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Abstract: Sex hormones and migraine are closely interlinked. Women report higher levels of migraine
symptoms during periods of sex hormone fluctuation, particularly during puberty, pregnancy, and
perimenopause. Ovarian steroids, such as estrogen and progesterone, exert complex effects on the
peripheral and central nervous systems, including pain, a variety of special sensory and autonomic
functions, and affective processing. A panel of basic scientists, when challenged to explain what
was known about how sex hormones affect the nervous system, focused on two hormones: estrogen
and oxytocin. Notably, other hormones, such as progesterone, testosterone, and vasopressin, are
less well studied but are also highlighted in this review. When discussing what new therapeutic
agent might be an alternative to hormone therapy and menopause replacement therapy for migraine
treatment, the panel pointed to oxytocin delivered as a nasal spray. Overall, the conclusion was that
progress in the preclinical study of hormones on the nervous system has been challenging and slow,
that there remain substantial gaps in our understanding of the complex roles sex hormones play in
migraine, and that opportunities remain for improved or novel therapeutic agents. Manipulation
of sex hormones, perhaps through biochemical modifications where its positive effects are selected
for and side effects are minimized, remains a theoretical goal, one that might have an impact on
migraine disease and other symptoms of menopause. This review is a call to action for increased
interest and funding for preclinical research on sex hormones, their metabolites, and their receptors.
Interdisciplinary research, perhaps facilitated by a collaborative communication network or panel, is
a possible strategy to achieve this goal.

Keywords: sex hormones; migraine; estrogen; oxytocin; progesterone; testosterone; prolactin;
vasopressin

1. Introduction

Migraine is a neurological disorder affecting 12% of adults around the world at any
one point in time [1]. Migraine symptoms can be different in women than men. Women
can have more frequent and intense headaches with a higher risk of chronification [2].
Migraine is now recognized as the number one cause of disability globally for women aged
15–49 [3]. This gender difference in the behavior of migraine as a disease highlights the
role of sex hormones in its pathophysiology. This review was the result of a round-table
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discussion among a panel of basic scientists from different disciplines on the topic of
how sex hormones exert their effect on the nervous system, particularly migraine disease.
The panelists were asked to discuss what the gaps in our knowledge were, what the
barriers were, whether they could identify any new therapeutic agents that would provide
an alternative treatment for migraine, and if there was an explanation for the clinical
observation that the prevalence of some migraine-related symptoms, such as vestibular
migraine and sinus pain and pressure, increase during perimenopause while headaches
tend to recede.

2. Sex Hormone Fluctuation as a Trigger of Migraine

Migraine tends to follow a classic temporal pattern throughout a cisgender woman’s
life that corresponds with sex hormone fluctuations during reproductive milestones in the
female lifespan. Puberty is a key period with significant changes in sex hormone levels.
Interestingly, in children and adolescents, the prevalence of migraine headaches is nearly
equivalent in boys and girls [4], but during puberty, the prevalence of migraine between
men and women diverges and is 3–4 times higher in women compared to men [5,6]. This
sex difference corresponds to the onset of menarche and falls after menopause.

Migraine symptoms can be linked to menstrual cycle changes (menstrual migraine)
and 18–25% of women with migraine experience migraine or headaches during men-
struation [7]. Menstrual migraine can be associated with a higher frequency of migraine-
accompanying symptoms and more frequent and severe migraine attacks [8]. A comparison
of women with and without migraine shows that those with migraine are characterized by
faster late-luteal-phase estrogen decline compared to women without migraine. Thus, the
timing and rate of estrogen withdrawal has been proposed to be a marker of vulnerability
to migraine in women [9]. Contraceptive pills reduce the number of migraine attacks,
migraine days, pain scores, disability scores, and migraine medication use while reducing
the frequency of aura, and lowering, but not eliminating, the risks of cardiovascular com-
plications or other side effects [10–12]. Another strategy is to use estrogen supplementation
with a pill, vaginal gel or patch during the menstrual week.

Migraine is a heterogeneous disease associated with many possible combinations of
genetic defects which share a common phenotype of intermittent pain or other hypersensi-
tivities. This accounts for the unpredictable response of migraineurs to medications and the
effect of hormones on the nociceptive system is no exception. For some, a drop in estrogen
triggers a menstrual migraine attack without aura; for others, high levels of estrogen can
trigger an attack with aura [13].

Migraine disease has a complex relationship with pregnancy. For 8% of women
with migraine, their headaches worsen during the first trimester. This is especially true
for migraine without aura, which is more hormonally driven [14–16]. The majority of
women with migraine generally experience reduced migraine symptoms by the third
trimester [17]. However, many women have the acute onset of headaches during pregnancy.
Approximately 60% of these new headaches will be related to migraine but caution must
be taken to evaluate pregnant women for secondary headaches [18]. A third of women
will have postpartum headaches [19]. For those who continue to have migraine symptoms
during their pregnancy and immediately postpartum, treatment options are limited to
protect the fetus. There are specific recommendations for safe care of women with migraine
headaches during pregnancy and breastfeeding [20].

Perimenopause, the period of two to eight years when menses first become irregu-
lar prior to the year after the end of menses, is a time when hormonal fluctuations are
still occurring, and pre-existing migraine symptoms can remain unchanged, improve,
or worsen [21–23]. In total, 8–13% of women report their first migraine during peri-
menopause [24,25]. However, many women see a decrease in headache prevalence during
this period [26,27], most prominently in women who already suffer from migraine with
aura [28]. For unexplained reasons, mid-facial pain and pressure and vestibular migraine
can become prominent symptoms during perimenopause and menopause [29]. Hormone
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replacement therapy, or menopause replacement therapy (MRT), usually a continuous
dosing of estrogen alone or estrogen plus progestin (ethinyl estradiol 5 µg combined with
norethindrone acetate 1 mg, estradiol 1 mg combined with 0.5 mg norethindrone acetate,
or transdermal estradiol combined with one-quarter or one-half of a 5 mg norethindrone
daily) [30], remains an option, particularly for those women who have not had a hysterec-
tomy because estrogen alone increases the risk of endometrial cancer. Transdermal estrogen
patches or gels can be efficacious and less risky than systemic estrogen replacement in
treating migraine [7,23,31]. A significant shortcoming of supplemental hormone therapies
is that they do not provide migraine relief for all women and, for some, headaches become
more severe. But a second major shortcoming of MRT is that, although the dosing of sex
hormones is roughly half that of birth control pills, the risks of heart disease, stroke, blood
clots, and breast cancer are not eliminated [13,30,32].

The bottom line is that current sex hormone supplements play a valuable role in
mitigating the symptoms of migraine, but, because they are still associated with serious
complications, especially migraine with aura, and exacerbate migraine symptoms in some,
many medical professionals choose not to use hormone supplements in their migraine
treatment plan. For example, plant-derived hormones (phytoestrogens) and the derivative
bio-identical hormones are effective in reducing menstrual-related migraine headaches [33],
but there is no rigorous scientific evidence that these supplements are safer or more natural
compared to the current hormonal interventions. Phytoestrogen-containing foods, such as
soy, are recommended over supplements, and all phytoestrogens should be avoided if there
is a chance of pregnancy because these compounds might adversely affect the endocrine
system. It is speculated that they might be safer in older women, such as those suffering
from menopausal symptoms, particularly hot flashes [34,35], but currently there is not
enough evidence to conclude that the benefits of phytoestrogens outweigh their potential
health risks [36], and they do not appear to be ideal migraine preventive agents. Thus,
since many women with migraine are unable to find an effective preventive therapy, there
remains the challenge to understand how sex hormone supplements work, with the goal
that select metabolites or synthetic derivatives might be both efficacious and safer than
current hormonal therapies.

3. Which Sex Hormones Should Be the Target?
3.1. Estrogen

Estrogen plays a complicated role in migraine disease. Both drops and fluctuations in
estrogen are associated with migraine symptoms, but its effect varies between individuals
because of different receptors, metabolites, and interactions with other hormones. The
dominant understanding of how crucial estrogen is in protecting individuals from migraine
symptoms is what happens when estrogen levels decline: the estrogen withdrawal hy-
pothesis. This hypothesis theorizes that drops in plasma estrogen trigger migraine attacks
and neuroinflammation, eventually leading to chronic sensitization [37]. There are several
possible mechanisms to explain his theory. One explanation is that estrogen suppresses
pain by binding to estrogen receptor alpha (ER alpha) and estrogen receptor beta (ER
beta), which are primarily associated with cell nuclei in the trigeminal ganglia. Activation
of these nuclear receptors regulates inflammatory genes that ultimately suppresses cell
excitability [38]. Also, this hypothesis may be explained by drops in estrogen leading to
higher levels of calcitonin gene-related peptide (CGRP) [23].

CGRP is believed to be among the critical neuropeptides responsible for the throb-
bing pain associated with a migraine attack and the neuroinflammation that causes both
pain and that perhaps cause neuroplastic neural changes responsible for chronic central
sensitization [39]. Specifically, estrogen may also increase neurogenic vasodilation and
gene regulation. For example, in mice, expression of neuropeptide Y and galanin, two
neuropeptides which may inhibit or modulate CGRP mechanisms in trigeminal neurons,
may play a part in the fluctuations of head pain during the estrus cycle [40].
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While the estrogen withdrawal hypothesis focuses primarily on the trigeminal nerves,
it is important to recognize the wider-ranging actions of estrogen in other parts of the
body and brain [41]. A second mechanism to explain the estrogen withdrawal theory was
demonstrated in an animal model where reduced levels of estrogen were shown to increase
the frequency of cortical spreading depressions, the electrophysiological event believed to
be responsible for triggering the trigeminal system and headaches, as well as auras [42].

There are various mechanisms that might explain how cortical spreading depressions
are initiated. For example, estrogen is known to rapidly alter cellular excitability and gene
expression in hypothalamic neurons [43,44]. And estrogen affects energy homeostasis via
the proopiomelanocortin (POMC) neurons in the hypothalamic arcuate [45], and may play
a role in migraine. Other brain regions, such as the mesolimbic cortical reward system,
have also been implicated and show profound estrogen sensitivity [46–48]. The complexity
stems from having three forms of estrogen (estrone, estradiol and estriol), thirteen estradiol
metabolites, and two classes of receptors with different isomers which are functionally
distinct and differentially distributed throughout the brain. Estrogen has other metabolic
functions that might contribute to pain control indirectly, such as its indirect effect on
serotonin [49].

3.2. Progesterone

Progesterone, the second major sex hormone, is produced in the ovaries, adrenal
glands and placenta, and primarily helps maintain pregnancy. Progesterone with estradiol
is found at the onset of menstrual migraines. Nonetheless, it is more likely that the
withdrawal of estradiol, rather than progesterone, initiates migraine headaches. Instead,
progesterone appears to protect neurons by suppressing neuroinflammation and reducing
trigeminal nerve sensitivity. In one study, the receptive field size of facial trigeminal
mechanoreceptors was not increased by treatment with progesterone, unlike the effects of
estradiol [50].

It may be in the interplay with additional factors where progesterone plays an integral
role in pain modulation. In a longitudinal study of fibromyalgia, it was high levels of pro-
gesterone and testosterone together that were associated with less pain [51]. Progesterone
and testosterone are able to penetrate the blood-brain barrier and function as precursors
for neurosteroids. There is an example of a progesterone derivative which enhances GABA
function by modulating GABA receptors and, in turn, inhibits neuronal sensitivity [52,53].
Furthermore, both progesterone and allopregnanolone appear to dampen nociception in
the trigeminovascular system and to reduce neurogenic inflammation in migraine through
neuron-glia interactions [52]. In addition, in animals, progesterone and estradiol affect two
CNS pathways that lead to increased neuroprotection [54]. But the role of progesterone in
neuroinflammation is complicated by the finding that, during menstruation, prostaglandins
rise and promote neuroinflammation through the release of substance P, neurokinins, and
CGRP [55].

Currently, synthetic progesterone is used as a form of birth control and a migraine
preventive agent in the form of a continuous low dose of progestin. Bio-identical pro-
gesterone can be delivered in three formulations: orally, topically, and as a suppository.
Progesterone may improve insomnia as a mild sedative, and improve sleep apneas by
stimulating respiration [56]. Finally, the progesterone metabolite, allopregnanolone, plays
a role in the disproportionate level of mood disorders in susceptible women [57], and may
begin to explain the high prevalence of anxiety in those with migraine.

3.3. Testosterone

A popular belief is that testosterone is the male hormone whereas estrogen is the
female hormone. However, this is an oversimplification, as both estrogen and testosterone
have important roles to play in individuals of either sex [58]. In both males and females,
the balance between estrogen and testosterone production throughout life influences the
function of both reproductive and nonreproductive organs [58].
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Testosterone could be a potential therapeutic target, as it has an antinociceptive ef-
fect [59–63]. In animal studies, after gonadectomy or the blocking of testosterone receptors,
animals appeared more sensitive to nociceptive stimuli [64–68]. The few human studies
performed support an analgesic effect of testosterone, as higher testosterone levels are
associated with lower experimental pain sensitivity [69]. Studies on the relationship of
testosterone to migraine are few. Testosterone levels are lower in adults with migraine vs.
without migraine, and are related to migraine severity. Interestingly, even when similar
testosterone levels are found, men with migraine more frequently report symptoms of
androgen deficiency compared to men with no migraine. However, one study found that
no differences in testosterone levels were found in women with vs. without migraine,
and that migraine pain intensity was not correlated with testosterone levels. In addition,
transgender subjects who were given androgen-blocking medication and estrogen replace-
ment developed increased levels of migraine with aura, similar to the effect of estrogen
replacement therapy in cisgender women [13]. Since men with lower levels of androgen
are prone to cluster headaches [70], the androgen deficiency model of migraine is based on
the premise that testosterone offers neuroprotection. This theory is complicated by finding
that, in contrast to estrogen which promotes neuroinflammation through CGRP and other
neuropeptides, testosterone promotes neuroinflammation through microglial pathways.
Therefore, while testosterone supplementation in females might protect against progression
to chronic migraine, it will not have the same effect due to the gender-specific physiology
of males [71].

Testosterone appears to be able to effectively reduce symptoms by suppressing spread-
ing depressions, increasing serotonin, stabilizing cerebral blood flow, and reducing cell
excitability and neuroinflammation [72]. These metabolic effects may explain the findings
that testosterone treatment can improve clinical pain and experimental pain sensitivity
in patients with chronic pain, including in patients with temporomandibular joint pain,
fibromyalgia, and migraine [73–76], and that testosterone treatment delivered by a subcuta-
neous implant significantly reduces migraine intensity [75]. Thus, although testosterone is
not thought to play a causal role in migraine, it likely modulates pain. Nonetheless, limited
evidence and complex effects are reasons that testosterone is not included in migraine
management guidelines.

3.4. Oxytocin

Oxytocin’s (OT) therapeutic effects in migraine are complex and widespread in the
nervous system, including at the level of the primary sensory neuron, spinal cord, and in a
variety of brain regions associated with pain processing and modulation [77–79]. A recent
theory is that menstrual migraines are related to a drop in both estrogen and OT during
menstruation. Whether the lower concentrations of OT are secondary to the effect of less
available estrogen in the CNS is not yet known.

The effect of OT on migraine has been shown via a case report in which intravenous OT
provided analgesia and migraine relief [80]. In addition, double-blind, placebo-controlled
clinical studies have shown evidence that intranasal OT sprays are efficacious for treating
migraine pain in adult men and women [77,81] and experimental-evoked pain in men [82].
A benefit of oxytocin as a treatment for migraine is that it is routinely administered in-
tranasally for inducing labor, postpartum care, and for enhancing lactation, and its safety
profile is well documented. In addition, intranasal oxytocin in humans has no major side
effects [83].

OT is a neuropeptide that exerts its pain-inhibitory effects both at the level of the
primary afferent fiber and in the central nervous system. The first mechanism is via the
descending neural pathway from the paraventricular nucleus (PVN) to the dorsal horn of
the spinal cord [84,85]. Signals from the PVN release oxytocin in the spinal dorsal horn
that activate GABAergic interneurons in the dorsal horn which secondarily recruit other
inhibitory GABAergic interneurons and suppress pain signals carried by ascending A-delta
and C-fibers [86–89]. The second mechanism is where OT released from the supraoptic
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nucleus (SON) in the hypothalamus, periaqueductal gray (PAG), rostral ventromedial
medulla (RVM), and the spinal dorsal horn [90,91] modulates central endogenous pain
pathways by raising nociceptive thresholds [92,93]. OT can suppress headache pain by
binding to oxytocin receptors (OTRs) specifically in the trigeminal nucleus and trigeminal
ganglia [94]. Imaging studies of migraine patients show overlap in the localization of
OT/OTR, particularly those in the brainstem, thought to be migraine generators [95].

OTR mRNA and proteins are expressed in nociceptive C-fibers and Aδ-fibers in the
adult rat trigeminal ganglia [94], and have a high level of co-expression with CGRP in
trigeminal ganglia neurons [77]. OT dose-dependently blocks the release of calcitonin gene-
related peptide (CGRP) from trigeminal afferent neurons innervating the dura in vitro [94].
CGRP is critical for the pathogenesis for chronic migraine, meaning that OTR activation on
trigeminal nociceptive neurons could be a key mechanism of decreased headache intensity
and frequency in migraine.

OT might have a general anti-inflammatory effect in orofacial nociceptive pathways
by activating OTR, which can also suppress pro-inflammatory markers IL-1B and TNFa
in the trigeminal ganglia (and in the spinal trigeminal nucleus caudalis) by inhibiting
upregulation of these cytokines. A secondary effect is that inflammatory pain stimulates
increased OTR gene expression [96]. But with less OT, trigeminal ganglia neurons become
more sensitive, enhancing the likelihood of a migraine being triggered [97].

3.5. Vasopressin

Arginine vasopressin (AVP) is a neuropeptide hormone that has an antidiuretic effect
in low concentrations, but at higher concentrations it causes vasoconstriction. Together,
these effects raise blood pressure. AVP also has a role in pain, behavior, platelet aggregation,
and blood coagulation functions. Specifically, AVP, in response to stress and pain, may be
relevant to migraine pathophysiology [98,99]. Platelets have more AVP receptors in women
who experience migraine [100]. It is possible that the AVP secretion has nothing directly
to do with migraine, but, since the highest levels of AVP during a migraine attack may be
associated with emesis [101] and vomiting, hypovolemia and nausea without vomiting
trigger AVP release. Elevated levels of AVP may be responsible for the facial pallor,
antidiuresis, and coagulation abnormalities occasionally observed in migraine [102]. In
addition, some migraine precipitators (stress, ethanol, etc.) cause decreased AVP secretion
and bioavailability, while some migraine-improving factors (tricyclic antidepressants, sleep,
etc.) are associated with an increase in AVP [103]. Intranasal delivery of AVP has been
described as an effective therapeutic agent for headache control [104].

Much of AVP is synthesized in the SON of the hypothalamus and, while AVP is largely
stored in and secreted from the pituitary, AVP-containing hypothalamic fibers are widely
distributed in the CNS [105]. These fibers reach different centers in the brainstem and,
in particular, the trigemminal nuclei. The AVP receptors (VP1 and VP2) are found in the
trigeminal ganglion [94]. Thus, the AVP system has many ways to modulate migraine
pathophysiology. Since there are no direct fibers containing AVP in the trigeminovas-
cular system, it is likely that the peptide may diffuse into this system. Overall, there
exists sufficient evidence to maintain interest in the use of AVP to moderate the onset of
headaches [106].

3.6. Prolactin

Prolactin (PRL) is a hormone that is responsible for lactation, breast development,
and hundreds of other actions needed to maintain homeostasis. PRL is chemically related
to growth hormones and placental lactogen hormones. In an animal model, high levels
of prolactin increased meningeal trigeminal pain sensitivity by only affecting CGRP in
female rodents [107]. In humans, serum prolactin levels are higher in those with migraine.
Individuals with prolactin-secreting pituitary adenomas were found to have a higher
incidence of headaches and migraine attacks [108]. With monoclonal antibodies targeting
prolactin receptors, a recent report opens new possibilities to better understand the complex
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interaction between prolactin and CGRP, but blocking prolactin receptors in humans poses
risks of interfering with the other functions of this hormone [109].

4. Limitations of Current Methods

Advances in understanding sex hormones in humans are hampered by the challenges
of reliably creating an equivalent model of a migraine attack and measuring responses to
interventions in animal models. Additionally, the translational value of preclinical studies
can be uncertain due to a predominant use of males or not reporting sex as a biological
variable [110,111], a reliance on ovariectomies, and modeling hormonal changes in animals
that have an estrous cycle rather than a human-like menstrual cycle [112]. Furthermore, the
effect of sex hormones on migraine and pain may vary depending on the pain model, model
species, and experimental design in laboratory settings. The expert panel identified the lack
of an established migraine animal model as one of the barriers to rapid progress in migraine
research. For human research, the design of effective human studies has been challenging.
Blood sampling of hormone levels is complicated by fluctuation throughout the day and
month. The differential effect of sex hormone interventions might be impacted by the
delivery method, timing of delivery, and dose, as well as sex, age and other conditions and
medications of the patients.

As migraine is inherently a complex disorder involving different biological systems
including the nervous, endocrine, endothelial, and immune systems, an interdisciplinary
and collaborative approach among clinical and preclinical researchers is encouraged. Fur-
thermore, given the limited number of basic scientists exploring this subject, it is critical
that there is a cross-pollination of knowledge and ideas for research between often isolated
fields of study. For example, chronic pain, which includes fibromyalgia, back pain, and TMJ
overlaps with research performed in immunology, headache medicine, and other medical
specialties [113,114]. It will take a dramatic increase and maintained effort in advocacy and
support from patients and medical professionals to advance our knowledge of migraine
and hormonal pathophysiology enough to lead to hormonal therapies of greater precision
and safety.

5. Conclusions and Future Directions

While a large body of research has established hormonal changes and fluctuations as a
driver of migraine symptoms in women and transgender people, the relation to hormonal
life events is not definitively known for the full range of migraine symptoms. A new
HEADS (headache, ear, auditory, dizziness, and sinus) Registry is now available to record
and track many of these symptoms (reference: headsregistry.lumiio.com). Additionally,
clarification of the mechanisms behind the emergence and recession of different migraine-
related symptoms remains. Hormones may have both a causal role in migraine generation
and also contribute to pain propagation.

This panel identified several potential hormones and mechanisms that show promise
for improved migraine therapeutics, but the conclusion was that more resources need
to be concentrated on this significantly debilitating neurovascular condition. In particu-
lar, the gender-specific nature of migraine disease calls for the need to better understand
how hormones affect the nervous system. New areas of research are required to better
understand the mechanisms by which sex hormones relate to changes in migraine symp-
toms during the periods of hormonal fluctuation in puberty, menstruation, pregnancy,
and perimenopause. Translationally relevant animal models of migraine will play a key
role in providing mechanistic insights, especially when coupled with clinical data. We
highlight the theoretical opportunity to create novel hormone-based therapeutic molecules
that might desensitize the hyperactive migraine nervous system without the potential
side effects of contraceptives and hormone replacement therapy. Moreover, progress in
understanding how hormones affect the nervous system will lead to innovations in treating
not only migraine, but other menopausal symptoms.

headsregistry.lumiio.com
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