary tumor histology may require
stereotactic radiosurgery with or without surgical decompression [2,10,11].

Mechanical instability of the spine is an indication for surgery regardless of the neu-
rologic or oncologic assessments. Incorporating both clinical and radiologic features, the
Spinal Instability Neoplastic Score (SINS) is a validated scoring system that was devised to
identify patients with instability that may require surgical stabilization (e.g., posterolateral
fusion and percutaneous pedicle screw fixation). The SINS comprises six parameters:
location, mechanical pain, lytic versus blastic lesion, spinal alignment, vertebral body
collapse, and involvement of the posterior elements. Patients with a low SINS (0–6) may
not require surgical stabilization, whereas patients with a high SINS (13–18) would benefit
from stabilization [12,13].

Perhaps the most important consideration for treatment is whether the patient can
tolerate a proposed intervention. This is based on the patient’s systemic medical comorbidi-
ties and overall tumor burden. The neurologic, oncologic, and mechanical considerations
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are of significance; however, the patient should survive long enough to make perioperative
morbidity and risks worthwhile. Similarly, we do not want to withhold treatment from a
patient who would benefit from it.

There is significant variability between the complication profiles of radiation therapy,
minimally invasive surgery, and open decompression and fusion. Surgery for spinal
metastasis carries with it considerable perioperative morbidity; complications include
wound infection, pain, neurologic deterioration, and venous thromboembolism [14–16].
Accurate prognosis is thus crucial when determining which treatment modalities carry
an acceptable risk–benefit ratio and are in line with the patient’s goals of care. Providing
accurate estimates of mortality would be of great utility to patients and families, improving
informed decision making.

3. Prognostic Scoring Systems
3.1. Modeling Approaches

The goal of a predictive model is to determine the relationship between existing data
and a future outcome. Most prognostic models predicting survival for spinal metastatic
disease have done so with regression techniques (e.g., logistic regression). These models
employ methods that are grounded in statistical inference. As an example, statistical
inference may be employed to identify risk factors independently associated with one-
year mortality; the odds ratios of these factors would then be weighted and used to
build an equation that determines the risk of mortality. Such models are optimized for
interpretability—that is, identifying which features drive mortality. In contrast, machine
learning models are optimized for prediction. Spanning a vast array of learning algorithms
(e.g., gradient boosting and Bayes Point Machine), machine learning models interrogate
relationships between multiple variables in large datasets with the purpose of maximizing
predictive performance. They often utilize complex equations to achieve this end, limiting
their interpretability [17].

3.2. Classical or Regression-Driven Scores

Despite the recognition that patient survival is a key consideration in the planning of
treatment for spinal metastatic disease, physicians have historically relied on clinical judg-
ment to predict prognosis. Survival predictions by oncologists, radiation oncologists, and
surgeons have been consistently determined to be inaccurate and overly optimistic [18–22].
Spine surgeons tend to overestimate life expectancy, leading to invasive procedures with
greater associated perioperative morbidity [22]. There has thus been a significant effort to
predict prognosis in patients with spinal metastatic disease in a data-driven manner with
greater accuracy.

Tokuhashi and colleagues published a series of 64 patients with operatively treated
spinal metastatic disease, utilizing 6 preoperative features to develop a scoring system to
determine survival: performance status, the number of extraspinal bony metastases, the
number of spinal metastases, the presence of visceral metastasis, primary tumor histology,
and neurologic deficit. Out of a total score of 12, patients with a score ≤ 5 survived
3 months or less on average, whereas those with a score ≥ 9 survived 12 months or
more [23]. They recommend that patients with a score ≤ 5 undergo palliative treatment,
while those scoring ≥ 9 undergo surgical excision. In 2005, the authors reported an
updated scoring system where they utilized the same 6 features in 246 patients composed
of those treated conservatively and operatively; however, they expanded the primary
tumor histology score to 0–5, hoping to provide more prognostic value to lesion biology.
Out of a total score of 15, a score ≤ 8 is associated with survival < 6 months, with the
authors recommending conservative treatment. A score between 9 and 11 is associated
with survival > 6 months, with recommended palliative surgery. A score ≥ 12 is associated
with survival > 1 year and excisional surgery is recommended by the authors [24].

In 1995, Bauer and Wedin assessed survival after surgery in 153 patients with extremity
metastases and 88 with spinal metastases. They found five positive prognostic factors for
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1-year survival: the absence of visceral metastasis, the absence of pathologic fracture,
solitary spinal metastasis, no lung cancer, and primary tumor histology of breast, kidney,
lymphoma, or multiple myeloma. The greater the number of positive prognostic factors,
the higher the probability of 1-year survival [25]. Leithner and colleagues proposed a
modified Bauer score in which they removed pathologic fracture from the list of prognostic
features [26]. For the modified Bauer score, the authors recommend non-operative man-
agement, dorsal palliative surgery, or ventral–dorsal excisional surgery depending on the
number of positive prognostic factors.

Spurred by the growing popularity of wide excisional resection for spinal metastases,
Tomita and colleagues developed a prognostic scoring system for patients to guide surgical
strategy. They included primary tumor histology, the presence of visceral metastasis, and
the number of spinal/extraspinal bony metastases to generate a prognostic score ranging
from 2 to 10. The lower the score, the more aggressive the recommended surgical strategy. A
score of 2 or 3 was associated with a recommendation of wide or marginal excision, with the
treatment goal of long-term local control, while a score of 4 or 5 yielded a recommendation
of marginal or intralesional excision, with the goal of middle-term local control. A score of
6 or 7 led to a recommendation of palliative surgery, with the treatment goal of short-term
palliation. Patients with scores ≥ 8 were recommended to undergo supportive care [27].

In 2005, van der Linden and colleagues published a prospectively randomized radi-
ation therapy trial including 342 patients with symptomatic spinal metastases without
neurologic deficit. They proposed a scoring system based on three prognostic factors: per-
formance status, primary tumor histology, and the presence of visceral metastasis. Patients
with ≤ 3 out of 6 points had a median survival of 3 months, 4 or 5 points was associated
with a median survival of 9 months, and 6 points was associated with a median survival of
18.7 months [28].

Katagiri and colleagues reported a prognostic scoring system in 2005 for patients with
skeletal metastasis who underwent non-operative or operative management. Similar to
Bauer and Wedin, their cohort of 350 patients included both spinal and extremity lesions.
They identify performance status, multiple skeletal metastases, the presence of visceral
metastasis, and prior systemic therapy as important prognostic factors in their scoring
system out of 8 points [29]. In 2014, they published a revised score with three major changes.
They modified the primary histology breakdown to slow-growth, moderate-growth, and
rapid-growth lesions based on the molecular characterization of the primary lesion (e.g.,
hormone-dependent versus hormone-independent lung cancer with or without molecularly
targeted drugs) and refined the visceral metastasis factor as nodular/cerebral metastasis
or disseminated metastasis. Additionally, they included laboratory data (e.g., C-reactive
protein and serum albumin). The higher the number of points out of 10, the lower the
survival [30].

With 307 patients who underwent surgery for spinal metastasis across 4 centers, Ghori
and colleagues developed the New England Spinal Metastasis Score (NESMS). Feeling that
the modified Bauer score inadequately assessed the general health status of patients, the
authors included ambulatory status and serum albumin levels in addition to the modified
Bauer score in their scoring system. The NESMS was externally validated on a cohort of
operatively managed patients as well as separately validated on a cohort of non-operatively
managed patients [31,32]. Additionally, a prospective analysis found that the NESMS shows
superior predictive capability for 1-year mortality compared to the Tokuhashi, Tomita, and
SINS systems [33].

In 2016, the SORG Orthopaedic Research Group published a survival algorithm for
patients with operatively managed spinal metastatic disease. With 649 patients, they
identified the following prognostic factors: age ≥65 years, performance status, primary
tumor histology, multiple spinal metastases, visceral metastasis, prior systemic therapy,
white blood cell count ≥ 11,000/µL, and hemoglobin ≤ 10 g/dL. Based on the number of
points out of 12, the authors divided patients into good, intermediate, and poor prognosis
groups, with associated survival probabilities of 30, 90, and 365 days. To provide a more
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user-friendly tool for clinicians, they additionally built a nomogram that converts each
of the aforementioned factors into a score. The points are summed and translated into
a patient-specific risk of survival at 30, 90, and 365 days [34]. The SORG nomogram
was externally validated for 90-day and 1-year mortality on an independent cohort of
100 patients, outperforming the Tokuhashi score, Tomita score, modified Bauer score,
and NESMS [35]. The nomogram was additionally externally validated for 30-day and
90-day survival after surgery, outperforming eight other scoring systems [36]. A recent
systematic review similarly found that the SORG nomogram performs the best out of
17 scoring systems at predicting 90-day and 1-year mortality [37]. A summary of the
discussed prognostic scoring systems is provided in Table 1.

Table 1. Conventional prognostic scoring systems.

Study Number Treatment Location Features Points Model

Tokuhashi et al.,
1990 [23] 64 Operative Spine

Performance status, the
number of bony lesions, the

number of spinal lesions,
visceral lesions, primary

histology, and
neurologic deficit

12 None

Tokuhashi et al.,
2005 [24] 264 Operative and

non-operative Spine

Performance status, the
number of bony lesions, the

number of spinal lesions,
visceral lesions, primary

histology, and
neurologic deficit

15 None

Bauer and
Wedin, 1995

[25]
241 Operative

Spine and
extraspinal

region

The number of spinal lesions,
visceral lesions, primary

histology, and
pathologic fracture

5
Multivariate

logistic
regression

Leithner et al.,
2008 [26] 69 Operative Spine

The number of spinal lesions,
visceral lesions, and
primary histology

4
Multivariate

logistic
regression

Tomita et al.,
2001 [27] 67 Operative and

non-operative Spine
The number of bony lesions,

visceral lesions, and
primary histology

10 None

van der Linden
et al., 2005 [28] 342 Non-operative Spine

Performance status, visceral
lesions, and

primary histology
6

Cox
proportional

hazards

Katagiri et al.,
2005 [29] 350 Operative and

non-operative

Spine and
extraspinal

region

Performance status, the
number of bony lesions,
visceral lesions, primary

histology, and prior
systemic therapy

8
Cox

proportional
hazards

Katagiri et al.,
2014 [30] 808 Operative and

non-operative

Spine and
extraspinal

region

Performance status, the
number of bony lesions,
visceral lesions, primary
histology, prior systemic

therapy, and laboratory data
(C-reactive protein, lactate
dehydrogenase, albumin,

calcium, and bilirubin levels,
and platelet count)

10
Cox

proportional
hazards
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Table 1. Cont.

Study Number Treatment Location Features Points Model

Ghori et al.,
2015 [38] 307 Operative Spine

Modified Bauer score,
performance status, and

albumin level
3

Multivariate
logistic

regression

Paulino Pereira
et al., 2016 [30] 649 Operative Spine

Performance status, the
number of spinal lesions,
visceral lesions, primary
histology, prior systemic

therapy, age, white blood cell
count, and hemoglobin level

12
Cox

proportional
hazards

Primary tumor histology and the presence of visceral lesions were most frequently
identified as being important for prognosis; they were included in 8 of the 10 aforemen-
tioned studies. Pretreatment performance status was included in six studies. Table 2 details
the most commonly included features in conventional prognostic models.

Table 2. Features included in conventional prognostic scoring systems.

Feature Frequency References

Primary tumor histology and the presence of
visceral metastases 8 [23–30,34]

Performance status 6 [23,24,28–30,34]

The number of spinal metastases 5 [23–26,34]

The number of bony metastases 5 [23,24,27,29,30]

Prior systemic therapy 3 [29,30,34]

Serum albumin level 2 [30,38]

Neurologic deficit 2 [23,24]

Pathologic fracture 1 [25]

Age, WBC count, and hemoglobin level 1 [34]

Abnormal C-reactive protein, lactate dehydrogenase,
calcium, and bilirubin levels and platelet count 1 [30]

3.3. Machine Learning-Driven Scoring Systems

The original Tokuhashi, revised Tokuhashi, and Tomita studies do not report utilizing
statistical modeling to derive the prognostic factors that they included in their scoring
systems [23,24,27]. The remaining prognostic scoring systems between 1990 and 2016 for
predicting survival in patients with spinal metastatic disease were largely developed with
Cox proportional hazards or multivariable logistic regression to identify prognostic factors
and predict short- or long-term mortality [25,26,28–30,34,38]. Although regression tech-
niques are often successful in assessing the association between explanatory features and
outcomes, they are less suited for prediction. Machine learning methods have immensely
grown in popularity in the past decade due to their ability to better capture complex
non-linear relationships and factor–factor interactions compared to traditional regression
techniques [39,40]. Machine learning algorithms have been shown to successfully predict
clinical outcomes across diverse clinical disciplines, often outperforming logistic regres-
sion [41–43]. Additionally, machine learning modeling allows for the assessment of model
discrimination, model calibration, and decision curve analysis—important metrics for
determining the utility of a reported model [44].

The SORG Orthopaedic Research Group performed the first published machine
learning-driven analysis for the prediction of survival after operatively managed spinal
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metastasis in 2016. They developed a boosting algorithm that performed better at all time
points for the prediction of 30-day, 90-day, and 1-year survival in the training dataset
but performed slightly worse than the nomogram in the testing dataset [34]. They con-
structed the model with factors shown to be independently associated with survival:
age ≥65 years, performance status, primary tumor histology, multiple spinal metastases,
visceral metastasis, prior systemic therapy, white blood cell count ≥ 11,000/µL, and
hemoglobin ≤ 10 g/dL.

With 1790 patients from the American College of Surgeons National Surgical Quality
Improvement Program, the SORG group built a Bayes Point Machine algorithm for the
prediction of 30-day mortality after surgery for spinal metastasis. This machine learning
algorithm performed well, with an area under the receiver-operating characteristic curve
(AUROC) of 0.782, and was well calibrated. Preoperative patient features used for algorithm
development included serum albumin level, performance status, white blood cell count,
hematocrit, alkaline phosphatase level, American Society of Anesthesiologists class, and
location within the spine. The Bayes Point Machine was incorporated into a web application
and deployed as an open-access tool for clinicians, the first such web-based application for
the prediction of survival after spinal metastasis [45].

The SORG group then transitioned to building machine learning-driven models with
high-quality institutional cohorts. With 732 patients from 2 large academic medical cen-
ters in Massachusetts, Karhade and colleagues developed stochastic gradient boosting
algorithms that accurately predicted 90-day and 1-year mortality for operatively managed
spinal metastatic disease. Features important for both models included serum albumin
level, primary tumor histology, functional status, absolute lymphocyte count, alkaline
phosphatase level, and creatinine level. Both models were well calibrated with excellent
discrimination, with AUROC values of 0.83 and 0.89 for 90-day mortality and 1-year
mortality, respectively. The discriminations of the stochastic gradient boosting models
for 90-day and 1-year mortality were greater than those of the following scores: original
Tokuhashi, revised Tokuhashi, Tomita, modified Bauer, van der Linden, Katagiri, NESMS,
and SORG nomogram. The authors also reported a web-based calculator where users input
patient feature values and receive a probability of 90-day or 1-year mortality [46]. These
models were externally validated multiple times, first with a single independent cohort
spanning patients from 2003 and 2016 in a tertiary-care medical center in Maryland [47].
They were externally validated again by Bongers and colleagues with a contemporary
cohort composed of 200 patients from a tertiary-care center in New York between 2014
and 2016, performing excellently and with good calibration [48]. Despite taking impor-
tant steps toward the generalizability of these models, both of these external validation
studies were performed in the same geographic region of the United States that the SORG
algorithms were developed in. Shah and colleagues successfully externally validated these
algorithms with a geographically distinct cohort from a tertiary-care center in California.
Furthermore, they showed that the algorithms perform accurately in a contemporary cohort
subgroup treated in 2015 or later [49]. Additionally, Yang and colleagues reported success-
ful international external validation of the SORG algorithms with a Taiwanese cohort of
427 patients [50]. Zhong and colleagues also reported successful external validation of the
SORG algorithms in a cohort of 150 patients with lung-derived spinal metastasis [51].

It has been postulated that a patient is likely to benefit from surgical intervention
for spinal metastatic disease if he/she is likely to live longer than 3 months [6,52]. Three
months has thus been a survival time point that most of the classical and machine learning
models have aimed to predict. With the advent of minimally invasive techniques that
may be associated with less perioperative morbidity, the survival required to benefit from
surgery may be less than this original cut-off. The SORG group thus sought to predict
survival at an earlier time point. With an institutional cohort of 3001 patients with spinal
metastasis treated non-operatively or operatively, they developed a machine learning
model predicting 6-week mortality. The elastic net penalized logistic regression model
was well calibrated, with excellent discrimination (AUROC: 0.85). They found that the



Diagnostics 2024, 14, 962 8 of 14

most important features for prediction were serum albumin level, primary tumor histology,
absolute lymphocyte count, the number of spinal metastases, and functional status. This
algorithm was externally validated with 1303 patients from 4 independent external cohorts
from the United States and Taiwan [53]. A summary of the machine learning studies for
spinal metastatic disease is provided in Table 3.

Table 3. Machine learning-driven prognostic tools.

Study Number Treatment Features Model

Paulino Pereira et al.,
2016 [34] 649 Operative

Performance status, the number of
spinal lesions, visceral lesions, primary
histology, prior systemic therapy, age,

WBC count, and hemoglobin level

Boosting regression

Karhade et al., 2019 [45] 1790 Operative
Performance status, ASA class, albumin
level, WBC count, hematocrit, alkaline
phosphatase level, and spinal location

Bayes Point Machine

Karhade et al., 2019 [46] 732 Operative

Performance status, visceral lesions,
primary histology, BMI, creatinine level,

alkaline phosphatase level, albumin
level, platelet count, absolute

lymphocyte count, hemoglobin level,
INR, neutrophil–lymphocyte ratio, and

platelet–lymphocyte ratio

Stochastic gradient
boosting

Karhade et al., 2022 [53] 3001 Operative and
non-operative

Performance status, the number of
spinal lesions, visceral lesions, brain
lesions, primary histology, albumin

level, absolute lymphocyte count, WBC
count, and alkaline phosphatase level

Elastic net penalized
logistic regression

Performance status was the most commonly employed feature in the SORG algorithms,
included in all four models. The frequency of features viewed as important for the machine
learning-driven models are detailed in Table 4.

Table 4. Features included in machine learning-driven prognostic scoring systems.

Feature Frequency References

Performance status 4 [34,45,46,52]

Primary tumor histology and the presence of
visceral metastases 3 [34,46,52]

Serum albumin and alkaline phosphatase level 3 [45,46,53]

WBC count 3 [34,45,53]

The number of spinal metastases 2 [34,53]

Absolute lymphocyte count 2 [46,53]

Hemoglobin level 2 [34,46]

Hematocrit, spinal region, and ASA class 1 [45]

Creatinine level, platelet count, neutrophil–lymphocyte
ratio, platelet–lymphocyte ratio, and body mass index 1 [46]

Prior systemic therapy and age 1 [34]

Many of the same features are included in the prognostic models built with conven-
tional statistics and those built with machine learning algorithms: primary tumor histology,
the presence of visceral metastases, the number of spinal metastases, serum albumin level,
white blood cell count, hemoglobin level, and prior systemic therapy. The SORG machine
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learning models did not include the number of bony metastases, neurologic symptoms, or
the presence of pathologic fracture. Additionally, both modeling approaches employed
discrete features; there were no included continuous variables or imaging variables. The
machine learning models included a greater number of features on average per model
compared to the conventional models (8.8 features versus 4.7 features), primarily due to
an increased number of laboratory values included. Earlier models built with traditional
statistics attempted to distil the complex interplay of features that influence prognosis into
a small number of features, with the aim of simplifying the features that physicians had
to consult to receive accurate and interpretable information about prognosis. In contrast,
a greater number of features tend to optimize the performance of machine learning mod-
els. The higher dimensionality of inputs maximizes predictive performance, often at the
expense of interpretability.

Machine learning-driven analyses to predict survival for spinal metastatic disease
represent a major advance in the ability of clinicians to accurately assess prognosis. These
algorithms perform very well, with excellent discrimination, and are well calibrated across
multiple time points—successfully predicting survival at 30 days, 6 weeks, 90 days, and
1 year. By quantifying risk with more granularity than simply “low-risk” or “high-risk”,
these tools can facilitate a data-driven discussion of risks and benefits, with subsequently
improved preoperative patient counseling. Additionally, the machine learning analyses
were shown to be internally valid, with the reporting of key metrics for the validation of
clinical prediction models: model discrimination, model calibration, and decision curve
analysis. Reporting these metrics is crucial to adequately assess the clinical utility of
any predictive algorithm. Finally, the lack of external validation is a pervasive problem
in the machine learning literature—significantly limiting the generalizability of these
models [54]. The SORG machine learning models have been externally validated on
multiple occasions with contemporary, geographically distinct domestic and international
cohorts. The classical regression-based studies generate a total score based on the presence
or absence of prognostic factors and recommend treatment based on which prognostic
group the patient falls into. The SORG machine learning algorithms from 2019 onward
provide web-based risk calculators that generate the patient-specific probability of mortality.
These risk calculators allow clinicians to input features and receive the patient-specific
probability of mortality as an output in a user-friendly digital interface.

Clinical data that are readily available in patient charts comprise the majority of
input features used to develop these models. These include features such as primary
tumor histology, the number of spinal metastases, the presence of visceral metastasis, and
laboratory values. While primary tumor histology reflects the molecular characteristics of
specific malignancies, molecular markers or gene expression data are yet to be incorporated
into machine learning models for spinal metastasis mortality. Similarly, although deep
learning methods have been applied to imaging for spinal metastasis, imaging data that
are more detailed than the number of spinal metastases have not yet been included in
prognostic models for spinal metastasis [55,56]. Additionally, patient-reported outcomes
have not been utilized in reported models. Expanding the sources of input data to include
molecular markers, imaging characteristics, and patient-reported outcomes is likely to
improve predictive performance.

4. Assessing Machine Learning Algorithms

It is critical to determine the quality and validity of the proposed clinical prediction
models. Let us consider internal validity and external validity separately. Internal validity
refers to the validity of a model’s performance on the cohort for which it was developed
(i.e., the derivation cohort). An important characteristic of a clinical prediction tool is not
only how reproducible it is but also how applicable it is to an independent population.
While internal validity is a measure of the reproducibility of a model, external validity is a
measure of generalizability [57]. Despite being critical to establish the utility of prediction
tools, external validation studies are rare in the machine learning literature [54].
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Aiming to provide rigorous assessment of the validity of a predictive model, Steyer-
berg and Vergouwe proposed reporting and evaluating four metrics: discrimination, the
calibration slope, the calibration intercept, and decision curve analysis [57]. An accurate
model should reliably discriminate between those who develop an outcome and those
who do not. Discrimination is typically measured with the AUROC, also known as the
concordance statistic or c-statistic. The AUROC represents the probability that the model
can distinguish between a patient who develops an outcome and one who does not. An
AUROC of 1 represents perfect discrimination and an AUROC of 0.5 indicates random
prediction by the model [57].

Good discriminatory capability is necessary but not sufficient for overall model per-
formance. In addition to discriminating an event from a non-event, a model’s predic-
tions should align with the observed outcomes within the study population. For every
100 patients for which a model predicts a 90% probability of 1-year survival, 90 patients
should be alive in one year. Calibration captures this characteristic of a model; it is a
measure of the agreement between the model predictions and the observed outcomes. Cali-
bration is assessed with the calibration intercept and the calibration slope. The calibration
intercept is a measure of the degree to which a model overestimates or underestimates the
outcome of interest. A perfect model has a calibration intercept of 0. If a model predicting
survival for spinal metastatic disease has a positive calibration intercept, it overestimates
survival; an intercept value less than 0 means that the model underestimates survival. The
calibration slope is a measure of how extreme a model’s predictions are [57,58]. A perfect
model has a calibration slope of 1.

While discrimination and calibration assess the accuracy of a model’s predictions,
they do not determine the clinical usefulness of a model. First introduced by Vickers and
colleagues, decision curve analysis assesses clinical strategies by evaluating their net benefit
across different probability thresholds [59]. The net benefit accounts for the potential benefit
or harm from predictions issued by a model. It is a measure of the net true positives for a
given threshold probability. A net benefit of 0.05 for a given threshold probability means
that applying the model to 100 patients allows for the identification of 5 extra true positives
without increasing the false positive rate [57,60]. The decision curve is drawn with the
threshold probability on the x-axis and the net benefit on the y-axis. A model’s performance
is compared to the default strategies of changing management for all or no patients [44].
The decision curve is thus a graphical depiction of the trade-off between true positive and
false positive predictions for a model [60]. Decision curves for different models can be
compared to determine which models maximize the net benefit. The decision curves for the
SORG machine learning models predicting 90-day and 1-year mortality in an independent
cohort of surgically treated patients with spinal metastasis are shown in Figure 1.
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5. Future Directions and Limitations of Artificial Intelligence

The scope of artificial intelligence in orthopedic surgery has expanded considerably
in recent years, growing to include both unsupervised learning and natural language
processing algorithms. As clinical datasets grow in both number and dimensionality,
machine learning-driven algorithms will likely be utilized even more rapidly in orthopedic
surgery and spinal surgery [61–63].

Advances in the molecular and immunohistochemical characterization of malignan-
cies have led to an increase in biological data that should be incorporated into machine
learning algorithms. Additionally, imaging data from computed tomography and mag-
netic resonance imaging studies should be incorporated into prognostic models. Other
disciplines of machine learning such as natural language processing and unsupervised
learning models may improve the prediction of outcomes; these remain underutilized for
the prediction of outcomes in spinal metastatic disease. The clinical utility of machine
learning algorithms would be enhanced by incorporating them into the electronic health
record (EHR). Although care must be taken to protect patient confidentiality, embedding
machine learning-driven risk calculators into the EHR would allow for the automated
collection of relevant data, with the ability to continually self-update with prospectively
collected data.

Despite the successful published applications of machine learning methodology for
spinal metastatic disease, there are multiple potential limitations that must be addressed
as the uptake of this technology increases. Machine learning methods are optimized for
prediction but not necessarily for explanation. The individual effects of factors employed
by advanced machine learning methods on the outcome of interest are not straightforward
to interpret in the way that regression coefficients for traditional statistical modeling are—
leading to a “black box” phenomenon.

Additionally, machine learning methods are prone to overfitting the data on which
they are developed. It is thus crucial that robust internal and external validation strategies
be employed for all predictive algorithms, with standardized reporting of key validation
metrics (i.e., discrimination, calibration, and decision curve analysis). Prospective testing
of these models is key. Finally, machine learning models perform well due to their ability
to detect patterns within a dataset. As a result, the quality of the data source determines
the quality of the models built with those data. Missing or inaccurate data can severely
impact the performance of machine learning models. Furthermore, machine learning
models may have the unintended consequence of propagating biases. Existing disparities
in cohort creation and treatment strategies may be exacerbated, potentially causing harm
to underrepresented groups such as ethnic minorities or those of lower socioeconomic
status [64].

The most significant barrier to the clinical implementation of prognostic models in
spinal metastatic disease is the lack of prospective randomized trials that interrogate the
effectiveness of machine learning-driven predictions. While successful external validation
studies improve the argument for generalizability, prospective randomized trials remain
the gold standard for proving that prognostic tools yield improved outcomes for patients.
Prospective trials must be designed to test the reported models.

6. Conclusions

The considerable improvements in data science must continue to be applied to the
management of spinal metastatic disease. Symptomatic spinal metastatic disease is an
important and growing clinical entity that requires a data-driven approach. Prognosis is a
fundamental data point that patients and their families rely on to determine the next step
in management. Patients with spinal metastatic disease are typically older patients with
multiple medical comorbidities; even with improvements in perioperative care, surgical
intervention in these patients has a considerable complication profile. Setting realistic
expectations is a crucial component appropriately informing the risk–benefit calculation
that patients and their families must make when considering treatment options. Machine
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learning methods have built on the important work of classical prognostic algorithms,
allowing for the accurate prediction of mortality in spinal metastatic disease. While these
validated tools provide patient-specific risk of mortality, they do not and cannot tell clini-
cians how to treat a patient. It is not within the purview of models to determine treatment
for a patient. How to treat symptomatic spinal metastasis is challenging and requires con-
sideration of both clinical and psychosocial components. Shared decision making between
patients, families, and their physicians is required to determine a treatment plan. Machine
learning-driven algorithms can facilitate improved shared decision making by providing
an accurate assessment of prognosis.
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