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Abstract: Background: Primary liver cancer (PLC) ranks third in terms of fatality rate among
all malignant tumors worldwide. Proteomics and metabolomics have become widely utilized in
identifying causes and diagnostic indicators of PLC. Nevertheless, in studies aiming to identify
proteins/metabolites that experienced significant changes before PLC, the potential impact of reverse
causation and confounding variables still needs to be fully addressed. Methods: This study thor-
oughly investigated the causal relationship between 4719 blood proteins, 21 amino acids, and the risk
of PLC using the Mendelian randomization (MR) method. In addition, through a comprehensive
analysis of the TCGA-LIHC cohort and GEO databases, we evaluated the differentially expressed
genes (DEGs) related to serine metabolism in diagnosing and predicting the prognosis of patients
with PLC. Results: A total of 63 proteins have been identified as connected to the risk of PLC. Addi-
tionally, there has been confirmation of a positive cause–effect between PLC and the concentration of
serine. The integration of findings from both MR analyses determined that the protein associated
with PLC risk exhibited a significant correlation with serine metabolism. Upon careful analysis of the
TCGA-LIHC cohort, it was found that eight DEGs are linked to serine metabolism. After thoroughly
validating the GEO database, two DEGs, TDO2 and MICB, emerged as potential biomarkers for
diagnosing PLC. Conclusions: Two proteins involved in serine metabolism, MICB and TDO2, are
causally linked to the risk of PLC and could potentially be used as diagnostic indicators.

Keywords: liver cancer; mendelian randomization; risk; protein; amino acid

1. Introduction

Primary liver cancer, often known as PLC, is the sixth most prevalent form of cancer
worldwide. It has the third-highest fatality rate among all malignant tumors globally [1].
PLC mainly consists of hepatocellular carcinoma (HCC), 75% to 85% of cases, and intrahep-
atic cholangiocarcinoma (ICC), accounting for 10% to 15% of cases. The primary causes
of PLC include hepatitis virus infection, steatohepatitis, nonalcoholic fatty liver disease,
and consumption of aflatoxin-contaminated food [2]. Alcohol-related PLC has the highest
occurrence rate in Europe and the United States, comprising the most significant share [3].
China has the greatest prevalence of PLC associated with hepatitis B [4]. The pathogenesis
of PLC is intricately linked to chronic liver inflammation, severe fibrosis, cirrhosis, and pro-
found disruption of the liver microenvironment. On the one hand, long-term alcohol intake,
obesity, and prolonged sitting considerably worsen chronic liver inflammation [5]. On the
other hand, viral infection strongly stimulates immune cells, encourages the development
of an inflammatory microenvironment, releases a substantial amount of cytokines, reactive
oxygen species, and active nitrogen, and impacts cell metabolism and cycle, ultimately
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resulting in DNA damage and the creation of a tumor microenvironment [6]. The emer-
gence of PLC is inconspicuous, its advancement is swift, and the management encounters
the obstacles of medication resistance, metastasis, and recurrence. Despite the extensive
use of immunotherapy, targeted therapy, radiation, chemotherapy, and other therapeutic
modalities in the management of PLC, the survival rate of patients with advanced PLC is
very low, leading to a dismal prognosis [7].

The fast advancement of mass spectrometry has led to the widespread use of pro-
teomics and metabolomics in identifying illness causes and diagnostic indicators. The
integration of proteomics and metabolomics enables the correlation of biomolecules across
various functional pathways, thereby enhancing the comprehensiveness and reliability
of in vivo reaction mechanism analysis [8,9]. Shang et al. [10] revealed that the levels of
osteopontin in the blood of patients with HCC were dramatically increased using mass
spectrometry. Osteopontin alone or combined with alpha-fetoprotein (AFP) demonstrated
a high diagnostic accuracy for HCC. Du et al. [11] discovered the proteins expressed dif-
ferently in tumor and nontumor tissue of patients with HCC. They then examined the
proteins expressed differently in the serum of HCC patients, cirrhosis patients, and healthy
volunteers. Aldo-keto reductase family 1 member B10 and cathepsin A were identified as
promising biomarkers for the detection of HCC. Wei et al. [12] conducted a nontargeted
metabolomics analysis on the serum of 26 patients with HCC and 26 healthy individuals.
They identified 16 metabolites associated with nucleotide metabolism, exhibiting differ-
ential expression between the two groups. Additionally, they emphasized the potential
diagnostic utility of genes involved in nucleotide metabolism for HCC. Nevertheless, most
prior research was observational, so the findings were prone to confounding factors and
restricted sample sizes. Additionally, most research has focused on proteins or metabolites
whose expression changes in blood or tissues after PLC. The influence of reverse causation
and confounding variables has yet to be entirely ruled out in studies attempting to identify
proteins/metabolites that underwent substantial changes before PLC.

The randomized controlled trial (RCT) is the most dependable approach for investigat-
ing the causal relationship between risk factors and illnesses in epidemiological research.
However, due to the lengthy study duration and significant use of people and material
resources, achieving complete coverage of clinical issues may take time and effort. Katan
first introduced the concept of Mendelian randomization (MR) as a statistical framework
that utilizes genetic variation as an instrumental variable (IV) [13]. According to Mendel’s
genetic laws, parents’ alleles are randomly allocated to children, which is analogous to the
random grouping procedure in an RCT. Single-nucleotide polymorphisms (SNPs) are a
form of DNA polymorphism. As the most frequent genetic variation, single-nucleotide
polymorphisms (SNPs) are found throughout the human genome, accounting for more
than 90% of all changes in human genomic DNA, with an average of one genotypic poly-
morphic SNP per thousand bases. MR uses SNPs to infer causal relationships between
exposures and outcomes. Its benefit is that SNPs exist before acquired exposure, and the
correlation with the outcome follows a causal, temporal relationship and is unaffected by
acquired environmental, social, and other confounding factors [14]. Independent sample
MR, two-sample MR, multivariate MR, and bidirectional MR extensively investigate the
causal association between risk factors and diseases [15–17]. The MR method has proven
the causal association between unhealthy lifestyle choices (such as alcohol use, smoking,
and obesity) and HCC [18,19]. Drug MR methods have garnered considerable interest
for their use in drug development and predicting medication effects. SNPs, specifically
protein quantitative trait loci (pQTL) or expression quantitative trait loci (eQTL) that have
substantial impacts on biomarkers near protein-coding genes of interest, are selected as
IVs to investigate the causal effects of these protein targets on illnesses. This approach has
promising potential for medication development [20,21].

Previously, a thorough review outlined the possible role of differently expressed
proteins/metabolites in blood and urine in HCC diagnosis and prognosis [22]. However,
as the authors point out in their paper, candidate markers face tests of reproducibility
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and heterogeneity [22]; we argue that most of the study they included was observational,
and a range of confounding variables, including physiological and socioeconomic factors,
influenced the findings. This study utilized extensive genome-wide association study
(GWAS) data to examine the causal connection between blood proteome, amino acid, and
PLC using the MR method. The objective is to minimize the impact of confounding variables
and reverse causality, uncover early indicators associated with PLC risk, understand
pathophysiology, and obtain novel viewpoints for identifying therapeutic targets for PLC.

2. Materials and Methods
2.1. Study Design of MR Analysis

The MR analysis is conducted strictly with the STROBE-MR checklist in Supplemen-
tary Table S1 [23]. The premise of MR analysis is that IVs need to satisfy three hypotheses:
(1) IVs are strongly correlated with exposure factors; (2) there is no correlation between IVs
and confounding factors; and (3) IVs can only affect outcomes by mediating exposure. In
addition, MR analysis in this study mainly includes three steps: First, IVs strongly related
to exposure were identified. Subsequently, various statistical methods, including inverse
variance weighting (IVW) and MR-Egger regression, were used to evaluate the causal
impact of exposure on the outcome. Finally, sensitivity analyses were performed to assess
the validity of causal associations (primarily pleiotropy and the heterogeneity of IVs).

2.2. PLC, Proteome, and Metabolome Sample

We included 4719 blood protein data from the deCODE study [24]. PLC’s GWAS
summary data from the FinnGen Consortium (https://www.finngen.fi/en, accessed on
24 January 2024) included 308 cases and 218,488 control samples. The 21 amino acids’
(alanine, arginine, asparagine, aspartate, cysteine, glutamine, glutamate, glycine, histidine,
isoleucine, leucine, lysine, methionine, phenylalanine, proline, serine, threonine, trypto-
phan, tyrosine, valine, and citrulline) GWAS summary data were collected from the IEU
database (https://gwas.mrcieu.ac.uk/, accessed on 24 January 2024).

2.3. IV Selection

In the introduction, we discussed the advantages of using SNPs as IVs for MR. On
the one hand, SNPs exist before acquired exposure, ensuring that causal estimations
are unaffected by reverse causality. Furthermore, SNPs are inherited separately from
other features and are unaffected by other confounding variables [14]. As a result, we
used the most recent and comprehensive population genetic variation data from publicly
accessible sources for MR analysis. The fundamental assumptions of IVs and MR are
mostly the same. The basic process of IV screening includes the following: (1) Deleting
SNPs that do not fit the three vital assumptions. (2) Harmonizing SNPs whose exposure
was consistent with the outcome. (3) Eliminating weak IVs with bias. To fulfill the three
hypotheses of IVs, we specifically chose single SNPs that have a substantial association
with plasma proteins (p-value < 5 × 10−8). Simultaneously, to mitigate the influence of
linkage disequilibrium (LD) bias, SNPs that satisfied the following criteria were selected
based on the European population dataset from the 1000 Genomes Project: r2 < 0.001 and
genetic distance = 1000 kb. The screening criteria for IVs of the 21 amino acids and PLC
were as follows: the significance criterion was set at a p-value of less than 5 × 10−6. The LD
parameter was r2 < 0.001, and the genetic distance = 10,000 kb. To guarantee consistency,
we harmonize IVs in both exposures and outcomes, ensuring they originate from DNA
strands in the same direction. Furthermore, to determine the strength of the included
SNPs as IVs, we computed the percentage of variation explained by each unique SNP and
then calculated the F-statistic. SNPs with an F-statistic below 10 are eliminated to prevent
potential bias in the causative evaluation. The information on all SNPs found after several
screening processes is shown in Supplementary Table S2. These SNPs had F-statistics larger
than 10, suggesting that the MR analysis findings were not influenced by weak IV bias.

https://www.finngen.fi/en
https://gwas.mrcieu.ac.uk/
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2.4. MR Analysis

We primarily use the “TwoSampleMR” and “MR-PRESSO” packages in R (version
4.0.2) to perform analysis in our MR research. The odds ratio (OR) and 95% confidence
interval (CI) were used to quantify the association, and a p-value less than 0.05 was
considered statistically significant. IVW is a fundamental analytical approach that estimates
the causal impact. The IVW assumes that all SNPs fulfill the three basic requirements
of MR, analyzes the Wald ratio between exposure and outcome for each SNP, and then
combines the data to obtain the causal effect value [25]. The IVW method provides excellent
estimate accuracy and testing efficiency when IVs lack pleiotropy. However, IVW methods
are subject to weak tool bias and pleiotropy. Bowden et al. developed MR-Egger to
address this issue, which measures average pleiotropy between IVs using an intercept
term [26]. The MR-Egger method can still provide an unbiased causal estimate even if
certain IVs exhibit pleiotropy. The MR-Egger approach is often employed to assess the
genetic pleiotropy of IVs. The weighted median method gives an accurate causal estimate
based on the assumption that at least 50% of IVs are valid. The simple model, weighted
median, weighted model, and MR-Egger methods are used to address the limitations of
the IVW method. The causal relationship was considered significant if the p-value of the
causal association, determined using the IVW approach, reached statistical significance,
and the estimated direction of causality was consistent with that of the other four methods.

Pleiotropy is when a single genetic locus may influence many observable characteris-
tics, known as phenotypes. This phenomenon can substantially impact the accuracy and
dependability of MR analysis findings. We used the MR-Egger intercept test to evaluate
the presence of a possible pleiotropy of SNPs. Furthermore, we used Cochran’s Q test
to assess the heterogeneity across SNPs. If Cochran’s Q test was statistically significant
(p-value < 0.05 and I2 > 25%), it indicated significant heterogeneity among SNPs [27]. The
MR–Pleiotropic Residuals and Outliers (MR-PRESSO) is the primary method for testing
horizontal pleiotropy, but its application conditions are harsh, and at least 50% of IVs must
be effective. The MR-PRESSO method determines the presence of statistically significant
outliers in the MR analysis. The leave-one-out (LOO) approach has also been used to assess
the magnitude of causal estimates for a single IV. The LOO approach removes each SNP in
turn then recalculates the MR result using the remaining SNPs. If there is no substantial
difference between the eliminated and full MR results, the MR results are reliable.

2.5. Identification of Differentially Expressed Genes (DEGs)

The Cancer Genome Atlas Program (TCGA) database (https://www.cancer.gov/ccg/
research/genome-sequencing/tcga, accessed on 24 January 2024) was queried for RNA-seq
data related to 374 HCC tumor tissues and 50 adjacent tissues, in addition to general
and survival information regarding patients. GSE62232 (platform GPL570, comprising
81 HCC samples and 10 normal samples) and GSE101685 (platform GPL570, containing
24 HCC samples and 8 normal samples) data were acquired from the GEO database
(https://www.ncbi.nlm.nih.gov/geo/, accessed on 24 January 2024). The screening criteria
for DEGs is that the absolute value of Log2Foldchange is greater than 1 and the adjusted
p-value is less than 0.05. Genes related to serine metabolism were obtained from the
Genecards database (https://www.genecards.org/, accessed on 24 January 2024).

2.6. Enrichment Analysis

The positive results obtained from MR analysis were incorporated into the DAVID
database (https://david.ncifcrf.gov/home.jsp, accessed on 24 January 2024) to conduct
Gene Ontology (GO) and Kyoto Encyclopaedia of Genes and Genomes (KEGG) enrichment
analyses. GO enrichment analysis includes biological processes, cellular components, and
molecular functions. Term significance is determined by a p-value less than 0.05, and
bubble plots are generated accordingly.

https://www.cancer.gov/ccg/research/genome-sequencing/tcga
https://www.cancer.gov/ccg/research/genome-sequencing/tcga
https://www.ncbi.nlm.nih.gov/geo/
https://www.genecards.org/
https://david.ncifcrf.gov/home.jsp
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2.7. Analysis of Immune Infiltration

We used the 24 immune cell markers contributed by Bindea [28] to calculate the
immune cell infiltration in the TCGA-LIHC cohort sequencing data using the ssGSEA
method. The resulting correlation between the immune infiltration matrix and individual
gene data was then displayed using the “ggplot2 package”.

2.8. Diagnosis and Prognosis Analysis

The Kaplan–Meier method was employed to analyze survival data, while receiver
operating characteristic (ROC) curves were utilized to assess the predictive value of various
genetic diagnoses in patients. A difference is considered statistically significant when the
p-value is less than 0.05.

3. Results
3.1. Causal Effects of Proteome on PLC

Using the IVW approach, it was determined that 33 proteins exhibited a positive corre-
lation with the risk of PLC, as shown in Figure 1. Additionally, 30 proteins had a negative
correlation with the risk of PLC, as shown in Figure 2. The findings obtained from the
simple model, weighted median, weighted model, and MR-Egger methods all demonstrate
consistent causal estimating trends. Cochran’s Q test did not reveal any heterogeneity, as
shown in Table 1. The MR-Egger intercept test could not detect any evidence of horizontal
pleiotropy (p-value > 0.05). The funnel plots display the findings of the heterogeneity
test conducted during the MR analysis (Supplementary Figure S1). Furthermore, the MR-
PRESSO global test did not detect any outliers. The LOO analysis results demonstrate
that a single SNP does not influence the MR analysis findings (Supplementary Figure S2).
Ultimately, a sequence of sensitivity analysis indicates that the MR results obtained from
this research are reliable.

Table 1. Assessing the heterogeneity and pleiotropy of causal effects of plasma protein on PLC risk.

Exposure
Cochran’s Q Test Horizontal Pleiotropy MR-PRESSO

I2 p-Value Egger Intercept p-Value p-Value

ADGRE2 0 0.973 −0.024 0.742 0.976
APOM 0 0.766 0.083 0.377 0.682
ARAF 62% 0.072 −0.240 0.489 NA
BIRC2 4% 0.353 −0.135 0.413 0.785
BMP6 0 0.954 0.053 0.759 0.601

C11orf87 0 0.924 0.007 0.961 NA
C1QTNF5 16% 0.294 −0.061 0.491 0.304

C5orf38 27% 0.199 0.049 0.383 0.202
CACNA2D3 2% 0.425 0.019 0.702 0.524

CALCB 0 0.733 0.053 0.640 0.904
CCL23 0 0.957 −0.148 0.794 0.963
CD93 0 0.967 0.062 0.596 0.994
CD96 0 0.993 −0.263 0.925 0.810

CYB5D2 0 0.775 0.057 0.606 0.315
DCP1B 0 0.467 0.252 0.572 0.413
DHRS9 0 0.400 −0.090 0.441 0.447
EPHB6 34% 0.195 0.047 0.834 0.388
ERMAP 0 0.786 −0.077 0.615 0.697
FKBP1B 13% 0.329 0.023 0.851 0.539
GFRAL 0 0.495 −0.069 0.418 0.606
GLUL 0 0.904 0.125 0.704 0.891

GNPTG 0 0.616 −0.074 0.492 0.599
GPC6 0 0.572 −0.099 0.501 0.056

GSTM3 0 0.568 −0.109 0.168 0.588
HN1 0 0.919 0.041 0.472 0.856
HP 0 0.830 −0.013 0.771 0.817
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Table 1. Cont.

Exposure
Cochran’s Q Test Horizontal Pleiotropy MR-PRESSO

I2 p-Value Egger Intercept p-Value p-Value

HSPA5 0 0.973 −0.003 0.983 NA
HSPG2 0 0.527 −0.030 0.664 0.59
ING4 0 0.740 −0.022 0.754 0.688

LGALS3BP 21% 0.213 −0.034 0.467 0.247
LILRA5 0 0.644 0.010 0.766 0.762
MICA 0 0.795 0.105 0.332 0.828
MICB 0 0.770 0.031 0.592 0.827
MMP1 0 0.612 −0.010 0.817 0.393
MREG 8% 0.370 −0.043 0.621 0.573
MYOC 0 0.489 0.088 0.218 0.439
NCAN 29% 0.184 0.117 0.073 0.159

NHLRC3 0 0.749 −0.087 0.594 0.683
NID2 0 0.497 0.022 0.769 0.542
NPFF 0 0.877 −0.017 0.797 0.885

NPTX1 0 0.983 −0.005 0.918 0.985
PGP 0 0.886 0.048 0.893 0.764

PHGDH 0 0.718 −0.047 0.591 0.712
PKLR 0 0.723 −0.043 0.760 NA

PSMB4 0 0.874 −0.061 0.450 0.926
PSMB9 0 0.492 −0.027 0.686 0.633
PTGR1 0 0.942 −0.035 0.904 0.953

SCUBE3 0 0.999 0.005 0.971 NA
SELP 0 0.919 0.071 0.469 0.467

SERPINF1 0 0.450 0.014 0.922 0.515
SH3BGRL3 3% 0.400 −0.033 0.657 0.615

SPINK6 5% 0.395 −0.205 0.203 0.382
SRXN1 0 0.997 0.019 0.934 0.925
SSU72 0 0.396 0.098 0.497 0.824
TDO2 0 0.809 −0.058 0.422 0.721
TEX29 0 0.687 −0.443 0.447 0.534

TMPRSS11D 1% 0.400 0.094 0.385 0.551
VPS29 0 0.548 −0.025 0.639 0.483

3.2. Causal Effects of Amino Acid and PLC

The IVW approach did not demonstrate any causal relationship between amino acids and
the risk of PLC. The reverse MR analysis revealed that PLC had a statistically significant posi-
tive causal impact on serine concentration (OR = 1.008, 95% CI = 1.001–1.016, p-value = 0.02).
The findings obtained from the simple model, weighted median, weighted model, and MR-
Egger methods all demonstrate consistent causal estimating trends (Figure 3A). Cochran’s
Q test did not reveal any heterogeneity (p-value = 0.276). The MR-Egger intercept test could
not detect any evidence of horizontal pleiotropy (p-value > 0.05). The funnel plots display the
findings of the heterogeneity test conducted during the MR analysis (Figure 3B). Furthermore,
the MR-PRESSO global test did not detect any outliers (p-value = 0.297). The LOO analysis
results demonstrate that a single SNP does not influence the MR analysis findings (Figure 3C).
Ultimately, a sequence of sensitivity analysis indicates that the MR results obtained from this
research are reliable.

3.3. Identification of TCGA-LIHC Cohort-Related DEGs and Enrichment Analysis

Initially, we conducted GO and KEGG enrichment analysis on 63 positive proteins.
The results showed that risk proteins are primarily located in the collagen-containing
extracellular matrix, vacuolar lumen, and platelet-dense granule, involving molecular
functions, such as antioxidant activity, transmembrane receptor protein serine/threonine
kinase binding, and threonine-type peptidase activity, and participating in biological
processes, such as response to monosaccharide, response to hexose, and response to glucose
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(see Figure 4A). It is important to note that the KEGG enrichment analysis yielded just one
significant term, “Biosynthesis of amino acids”, with a p-value of 0.029. By integrating the
findings from both MR analyses, we established that the protein linked to PLC risk strongly
correlated with serine metabolism. Following that, we detected 3299 upregulated and
1232 downregulated genes using the TCGA-LIHC cohort (Figure 4B). A total of 6928 genes
associated with serine metabolism were discovered from the Genecards database. Figure 4C
displays eight DEGs, including glutamine synthetase (GLUL), interstitial collagenase
(MMP1), haptoglobin (HP), tryptophan 2,3-dioxygenase (TDO2), MHC class I polypeptide-
related sequence B (MICB), glycerol-3-phosphate phosphatase (PGP), P-selectin (SELP),
and D-3-phosphoglycerate dehydrogenase (PHGDH), associated with serine metabolism.
The expression of these eight DEGs in HCC tissues exhibited considerable heterogeneity
compared to adjacent tissues (Figure 4D). In addition to metabolic reprogramming, immune
cell infiltration is a significant characteristic of PLC development. We used the ssGSEA
technique to assess the infiltration of immune cells in HCC samples. Subsequently, the
findings indicated a substantial correlation between those above eight DEGs and the
infiltration of immune cells, as shown in Figure 4E.
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3.4. Diagnostic and Prognostic Value of DEGs in TCGA-LIHC Cohort

Figure 5A illustrates the disparity in the expression of eight DEGs between tumor
and paracancerous tissues. The markers GLUL, MMP1, HP, TDO2, MICB, and PGP have
diagnostic significance for HCC, as shown in Figure 5B. Two DEGs, namely MMP1 and
SELP, provide significant potential for assessing the prognosis of HCC, as seen in Figure 5C.
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When considering additional clinical indicators, we observed a substantial correlation
between MMP1, HP, MICB, and SELP expressions and histologic grade (Figure 6A). The
expression of SELP and MMP1 showed a significant correlation with the TNM stage, as seen
in Figure 6B. The levels of SELP and PGP showed a strong correlation with the Child–Pugh
grade (Figure 6C). The levels of PGP and MMP1 were strongly associated with vascular
invasion, as seen in Figure 6D. The MMP1, HP, TDO2, PHGDH, and PGP levels showed a
strong correlation with AFP, as seen in Figure 6E. The GLUL, MICB, and HP expressions
showed a strong correlation with gender, as shown in Figure 6F.
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We conducted further tests utilizing the GSE62232 and GSE101685 datasets as ex-
ternal validation sets. The GSE62232 dataset revealed the presence of 386 upregulated
and 473 downregulated genes (Figure 7A). Additionally, the gene expression patterns of
tumor and normal tissues exhibited substantial heterogeneity (Figure 7B). The GSE101685
dataset identified 475 upregulated and 740 downregulated genes (Figure 7C). Additionally,



J. Pers. Med. 2024, 14, 262 12 of 18

the gene expression patterns of tumor and normal tissues exhibited notable heterogeneity
(Figure 7D). Two genes, TOD2 and MICB, were found to be shared, as shown in Figure 7E,F.
The findings of the ROC curve indicate that TDO2 and MICB may have diagnostic signifi-
cance in patients with HCC (Figure 7G,H).

J. Pers. Med. 2024, 14, 262 13 of 19 
 

 

 

Figure 7. Volcano plot (A) and heat map (B) of GSE62232 cohort-related DEGs. Volcano plot (C) and 
heat map (D) of GSE101685 cohort-related DEGs. (E). Venn diagram of DEGs for 8 key DEGs and 
GSE62232 and GSE101685 cohort. (F). Bean plot of TDO2 and MICB expression in GSE62232 and 
GSE101685 cohort. ROC curves of TDO2 and MICB in GSE62232 (G) and GSE101685 (H) cohort. *** 
indicates a p-Value less than 0.001. 

Figure 7. Volcano plot (A) and heat map (B) of GSE62232 cohort-related DEGs. Volcano plot (C) and
heat map (D) of GSE101685 cohort-related DEGs. (E). Venn diagram of DEGs for 8 key DEGs and
GSE62232 and GSE101685 cohort. (F). Bean plot of TDO2 and MICB expression in GSE62232 and
GSE101685 cohort. ROC curves of TDO2 and MICB in GSE62232 (G) and GSE101685 (H) cohort.
*** indicates a p-Value less than 0.001.



J. Pers. Med. 2024, 14, 262 13 of 18

4. Discussion

The first manifestations of PLC are inconspicuous, leading to a delayed diagnosis in
most patients who have already progressed to an advanced stage. Surgical interventions,
chemotherapy, and radiation provide unsatisfactory results, resulting in a bleak progno-
sis [7]. Clinicians have used techniques such as proteomics and metabolomics to identify
proteins or metabolites that may have diagnostic significance [8,9]. Lu et al. used blood
samples from 46 hepatitis B virus-associated HCC patients with cirrhosis and 24 healthy
volunteers for metabolomic study. They discovered that palmitoylcarnitine and arginine
may be valuable markers for identifying hepatitis B virus-associated HCC patients [29].
Di et al. found the effectiveness of various race-specific metabolites in identifying HCC
patients [30]. Zou et al. investigated the differences in metabolite expression patterns
between male and female HCC patients [31]. The findings revealed that dysregulation of
metabolite expression was more severe in female HCC patients than in males. Abnormal
amino acid metabolism has also been linked to the development of HCC [32]. Cao et al.
employed next-generation sequencing technology and machine learning approaches to dis-
cover that mutations at specific amino acid sites might cause HCC [32]. Previous research
examined the expression of 2761 metabolism-related genes in HCC tissues and assessed
the predictive value of particular genes in HCC prognosis [33]. Proteomic approaches,
such as quantitative proteomic methods based on iTRAQ, have been utilized to identify
diagnostic markers for HCC [34]. Using mass spectrometry, Sun et al. previously dis-
covered 116 protein markers that differentiate HCC from normal hepatocytes. They then
gathered serum samples and clinical data from HCC patients for the study. They found
that tissue transglutaminase 2 might be a promising histological/serum protein biomarker
for HCC diagnosis, particularly for identifying HCC patients with normal serum AFP
expression [35]. Interestingly, Ozawa et al. discovered substantial changes in dipeptide
patterns between HCC and nontumor tissues [36]. Uzzaman et al. extracted extracellular
vesicles from the serum of HCC patients, cirrhotic patients, and healthy volunteers. They
discovered that extracellular vesicle-specific proteins such as thrombospondin-1, fibulin-1,
and fibrinogen gamma chain could distinguish between healthy volunteers and patients
with cirrhosis and HCC [37].

Nevertheless, no studies have successfully identified the specific proteins or metabo-
lites that play a role in the initiation of PLC while ruling out the influence of confounding
factors and reverse causation. Using MR methods in this work, a causal relationship be-
tween 63 proteins and PLC risk was found. The KEGG enrichment analysis revealed that
63 risk proteins had significant enrichment only in the amino acid biosynthesis pathway.
Consequently, we employed MR analysis to investigate the bidirectional causal relationship
between amino acids and PLC. The results showed no causal relationship between amino
acids and PLC risk. Reverse causal analysis indicated that PLC only affects serine concen-
tration, suggesting an abnormal change in serine metabolism following PLC occurrence.
Therefore, we hypothesized that serine metabolism plays a crucial role in influencing PLC
risk among the 63 proteins, and the changes in serine concentration after PLC occurrence
may be closely related to tumor development. A thorough investigation of the TCGA and
GEO databases showed that serine metabolism-related DEGs (such as TDO2 and MICB)
had significant diagnostic value in PLC.

Metabolic reprogramming is a much-discussed subject in cancer research [38]. Previ-
ously, it has been shown that the Warburg effect, which refers to glucose breaking down into
pyruvate and then converting into lactic acid in tumor cells without undergoing aerobic
oxidation in the mitochondria, is a characteristic of most tumor cells [39]. The MR study
revealed a total of 63 proteins that were directly linked to the risk of PLC. The KEGG enrich-
ment analysis of 63 proteins determined that only the term “biosynthesis of amino acids”
showed a statistically significant association. Consequently, we conducted a more thorough
assessment of the bidirectional MR analysis between 21 amino acids and the risk of PLC. We
have discovered a clear and direct link between PLC and serine concentrations, with a posi-
tive causal correlation (OR = 1.008, 95% CI = 1.001–1.016, p-value = 0.02). Previous research
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also corroborates our perspective that serine metabolism experiences substantial activation
during the progression of PLC [40]. Serine serves as a central point for several crucial
metabolic processes and controls immunological function, inflammatory response, and cell
development and proliferation. Tumor cells may experience an increase in their antioxi-
dant and methylation capability due to the buildup of serine [41]. Labuschagne et al. [42]
reported that tumor cells need a significant quantity of serine to sustain their proliferation,
and the consumption of serine may impede the growth of tumor cells. In a recent study,
Li et al. [43] found that remodeling serine metabolism improves the sensibility of HCC
cells to sorafenib, a primary medication for HCC patients who are not eligible for surgery
or have distant metastasis. PHGDH is a crucial serine biosynthesis enzyme. Research
has shown that PHGDH is excessively produced in HCC cells, and suppressing PHGDH
expression may substantially impact cancer cell proliferation, migration, and invasion [44].
Increasing the ubiquitination degradation of PHGDH may effectively suppress the growth
of HCC cells and the characteristics of cancer stem cells [45]. Shu et al. [46] discovered that
PHGDH may facilitate the proliferation, migration, and invasion of HCC cells by enhancing
the synthesis of proteins encoded by mitochondrial DNA and mitochondrial respiration.
Our MR analysis indicated that PHGDH is strongly associated with an elevated risk of PLC
(OR = 1.602, 95% CI = 1.20–2.14, p-value = 0.029). Ultimately, the onset and progression
of PLC are significantly influenced by the crucial role played by PHGDH in the aberrant
serine metabolism.

Following MR research to establish the relationship between serine metabolism and
PLC risk, we thoroughly analyzed RNA sequencing data from the TCGA-LIHC cohort.
Our research revealed eight DEGs connected to serine that were causally linked to the risk
of PLC. GLUL, MMP1, HP, TDO2, MICB, and PGP have significant diagnostic potential for
PLC since their AUC values are above 0.7. The eight DEGs were also strongly correlated
with dendritic cells (DC), macrophages, and NK cell infiltration during PLC. Furthermore,
the eight DEGs are strongly associated with several clinical parameters of patients with
PLC, such as histologic grade, TMN stage, Child–Pugh grade, vascular invasion, gender,
and AFP concentration. It is worth mentioning that MMP1 and SELP have significant
implications for the prognostic evaluation of PLC. Subsequently, we used the GSE62232
and GSE101685 datasets from the GEO database to validate the expression patterns of these
eight genes in tumor tissues. This analysis identified two crucial DEGs (TDO2 and MICB).

TDO2 is a crucial rate-limiting enzyme in tryptophan (TRP) metabolism. Elevated
TDO2 activity increases the concentration of kynurenine (Kyn) by reducing the amount
of TRP in the nearby microenvironment. Kyn may undergo catalysis by kynurenine
aminotransferase to yield kynurenic acid. The metabolites above can impede the im-
mune response by stimulating the aromatic hydrocarbon receptor, hence facilitating the
advancement of tumors [47]. Furthermore, T cells have a heightened sensitivity to min-
imal amounts of TRP, and such low levels of TRP may trigger a response of amino acid
deprivation, leading to the demise of T cells and the promotion of immune evasion [48].
The results of our investigation indicate a direct link between TDO2 and the risk of HCC
(OR = 1.99, 95% CI = 1.22–3.25, p-value = 0.006). The result aligns with the conclusions
found in several prior investigations. The expression of TDO2 is positively associated
with worse clinicopathological characteristics and prognosis in individuals with HCC [49].
Both in vivo and in vitro experiments have verified that increased TDO2 expression can
significantly facilitate the onset and progression of HCC. This effect may be attributed to
the activation of aromatic hydrocarbon receptors and the promotion of the IL-6-STAT3
signaling pathway [50]. Our thorough examination of two queues in the GEO database
further confirms the diagnostic capabilities of TDO2 (GSE62232: AUC = 0.867; GSE101685:
AUC = 0.958). Nevertheless, there is conflicting evidence about the pattern of TDO2 expres-
sion in individuals with HCC. From a physiological standpoint, TDO2 is primarily located
in hepatocytes and neurons. Through differential expression analysis of the TCGA-LIHC
and GEO cohort, we observed a substantial decrease in TDO2 expression in the tissues of
patients with HCC. Prior single-center clinical investigations have shown that TDO2 ex-
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pression increases in individuals with HCC [49]. This discrepancy may be due to variations
in ancestral populations or clinical stage standards.

NKG2D is crucial in activating natural killer (NK) cells. MICA/B serve as the pri-
mary ligands for NKG2D, and together, they create a functional ligand–receptor complex
involved in immune surveillance [51]. During the early phase of tumor cell formation,
activating the MICB/NKG2D signaling pathway leads to the release of several cytokines.
This, in turn, stimulates immune cells like dendritic cells, facilitating their involvement in
the adaptive immune response. Upregulating MICB expression may significantly augment
the immunogenicity of NK cells, leading to enhanced immune-mediated cytotoxicity [51].
However, during the latter stages of tumor growth, there is a notable drop in the expression
of MICB/NKG2D. This decrease hampers the ability of NK cells to effectively destroy
tumor cells, potentially leading to immune evasion [51]. Our MR study revealed that MICB
can decrease the likelihood of HCC with an OR of 0.615, a 95% CI ranging from 0.44 to
0.87, and a p-value of 0.006. A thorough examination of the TCGA-LIHC and GEO cohort
revealed that MICB expression was notably increased in tumor tissues compared to normal
tissues. The finding also suggests that MICB can be used as a diagnostic tool. Our thorough
examination of two queues in the GEO database further confirms the diagnostic capabilities
of MICB (GSE62232: AUC 0.922; GSE101685: AUC = 0.938). Fang et al. [52] discovered
that the expression of MICA/B was strongly and inversely associated with the extent of
lymph node metastasis. They have verified that the unfolded protein response may serve
as a method for downregulating the expression of MICA/B. Furthermore, Li et al. [53]
validated that the elevated expression of NLR family pyrin domain containing 3 (NLRP3)
in HCC might hinder the interaction between NKG2D and MICA. Following the NLRP3
deletion, there was a notable rise in MICB expression, resulting in an augmentation of the
immunotoxicity of NK cells. Our work concludes that targeting MICB might effectively
lower the likelihood of developing HCC and potentially serve as a diagnostic marker
for HCC.

MR approach evaluation of causal relationships between exposure and outcomes is a
potent technique. In contrast to observational studies, MR analysis reduces the likelihood
of confounding and reverse causation-induced bias. Our MR study rigorously examined
the causal relationship between 4719 blood proteins, 21 amino acids, and PLC risk by the
general STROBE-MR guidelines. Simply put, we incorporated the most exhaustive GWAS
data and screened for dependable IVs via procedures including significance threshold
setting, elimination of linkage disequilibrium, and confounding factor elimination. The
causal relationships between exposures and factors were evaluated using five distinct
methodologies. Additionally, none of the results detected heterogeneity and horizontal
pleiotropy of IVs. Furthermore, by thoroughly examining the TCGA and GEO databases,
we assessed the diagnostic and prognostic significance of genes associated with serine
metabolism in patients with HCC. The outcomes of our study provide viable approaches
for the clinical diagnosis, prognosis evaluation, and target identification in patients with
HCC. Nevertheless, there are several constraints inherent in this research. Initially, all
of the GWAS data included in our study originated only from European populations.
Consequently, the reliability and accuracy of our findings about other populations require
further confirmation. Furthermore, the number of patients included in PLC’s GWAS
is limited, and it is necessary to augment the sample size in future studies to provide
additional substantiation for the findings.

5. Conclusions

This research thoroughly evaluates the possible causative connection between blood
proteins, amino acids, and PLC. We have found 63 proteins linked to an increased risk of
PLC. KEGG enrichment analysis of the 63 proteins revealed significant enrichment only
in the amino acid biosynthesis pathway, enhancing the understanding of the connection
between blood proteins and amino acids in the development of liver cancer. The bidirec-
tional MR analysis between amino acids showed no causal relationship between amino
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acids and PLC risk, while PLC only affects serine concentration. A thorough examination
of the TCGA-LIHC database revealed eight DEGs associated with serine metabolism. Upon
further validation of the GEO database, two DEGs, TDO2 and MICB, were identified as
possible biomarkers for diagnosing PLC. TDO2 and MICB participate in the development
of PLC by regulating serine metabolism and may be targets for drug development.
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