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Abstract: Colorectal cancer (CRC) is a major public health issue, and there are limited studies on
the association between 17β-hydroxysteroid dehydrogenase type 4 (HSD17B4) polymorphism and
CRC. We used two national databases from Taiwan to examine whether HSD17B4 rs721673, rs721675,
and alcohol intake were independently and interactively correlated with CRC development. We
linked the Taiwan Biobank (TWB) participants’ health and lifestyle information and genotypic data
from 2012 to 2018 to the National Health Insurance Database (NHIRD) to confirm their medical
records. We performed a genome-wide association study (GWAS) using data from 145 new incident
CRC cases and matched 1316 healthy, non-CRC individuals. We calculated the odds ratios (OR)
and 95% confidence intervals (CI) for CRC based on multiple logistic regression analyses. HSD17B4
rs721673 and rs721675 on chromosome 5 were significantly and positively correlated with CRC
(rs721673 A > G, aOR = 2.62, p = 2.90 × 10−8; rs721675 A > T, aOR = 2.61, p = 1.01 × 10−6). Within
the high-risk genotypes, significantly higher ORs were observed among the alcohol intake group.
Our results demonstrated that the rs721673 and rs721675 risk genotypes of HSD17B4 might increase
the risk of CRC development in Taiwanese adults, especially those with alcohol consumption habits.

Keywords: alcohol consumption; retrospective case control study; colorectal cancer; GWAS; biobank;
medical claims dataset; CRC risk; CRC development; polymorphism

1. Introduction

Colorectal cancer (CRC) ranks third in incidence and second in mortality of cancers
worldwide [1]. It is the most common cancer and third leading cause of cancer-related
deaths in Taiwan [2,3]. Several studies have explored CRC etiology because it is a major
public health issue. In addition to age, sex, and a family history of CRC, obesity, a sedentary
lifestyle, high red meat consumption, excessive alcohol consumption, tobacco use, and
inflammatory bowel disease have been identified as driving factors behind increases in
CRC incidence [4].
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However, the Nordic Twin Study estimated that 40% of the variation in CRC risk
could be attributed to heritability [5]. To date, approximately 19 single-nucleotide poly-
morphisms (SNPs) have been identified in genome-wide association studies (GWAS) to
be associated with susceptibility for the development of CRC [6]. These genetic variants,
along with high-penetrance germline mutations in known CRC susceptibility genes, in-
cluding APC, MUTYH [7], POLE, and POLD1 [8], are associated with changes in the DNA
mismatch repair, LKB1, SMAD4, BMPR1A, AXIN2, and TGFβR2 pathways, which are
implicated in intestinal hamartomatous polyps and predisposition to cases resembling
Lynch syndrome [9–12]. However, hereditary syndromes resulting from rare variations
with high penetration account for less than 6% of CRC cases [13,14]. Numerous GWAS
have been conducted for common low-penetrance variants to investigate the residual risks
that determine predisposition to developing CRC [15].

Nevertheless, results from previous CRC GWASs carried out in populations with
European ancestry may not be applicable to East Asian populations. Investigating different
populations improves the validity of general risk variants of CRC, given how varying
populations can show significantly different association strengths and allele frequencies [16].
Furthermore, CRC GWAS conducted on East Asians can help determine genetic risk
variants specific for this population.

Large-scale epidemiological studies have consistently indicated a significant rela-
tionship between obesity, smoking, alcohol drinking, and CRC [17–19]. Further studies
showed a possible time- and dose-dependent relationship between cigarette smoking and
the risk of CRC. Smoking significantly increases the risk of developing CRC through the
microsatellite instability pathway, characterized by high levels of microsatellite instability
and hypermethylation of promoter CpG island sites. This leads to the inactivation of several
tumor-suppressor genes and other tumor-related genes, such as mutations in the BRAF
gene [20]. A study by Shaukat et al. found that a higher body mass index (BMI) was a risk
factor for long-term colorectal cancer mortality. Reducing BMI could control the risk of
cancer mortality [21]. Alcohol consumption is highly prevalent worldwide and is associated
with a high incidence of CRC. In developed countries, alcohol consumption is a significant
contributor to the development of CRC [22]. Alcohol and its metabolites have direct and
indirect effects that promote carcinogenesis, leading to cancer formation. These effects
result from genetic, epigenetic, biochemical, and immunological abnormalities [23,24].

Over the past decade, case–control and cohort studies have evaluated potential
gene–environment interactions in CRC risk [25–27]. Choi et al. analyzed the UK Biobank
database and found that adopting healthy lifestyle factors lowered CRC risk in populations
with high genetic susceptibility [28]. However, because of the method of data collection,
few studies have discussed utilization of the Charlson comorbidity index (CCI), which was
used to reveal the general health statuses of the participants in our CRC GWAS. CCI is a
scoring system based on weighting summary measures for clinically important concomitant
diseases, in order to quantify an individual’s disease burden.

We conducted a retrospective case control study to investigate susceptibility variants
associated with CRC risk in the Taiwanese population. Participants’ genotypic, lifestyle, and
biochemical data were obtained from the Taiwan Biobank (TWB) project. We linked TWB
participants’ data to their health care records in the National Health Insurance Research
Database (NHIRD) to identify CRC and other comorbidities. Furthermore, we analyzed
the associations between genetic variants and BMI, smoking, alcohol consumption, betel
nut-chewing habits, and CCI score. To the best of our knowledge, this is the first report
that used the TWB and the NHIRD to perform a CRC GWAS in Taiwan.

2. Methods
2.1. Data Sources

The data used in this study were derived from the TWB (which included health,
lifestyle, and genotypic data for 2012–2018) and the NHIRD (longitudinal health insurance
data for 2012–2018). The Taiwanese government sponsors the TWB, a population-based
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dataset that collects health, lifestyle, and genetic data from Taiwan residents [29]. The TWB
aimed to recruit 200,000 community-based healthy participants aged 30–70 years, who had
not been diagnosed to have cancer prior to 2024. In 2021, the TWB had blood sample data
and physical examination results from 111,903 voluntary participants.

All the participants completed a structured questionnaire regarding personal infor-
mation, health, and lifestyle data through interviews with 29 recruitment offices. More
than 22 million people participated in the National Health Insurance (NHI) program. To
investigate the incidence of CRC, we extracted CRC and other comorbidity diagnostic
codes from the NHIRD, which included registration files and data from original claims
for reimbursement [30]. Diseases were coded based on the International Classification of
Diseases, Ninth Revision, Clinical Modification (ICD-9-CM) code from 2006 to 2015, and
ICD-10-CM code from 2016 to 2017 [30]. In addition, the NHIRD was linked to the Taiwan
Cancer Registry (TCR) in order to identify cancer patients and categorize cancer types
using the International Classification of Diseases for Oncology, Third Edition (ICD-O-3).

2.2. Ethical Considerations

The study protocol was reviewed and approved by the institutional review board
(IRB) of the Tri-Service General Hospital (TSGH IRB No. A202105019). The TSGH IRB
waived the requirement for signed informed consent based on the de-identified nature of
the data from the TWB and the NHIRD.

2.3. Study Population

We initially recruited 111,903 TWB participants. We identified incident CRC patients
with a primary diagnosis of CRC (ICD-O-3 codes C180-C189, C199, and C209) using
the NHIRD from 1 January 2012 to 31 December 2018. In total, 145 patients with CRC
incidence were recruited. To exclude bias from possible confounding factors, we performed
propensity score matching using logistic regression with a matching ratio of 1:10. The
regression model included the following covariates: age, sex, BMI, smoking, alcohol
consumption, and betel nut-chewing habits. After matching, we enrolled 1450 non-CRC
participants from the TWB.

2.4. Covariate Assessment

All TWB participants were asked about their alcohol, tobacco, and betel nut use habits
using a structured questionnaire. We used inpatient and outpatient files from the NHIRD
to determine whether the selected TWB participants had comorbidities. Details of the
included comorbidities are shown in Table S1. Furthermore, we used these comorbidities
to calculate the CCI for each TWB participant to assess their general health status.

2.5. Genotyping Data and Imputation

TWB participants’ DNA was extracted from their blood samples using QIAamp
DNA blood kits (Qiagen, Valencia, CA, USA) according to the manufacturer’s protocol.
The quality of the isolated genomic DNA was assessed using agarose gel electrophoresis
and quantified with spectrophotometry [31]. Details of the SNP genotyping and im-
putation performed by the TWB have been reported previously [32]. SNP genotyping
was performed using custom Taiwan BioBank chips and the Axiom Genome-Wide Ar-
ray Plate System (Affymetrix, Santa Clara, CA, USA) at the National Center of Genome
Medicine, Academia Sinica, Taipei, Taiwan. Custom Taiwan BioBank chips, which in-
cluded 653,291 SNPs, were used to collect the genetic profiles of Taiwanese individuals [33].
During the GWAS, we excluded SNPs with minor allele frequency (MAF) < 5%, missing
rate > 5%, or those in violation of the Hardy–Weinberg equilibrium (p < 10−4). Individu-
als with outlying autosomal heterozygosity rates (beyond a range of mean ± 3 standard
deviations) and highly correlated individuals with identity-by-descent >0.1875 were also
excluded from the subsequent analyses. 332,733 SNPs and 1316 TWB participants without
CRC were retained after conducting quality control procedures [34]. SNPs at locus 5q23.1
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(chr5:119,500,00–119,700,00) and 11p11.2 (chr11:45,600,000–45,800,00) were fine-mapped
using SHAPEIT and IMPUTE2 (V2.3.1) based on eastern Asian (EAS) population data from
Phase 3 (V5) of the 1000 Genomes Project as a reference panel, whereas imputed SNPs
with call rate < 0.99, MAF < 1%, or HWE p-value of <1.0 × 10−4 were eliminated. Finally,
we selected candidate SNPs for eQTL analysis, which were calculated using the tissue-
specific all SNP-gene associations dataset in sigmoid and transverse colon tissues from the
Genotype-Tissue Expression (GTEx) Portal database V8 (https://www.gtexportal.org/,
accessed on 8 May 2022) [35].

2.6. Statistical Analyses

Analyses were performed using SAS (version 9.4; SAS Institute, Inc., Cary, NC, USA)
provided by the Academia Sinica Branch of the Ministry of Health and Welfare Data Welfare
Center. We performed chi-square tests and t-tests to examine the differences between groups
in discrete and continuous variables. Furthermore, the cumulative incidence of CRC was
generated using the Kaplan–Meier method, and log-rank tests were performed to examine
the difference between these two curves.

Logistic regression analysis, with adjusted additive models, was performed to de-
termine the odds ratios (ORs) of individual SNPs associated with CRC. We adjusted for
the effects of age, sex, BMI, and the first 10 principal components (PCs). The logistic
regression model included 10 principal components as covariates to control for population
stratification. To further examine the effects of covariates on the SNP–CRC association,
we performed a logistic regression and adjusted for smoking, alcohol consumption, betel
nut-chewing habits, and CCI score (genome-wide significance was implemented with
p < 5 × 10−8). To assess the interaction between lifestyle and gene factors, we implemented
subgroup analyses, stratified by covariates. All analyses were performed using PLINK
version 1.90, R packages, and SAS. All p-values were two sided, and p < 0.05 was considered
statistically significant.

We analyzed all the data in April 2022, and the preferred statements followed by
the reporting items of the STROBE statement of the case–control study are available as
supplemental materials (Supplemental Table S2).

3. Results

In this study, the incidence rate of CRC in the TWB participants was observed to be
129.6 per 100,000. The mean follow-up time of the CRC and non-CRC groups was 1.87 and
2.85 years, respectively. Among the 1461 TWB participants, there were no differences in age,
sex, BMI index, smoking, alcohol consumption, and betel nut-chewing habits between the
individuals with newly diagnosed CRC (145) and non-CRC individuals (1316). In addition,
the CCI score of the CRC group was significantly higher than that of the non-CRC group
(Table 1).

Table 1. Demographic and clinical characteristics of study participants.

CRC (n = 145) Non-CRC (n = 1316) p-Value

Age, years [mean ± SE] 58.41 ± 7.64 58.27 ± 7.7 0.835
Male sex [No. (%)] 66 (45.52) 606 (46.05) 0.973

BMI, kg/m2 [mean ± SE] 24.91 ± 3.10 25.02 ± 3.56 0.685
Smoking [No. (%)] 41 (28.28) 393 (29.86) 0.763
Alcohol [No. (%)] 15 (10.34) 139 (10.56) 1.000

betel nut-chewing [No. (%)] 18 (12.41) 182 (13.83) 0.731
CCI [mean ± SE] 1.37 ± 2.13 0.56 ± 0.96 <0.001 *

* p < 0.05. CCI, Charlson comorbidity index; CRC; colorectal cancer.

We conducted a GWAS of CRC using 1461 samples obtained from the TWB. The
genomic control inflation factor was 1.01. The SNP found to be most significantly associated
with CRC was SNP rs721673 (A > G, aOR = 2.62, p = 2.90 × 10−8). SNP rs721673 achieved
nominal genome-wide statistical significance at p < 5 × 10−8 in the intron region of the

https://www.gtexportal.org/
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17β-hydroxysteroid dehydrogenase type 4 (HSD17B4) gene on chromosome 5 at 5q23.1.
We used the NHGRI-EBI GWAS Catalog [36] to confirm the novelty of this variant, and
the results suggest that the present GWAS is the first to detect a genome-wide significance
level CRC-related variant in the HSD17B4 gene. Imputation was performed to search for
additional CRC-associated functional SNPs, based on linkage disequilibrium information.
We imputed the SNP rs721673 within a ±1 Mb region using 1000 genomes from the EAS
population as a reference. After imputation, we found that SNP rs721675 (chr5:119611700,
human hg38 assembly) in chromosome 5q23.1 (A > T, aOR = 2.61) was the most significantly
associated with CRC (p = 1.01 × 10−6). To determine the functional basis of the two most
significant SNPs (rs721673 and rs721675) at 5q23.1/HSD17B4, eQTL analyses was retrieved
from the GTEx database [35]. We found that rs721673 and rs721675 were cis-acting eQTL for
HSD17B4 expression in colon tissue (p = 3.2 × 10−4), with a normalized effect size of 0.098.
The G risk allele of rs721673 and T risk allele of rs721675 increased HSD17B4 expression.

Next, we used the Kaplan–Meier method to measure the cumulative incidence of CRC
(Figure 1). These results demonstrated that both the rs721673 risk genotypes AG/GG and
rs721675 risk genotypes AT/TT were correlated with significantly higher CRC rates than
the two wild genotypes (log-rank test p < 0.001 and p < 0.001, respectively). We further
examined the association of HSD17B4 rs721673 and rs721675 with CRC by age, sex, BMI,
smoking, alcohol consumption, betel nut-chewing habits, and CCI scores. The ORs for
rs721673 and rs721675 were significantly higher in the alcohol consuming group than in the
non-alcohol consuming group (aOR = 15.2, 95% CI = 3.91 to 58.8; aOR = 16.4, 95% CI = 3.33
to 83.3, respectively) (Table 2). However, other covariates did not influence the association
between HSD17B4 rs721673/rs721675 and CRC.
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Table 2. Multivariate logistic regression analysis for the association between HSD17B4 rs721673 and
rs721675 and the risk of colorectal cancer (CRC) based on sex, age, and BMI groups.

Covariates
rs721673 (A > G) rs721675 (A > T)
* aOR(95%C.I.) * aOR(95%C.I.)

Age
<50 2.72 (1.89–3.91) 1.73 (0.51–5.85)
≥50 1.73 (0.51–5.85) 2.75 (1.81–4.15)

Sex
Male 2.64 (1.67–4.17) 2.27 (1.34–3.85)

Female 2.58 (1.54–4.31) 2.99 (1.69–5.26)
BMI

BMI < 24 2.59 (1.48–4.52) 2.37 (1.29–4.37)
24 ≤ BMI < 27 2.89 (1.63–5.1) 3.24 (1.67–6.29)

BMI ≥ 27 2.58 (1.3–5.1) 2.61 (1.18–0.01)
Alcohol consumption

NO 2.3 (1.6–3.31) 2.26 (1.5–3.39)
Yes 15.15 (3.91–58.82) 16.39 (3.33–83.33)

Smoking
NO 2.45 (1.64–3.66) 2.42 (1.54–3.83)
Yes 3.3 (1.7–6.41) 3.32 (1.59–6.94)

Betel nut-chewing habits
NO 2.95 (1.74–3.61) 2.51 (1.66–3.8)
Yes 3.53 (1.28–9.71) 2.95 (0.92–9.43)

CCI score
CCI = 0 2.15 (1.26–3.67) 2.06 (1.16–3.67)
CCI ≥ 1 1.76 (1.82–4.67) 3.07 (1.78–5.30)

* In addition to the covariate that was used to confirm the effect of the association between SNPs and CRC, the
other covariates, including the first 10 principal components (PCs), were adjusted for odds ratios.
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4. Discussion

Evidence on the association between HSD17B4 rs721673 and rs721675 polymorphisms
and CRC is limited. We linked the data of TWB participants aged 30–70 years to the NHIRD
to conduct this retrospective case control study. This is the first study to evaluate the
association between rs721673 and rs721675 genetic variants and CRC risk, to the best of
our knowledge.

According to the GTEx database, rs721673 AG/GG and rs721675 AT/TT are risk
genotypes that promote HSD17B4 expression. In this study, the two SNPs increased CRC
development risk in the Taiwanese population, especially in the alcohol-consuming group.
The results suggest that rs721673 and rs721675 polymorphisms and alcohol consumption
may play a role in CRC risk among Taiwanese individuals.

The HSD17B4 gene codes for the HSD17B4 protein, also known as D-specific bifunc-
tional protein and multifunctional protein 2. HSD17B4 is a 80 kDa multifunctional enzyme
localized in peroxisomes, that contains three distinct functional domains [37]. In nor-
mal cells, HSD17B4 plays essential roles in the catabolism of long-chain fatty acids [38],
branched fatty acids, and steroid hormones [39]. In the last decade, HSD17B4 has been re-
ported to be involved in the tumorigenesis and progression of many cancers by promoting
estrone production, which is subsequently metabolized into carcinogenic 4-OH or 16α-OH
estrone metabolites [40,41]. Increased levels of 4-OH estrone can cause cancer by reacting
with DNA to form depurination adducts, which in turn causes damage to specific genes
involved in carcinogenesis or induces microsatellite instability [42,43].

Our findings demonstrate that risk groups with rs721673 and rs721675 may have
increased HSD17B4 expression, and consequently, higher risks of developing CRC. We
observed that these groups had a higher CRC incidence rate. This finding is similar to a
previous study that reported an association between the dysregulation of estrogen-related
pathways and CRC development [44], and that estrogen-related gene polymorphisms were
positively correlated with CRC risk [45,46]. Overexpression of HSD17B4 has been observed
in various cancers, including prostate cancer [47], hepatocellular carcinoma [48], and breast
cancer [49]. Furthermore, increased expression of HSD17B4 was correlated with poorer
prognosis in patients with prostate, breast, and colon cancers [50].

Interestingly, this study revealed that alcohol consuming patients with the HSD17B4
rs721673 (AG/GG) and rs721675 (AT/TT) risk genotypes had a higher risk of CRC de-
velopment than non-alcohol consuming patients. Many studies have shown that alcohol
consumption is a significant risk factor for CRC development [19,51,52] and is estimated
that alcohol increases the chance of CRC by by 52–60% [53,54].

Even in small quantities, alcohol consumption has been suggested to be linked to an
increased risk of CRC. The connection between alcohol intake and CRC risk is dependent
on the dose. Heavy drinking is mainly associated with a higher CRC risk, while the risk of
CRC from light to moderate drinking remains inconsistent. A recent meta-analysis of the lit-
erature from 1966 to 2013 reveals an overall relative risk (RR) of 1.21 (95% CI = 1.01 to 1.46)
for individuals who consume 56.5 g/day of alcohol. Furthermore, gender can influence the
impact of alcohol on CRC risk; for those who drink 12.5–50 g/day, males exhibit a CRC RR
of 1.10 (95% CI = 1.03 to 1.18), while females have a RR of 0.87 (95% CI = 0.65 to 1.16) [55].
Alcohol metabolites, including reactive oxygen and nitrogen species, can cause genetic,
epigenetic, biochemical, and immunological dysfunction that promote chronic inflamma-
tion and cancer development [23,53]. Cytochrome P450 2E1 (CYP2E1) plays an important
role in ethanol metabolism, which produces reactive oxygen species resulting in a vicious
cycle of carcinogen accumulation [56]. Both animal and human studies have reported
that chronic alcohol intake can increase CYP2E1 levels [57,58]. In addition, alcohol and its
metabolites can influence gene expression in CRC by modifying the levels of particular
miRNAs (microRNAs). By adjusting the relative quantities of specific miRNAs, ethanol can
indirectly affect processes such as lipid metabolism, epithelial to mesenchymal transition
(EMT), angiogenesis, and immune response, consequently altering carcinogenesis [59]. An
example of miRNAs that are disrupted by ethanol is miR-34a, which is well-known as
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a tumor suppressor and is directly regulated by p53. MiR-34a is involved in numerous
processes advantageous to the carcinogenic state in the colon. Under normal circumstances,
miR-34a regulates hepatic glucose, lipid, and drug metabolism. In colorectal cancer cases,
it is generally downregulated [60].

Although we did not find evidence indicating that smoking, BMI, and betel nut-
chewing habits may modify the relationship between HSD17B4 rs721673 (AG/GG), rs721675
(AT/TT), and CRC. However, other literature has indicated these lifestyle factors may be
associated with the development of CRC. A meta-analysis of 188 studies published between
1958 and 2018 found that current smokers are 1.14-fold more likely to develop CRC than
non-smokers, and former smokers are 1.17-fold more likely [20]. Cigarette smoke contains
carcinogenic substances, such as polycyclic aromatic hydrocarbons and N-nitrosamines,
which can lead to the formation of DNA adducts and oxidative DNA damage. These
genetic alterations can contribute to the initiation and progression of CRC [61]. BMI
is a widely recognized indicator of obesity, and its relationship with CRC has been the
subject of extensive research. The mechanisms linking obesity to CRC are complex and
involve multiple pathways. A state of chronic low-grade inflammation characterizes
obesity. Furthermore, obesity is associated with insulin resistance and altered levels of
adipokines and other cytokines, which can promote colorectal carcinogenesis [62]. In a
recent systematic review, Li et al. revealed that individuals with overweight and obesity
(BMI ≥ 25 kg/m2) have a greater risk of early-onset CRC in comparison to those with
normal weight (OR = 1.42, 95% CI = 1.19 to 1.68) [63]. Betel nut chewing, a prevalent
habit among particular Asian, Pacific, and South Asian populations, has drawn increased
attention in recent years due to its connection to multiple health risks, particularly oral
cancer and other oral health problems. The primary alkaloids in betel nuts, such as arecoline,
arecaidine, guvacoline, and guvacine, can induce a range of systemic effects, impacting the
nervous, cardiovascular, gastrointestinal, and endocrine systems. Current evidence from
Taiwan also indicates that this habit may play a role in forming colorectal polyps [64].

To the best of our knowledge, only a few studies have discussed the association
between estrogen-related pathways and alcohol consumption and CRC risk. Konstandi et al.
reported that estrogens increased hepatic CYP2E1 mRNA expression in ovariectomized
mice [65]. In addition, Liu et al. demonstrated that alcohol intake was associated with
increased circulating estrone levels in pre-menopausal adult women in a breast cancer
study [66]. Furthermore, several cell line studies have indicated that estrogen receptor
pathways may be modified by ethanol [67].

Based on our results, we believe that the HSD17B4 rs721673 (AG/GG) and rs721675
(AT/TT) risk groups had increased HSD17B4 expression and CYP2E1 levels, which in
turn promoted CRC carcinogenesis in alcohol consumers. This hypothesis needs to be
substantiated by further studies to elucidate the underlying roles of HSD17B4 and alcohol
consumption in colorectal carcinogenesis.

It is crucial for health hcare professionals and public health policy makers to prioritize
alcohol cessation interventions to reduce the incidence of CRC. Encouraging healthier
lifestyle choices, such as adopting a balanced diet, increasing physical activity, and de-
creasing alcohol consumption, can help lower the risk of CRC. Moreover, targeted public
health campaigns and educational programs can raise awareness of the detrimental effects
of alcohol consumption on colorectal cancer risk, especially in the group with HSD17B4
rs721673 (AG/GG) and rs721675 (AT/TT) risk genotypes.

5. Conclusions

This study has some limitations. First, the TWB restricted the participants’ age to
30–70 years; hence, we could not examine the data of those over 70 years of age. Second,
although well-trained interviewers conducted face-to-face interviews with the TWB partici-
pants, there is a possibility of response bias as participants’ information was collected using
questionnaires. Finally, compared with other GWAS, the number of CRC cases in this study
was relatively low and may not have been sufficient to explore many other significant SNPs
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involved in CRC development. However, we used NHIRD population data to confirm new
CRC cases in the TWB participants to decrease the potential bias.

Our results demonstrated that the HSD17B4 rs721673 and rs721675 risk genotypes
might increase the risk of CRC development in Taiwanese adults, especially those with
alcohol consumption habits. However, this finding needs to be substantiated with further
studies to elucidate the role of HSD17B4 rs721673 and rs721675 and the modifying effect of
alcohol consumption in colorectal carcinogenesis.
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