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Abstract: The detection of Gamma-Ray Bursts (GRBs) using spaceborne X/gamma-ray photon
detectors depends on a reliable background count rate estimate. This study focuses on evaluat-
ing a data-driven background estimator based on a neural network designed to adapt to various
X/gamma-ray space telescopes. Three trials were conducted to assess the effectiveness and limita-
tions of the proposed estimator. Firstly, quantile regression was employed to obtain an estimation
with a confidence range prediction. Secondly, we assessed the performance of the neural network,
emphasizing that a dataset of four months is sufficient for training. We tested its adaptability across
various temporal contexts, identified its limitations and recommended re-training for each specific
period. Thirdly, utilizing Explainable Artificial Intelligence (XAI) techniques, we delved into the
neural network output, determining distinctions between a network trained during solar maxima
and one trained during solar minima. This entails conducting a thorough analysis of the neural
network behavior under varying solar conditions.

Keywords: GRB; neural network; XAI

1. Introduction

The rapid identification of various transient types, such as Gamma-Ray Bursts (GRBs),
is crucial, especially when considering multiple observations related to multi-wavelength
event analysis. For instance, it plays a key role in alerting ground telescopes for pointing
direction and subsequent afterglow observations, facilitating follow-up studies. GRBs
are distinguished by increases in detector count rates, indicating activity that appears
unusual and cannot be explained by background or known sources. Real-time modeling
of the physical background is inherently difficult, so algorithms dedicated to “online”
GRB detection can extrapolate the background from recent observations, such as from the
onboard detector systems Fermi GBM [1], Compton-BATSE [2] and BeppoSAX-GRBM [3].

In “offline” analysis, researchers search archival data for GRB events that may have
gone unnoticed. Examples of this methodology can be found in studies such as Kom-
mers et al. (1999) [4], which uses the BATSE catalog, or in Kocevksi et al. (2018) [5] and
Hui et al. (2017) [6], where the search focuses on faint, short GRBs that occur concurrently
with known gravitational wave events.

Biltzinger et al. (2020) [7] introduce a novel approach that provides comprehensive es-
timation by incorporating detailed models catching various background factors anticipated
for the Gamma-Ray Burst Monitor (GBM). These factors encompass detector response,
cosmic-ray background, solar activity, geomagnetic environment, Earth albedo and the
visibility of X and gamma-ray point sources. The resulting background estimation closely
replicates Fermi GBM observations, particularly the long temporal variations (e.g., 10 min),
suggesting potential applicability in detecting challenging GRBs, such as long weak events

Galaxies 2024, 12, 12. https://doi.org/10.3390/galaxies12020012 https://www.mdpi.com/journal/galaxies

https://doi.org/10.3390/galaxies12020012
https://doi.org/10.3390/galaxies12020012
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/galaxies
https://www.mdpi.com
https://orcid.org/0009-0005-6714-5161
https://orcid.org/0000-0002-5132-9821
https://orcid.org/0009-0003-1077-3875
https://orcid.org/0000-0002-4031-4157
https://orcid.org/0000-0003-3855-5856
https://doi.org/10.3390/galaxies12020012
https://www.mdpi.com/journal/galaxies
https://www.mdpi.com/article/10.3390/galaxies12020012?type=check_update&version=2


Galaxies 2024, 12, 12 2 of 13

with slow rise times. However, because this technique is specifically designed for Fermi
GBM observations, its application to other experiments is limited.

The use of deep learning approaches provides a promising solution for improving the
accuracy and efficiency of detection of GRBs or other X/gamma-ray astrophysical transients.

Sadeh (2019) [8] introduces an alternative method for background prediction based
on a recurrent neural network (RNN). This RNN, which was trained on existing burst
observation catalogs to identify GRB events, raises concerns about the potential transfer of
detection biases from traditional GRB detection strategies. This disadvantage may result in
overlooking events that previous search methodologies had missed.

In a related context, Crupi et al. [9,10] describes a feedforward neural network (FFNN)
for estimating X/gamma-ray backgrounds for space telescope detectors. This method,
which is accompanied by an efficient changepoint detection technique [11,12], takes ad-
vantage of all available satellite information (variables), as employed in [7]. Importantly,
because the learning is data-driven, it can be applied to any X/gamma-ray photon detector
on a space satellite and does not require event exclusion during training. The following
section describes two experiments designed to test the robustness of this method, identify
its limitations and improve the interpretation of its output, taking into account the neural
network inherent “black box” nature.

The neural network was tested using Fermi GBM data, but the problem formulation is
intended to be adaptable to other satellites, including upcoming ventures such as the tech-
nological and scientific pathfinders HERMES-TP (funded by ASI) and HERMES-SP [13–17]
(funded by the European Commission, collectively known as HERMES Pathfinder). The pri-
mary goal of HERMES Pathfinder is to demonstrate the feasibility of detecting and local-
izing GRBs using miniaturized instrumentation hosted by nanosatellites. The first six
HERMES Pathfinder spacecraft are set to launch into low-Earth, near-equatorial orbits
in 2024/2025.

2. Methods
2.1. Data

The Fermi GBM [1] detectors considered are the twelve NaI photomultipliers: n0, n1,
n2, n3, n4, n5, n6, n7, n8, n9, na and nb. In the context of this study, which focuses on the
detection framework [9] pertaining to long transients, the count rate light curves are binned
in time with 4.096 s binlength. Moreover, the energy range is binned in three categories:
28–50 keV (r0 ), 50–300 keV (r1) and 300–500 keV (r2). In total, there are 36 variables that
are called col_range (range columns): 12 count rates (in 4.096 s) times 3 energy range; see
Table 1.

With the Fermi Data Tools package [18], it is possible to retrieve information of the
satellite in a particular timestamp. There are 24 of these variables (orbital information
of Fermi, Earth and Sun location, etc.), and they are referred to as col_sat_pos (satellite
position columns); see Table 2.

Information relative to the detector is also available. In total, there are 36 variables
(pointing of the detectors and FOV Earth occlusion), and they are called col_det_pos (detec-
tor position columns); see Table 3.

Table 1. The table consists of 36 detector features aligned with the target data table, with the detector
label denoted as i ∈ {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, a, b}. The target data represent count rates binned at
4.096 s, sourced from the daily CSPEC files and processed using the Fermi GBM Data Tools library.

Target Label Description

ni_r0 i-labeled detector count rates in range r0
ni_r1 i-labeled detector count rates in range r1
ni_r2 i-labeled detector count rates in range r2
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Table 2. A table containing 24 orbital features, derived from the POSHIST files and processed using
the Fermi GBM Data Tools library, serves as the input for the neural network (NN). These features
pertain to satellite position, velocity, Sun and Earth visibility, passage through the South Atlantic
Anomaly (SSA) and the local McIlwain L value (l), which is determined based on Fermi orbital
position and corresponds to a geomagnetism parameter that describes the magnetic field intensity
along a specific magnetic field line in the Earth’s magnetosphere. Reproduced with permission
from [9] ©Crupi et al. (2023), CC BY 4.0.

Feature Label Description

pos_x, pos_y, pos_z position of Fermi in Earth inertial coordinates
a, b, c, d Fermi attitude quaternions

lat Fermi geographical latitude
lon Fermi geographical longitude
alt Fermi orbital altitude

vx, vy, vz velocity of Fermi in Earth inertial coordinates
w1, w2, w3 Fermi angular velocity

sun_vis Sun’s visibility boolean flag
sun_ra Sun’s right ascension
sun_dec Sun’s declination
earth_r Earth’s apparent radius
earth_ra Earth center right ascension
earth_dec Earth center declination

saa SAA transit boolean flag
l approximate McIlwain L value

Table 3. A table comprising 36 detector features is utilized to construct the neural network input
table, with the detector label denoted as i ∈ {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, a, b}. These features are extracted
from the POSHIST files and processed using the Fermi GBM Data Tools library. The detector features
encompass pointing coordinates in equatorial coordinates and indicate whether a detector Field of
View (FOV) is occulted by the Earth. Reproduced with permission from [9] ©Crupi et al. (2023),
CC BY 4.0.

Feature Label Description

ni_ra i-labeled detector pointing right ascension
ni_dec i-labeled detector pointing declination

ni_vis i-labeled detector Earth occultation
boolean flag

2.2. Problem Setting

The problem is formulated as a typical supervised machine learning estimation, where
inputs X are the variables in col_sat_pos and col_det_pos and the outputs Y are the variables
in col_range. The model, denoted as F, is trained to provide an estimation such that
Y ≈ F(X). In this multi-output regression, the model F approximates the background
photon count rates based on the variables of the satellite and its detectors. The model
employed is a feed forward neural network with 3 hidden dense layers and 3 dropouts,
1 per each hidden layer; see Figure 1.

During the pre-processing phase, the input training dataset is standardized, and data
collected while Fermi passes through the high radiation environment of the South Atlantic
Anomaly (SAA) are removed. The SAA, characterized by reduced geomagnetic intensity,
facilitates the closer penetration of charged particles from space to the Earth’s surface.
These particles interact with the detectors, increasing the background count rate and
posing challenges to accurate estimation. Consequently, data collected within the SAA are
excluded to ensure the reliability of estimation.
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Figure 1. The architecture of a feed forward neural network. The input has a dimension of 60.
The first two hidden layers have 2048 neurons, the third 1024. The output layer has a dimension of 36.

The splitting procedure divides the dataset into train and test sets; part of the training
set is further kept as the validation set. The loss function is the Mean Absolute Error

MAE(y, ŷ) =
1
n

n

∑
i=1

|yi − ŷi| (1)

where n is the total number of samples in the training set, i refers to the specific sample,
yi the target value (the observed count rate) and ŷi is the estimated value (the estimated
count rate).

More generally, |yi − ŷi| in Equation (1) can be substituted to

Lτ(y, ŷ) =

{
τ(y − ŷ) if y ≥ ŷ,
(τ − 1)(y − ŷ) if y < ŷ,

(2)

to form the quantile loss, and if τ = 0.5, then it is equivalent to MAE.
In the settings of multi-output regression, the overall loss is

L = min
i
(MAE( f j(X), Yj)) (3)

where j spans col_range.
For a more robust evaluation of the error, the Median Absolute Error is employed:

MeAE(y, ŷ) = median(| yi − ŷi |) (4)

where the terms are the same as in Equation (1).

3. Results
3.1. Quantile Regression

By employing the quantile loss function, three neural networks were trained, each
targeting a different quantile value: 0.1, 0.5 and 0.9. When τ = 0.1, the network estimates
the 10th percentile of the distribution P(Y | X = x). For τ = 0.5, the network provides the
median estimation, which is equivalent to minimizing the Mean Absolute Error (MAE).
Finally, when τ = 0.9, the network estimates the 90th percentile.
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Quantile regression offers a range of confidence for count rate predictions, as illustrated
in Figure 2. For the trigger algorithm, to enhance robustness in detection, the prediction
with τ = 0.9 could serve as an estimate of the true count rates.

Figure 2. Quantile regression for estimating the count rates of detector n7 in energy range r1 over
a three-hour period on 20 April 2019. The red line represents the τ = 0.5 (median) estimate, while
the blue shaded region denotes the range between the upper value at τ = 0.9 and the lower value at
τ = 0.1. The spike observed at 23:30 corresponds to GRB190420981, whereas the one at about 22:30 is
not present in the Fermi GBM catalog but is detected by [9] and further discussed.

3.2. Data Quantity and Out-of-Time Test Set Evaluation

Once the model is trained, questions arise regarding (1) the amount of data required
for the neural network to converge and achieve good performance. Additionally, it is
interesting to understand (2) the network behavior when applied to data outside the
training period.

To address the first question, thirteen experiments were conducted within the data
period spanning 2019 to 2020, characterized by solar minima to minimize the impact of
solar X/gamma-rays and flares. Table 4 displays results for training periods of 4, 7, 12 and
24 months, using 75% of the dataset for training (30% of which was further reserved as a
validation set) and 25% for testing. To facilitate convergence, a dropout of 0.002 was chosen,
and the learning rate for the 24-month dataset was reduced by a factor of 10 compared
to [9]. The performance metrics, both MAE and MeAE, show no significant improvement
with an increase in the dataset size. The performance remains consistently good and
comparable beyond a 4-month training period. For reference, one month of data comprises
approximately 500,000 datapoints.

To address the second question, two group of experiments were conducted on data
covering the period of 2019 and 2020. Experiments # 6 to # 9 reserve a “future” period as a
test set with respect to the train set, while # 10 to #13 display the performance of an NN
trained on data “in the middle” with respect to the train set. In particular, experiment #
6 reserves as the test set July 2020 to January 2021, and # 10 displays the performance
of an NN trained on data excluding January 2020 to July 2020 (6 months or 25% of the
dataset). Training results align with previous experiments, as expected since the data are an
extension of the previous dataset. However, applying the model to an out-of-time period
results in slightly poorer performance compared to the in-time sets, with an MAE increase
of approximately 2.5 counts/s and a MeAE increase of 1.0 counts/s. Considering that the
average background rate is around 350 counts/s (as shown in Figure 2), this corresponds
to a relative percentage error increase of about 0.7% and 0.3%, respectively. This indicates
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that while the NN did not perfectly generalize to a period outside the training set, it still
yielded comparable results. Experiments # 7, # 8, # 9 are run over an increasing size of
the train set but tested on the same 2 months of data, Nov20–Jan21. We can see that
the MAE is even higher than that of # 6, and a closer examination of the MAE reveals a
more pronounced impact on the r0 range, which is most susceptible to solar activity. This
suggests that including a temporal feature to account for the varying effects of solar activity
on the detectors would be beneficial over longer time periods. The number of solar flares,
thus a proxy for solar activity, can be seen in Figure 3. Finally, experiments # 11, # 12, #
13 are the equivalent of the previous experiments but tested on a test set “in the middle”,
Jan20–Mar20, which shows slightly better performance on the test set and is not influenced
by the train set size.

It is important to note that the actual purpose of the NN is not to predict the future;
thus, changes in architecture, such as RNN, may be beneficial for more accurate predictions.
The NN serves as a tool to interpolate expected count rates for chosen periods, demonstrat-
ing robustness against unexpected increases in count rates, such as those caused by solar
flares or GRBs.

Figure 3. Solar flares counted by GOES-X satellite (source: spaceweatherlive.com, accessed on 10
January 2024) and by the Fermi GBM (source: Fermi GBM trigger catalog).

Table 4. For each training period, spanning from the initial month to the end month (excluding),
a neural network was trained, and the resulting MAE and MeAE metrics are reported, averaged per
detector and energy range. In some experiments, the total duration of the dataset was delineated as
the sum of the training months, validation months and test months. The first five rows provide a
comparison between training and test results, illustrating that the neural network avoids overfitting
when the test set is randomly selected within the same period as the training set (in-time). However,
experiments from # 6 to # 13 reveal that the neural network does not perfectly generalize background
estimation when applied to a period not included in the training set (out-of-time). Nonetheless,
the NN still yields satisfactory results in these out-of-time scenarios. Here, "#" stands for the specific
experiment number.

Exp # Total Months Train Period Test Period MAE Train
(Counts/s)

MAE Test
(Counts/s)

MeAE Train
(Counts/s)

MeAE Test
(Counts/s)

1 4 Mar19–Jul19 in-time 4.383 4.421 3.361 3.370
2 7 Jan19–Jul19 in-time 4.280 4.306 3.296 3.310
3 12 Jan19–Jan20 in-time 4.446 4.442 3.353 3.361
4 12 Jan20–Jan21 in-time 4.202 4.222 3.314 3.327
5 24 Jan19–Jan21 in-time 4.445 4.449 3.421 3.423

https://www.spaceweatherlive.com/
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Table 4. Cont.

Exp # Total Months Train Period Test Period MAE Train
(Counts/s)

MAE Test
(Counts/s)

MeAE Train
(Counts/s)

MeAE Test
(Counts/s)

6 (13 + 5) + 6 Jan19–Jul20 Jul20–Jan21 4.296 6.684 3.335 4.532
7 (16 + 2) + 2 Jan19–Jul20 Nov20–Jan21 4.888 7.518 3.744 4.543
8 (18 + 2) + 2 Jan19–Aug20 Nov20–Jan21 4.464 7.844 3.403 4.790
9 (20 + 2) + 2 Jan19–Nov20 Nov20–Jan21 4.256 7.790 3.321 4.681

10 (13 + 5) + 6 Jan19–Jan20 and
Jul20–Jan21 Jan20–Jul20 4.390 6.980 3.365 4.626

11 (16 + 2) + 2 Jan19–Jan20 and
May20–Jan21 Jan20–Mar20 4.536 7.105 3.418 4.724

12 (18 + 2) + 2 Jan19–Jan20 and
May20–Jan21 Jan20–Mar20 4.787 6.667 3.631 4.778

13 (20 + 2) + 2 Jan19–Jan20 and
Mar20–Jan21 Jan20–Mar20 4.910 6.609 3.707 4.915

3.3. Xai Application

XAI (Explainable Artificial Intelligence) techniques are methodologies employed in
artificial intelligence to enhance the transparency and interpretability of machine learning
models. They offer explanations for the decisions made by AI systems, particularly in
complex tasks where the rationale behind the output might not be obvious. By facilitating
understanding of AI model reasoning, XAI techniques foster trust, accountability and the
identification of biases or errors in AI systems.

Morris sensitivity analysis [19] is a one-step-at-a-time global sensitivity analysis method
employed to quickly screen important inputs in a model. However, it does not account for
nonlinear interactions, making it suitable for initial input screening but limited in capturing
complex relationships. On the other hand, Kernel SHAP (Shapley Additive Explanations) [20]
is a powerful XAI technique that quantifies each feature contribution to a model output. Based
on cooperative game theory concepts, Kernel SHAP provides a unified framework for feature
importance analysis by calculating the average contribution of each feature across various coali-
tions. This technique offers a comprehensive understanding of individual feature contributions,
enhancing the interpretability of complex models and aiding in model debugging.

XAI techniques such as Morris sensitivity analysis and Kernel SHAP were used to
better understand and improve the NN.

3.3.1. GlobalExplanation

To identify the most influential features and their impact on predictions, a Morris
sensitivity analysis was performed using the InterpretML library [21]. The choice for
this method was due to its computational efficiency, as it perturbs one feature at a time.
However, it does not consider non-linearities when estimating output, which it is ad-
dressed later in local explanations for individual datapoints. Since the NN produces 36
outputs, feature importance is sorted based on the average importance. Figures 4 and 5
illustrate this for each detector/range combination. We applied this analysis to NNs
trained on data from the 2019 and 2014 periods, corresponding to solar minima and solar
maxima, respectively.

In both figures, Fermi geographical longitude and the McIlwain L-parameter emerge
as the most significant features. However, there is a notable difference in Figure 5, where
the Earth’s occultation of detectors exhibits high significance. The discrepancy between
the results in Figures 4 and 5 can be attributed to the variance in the underlying data
distribution and characteristics between the two periods. For instance, during periods of
high solar activity, such as 2014, the obscuration of a detector’s Field of View (FoV) by the
Earth could lead to fewer count rates: the Earth blocks the line of sight between the detector
and the source of radiation. Conversely, in 2019, with significantly less solar noise (e.g.,
fewer solar flares), the importance of these features becomes negligible. This suggests that
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training a neural network for each period could yield benefits, as the model could leverage
different features to reveal distinct patterns in the data.

Further exploration of the detector flags indicating the Earth’s FoV occultation is
undertaken through an example of local analysis in the following section.

Figure 4. Feature importance as determined by the Morris method for the 2019 dataset. Features
are ranked by average importance, with the McIlwain L-parameter and Fermi longitude coordinate
at the top. Conversely, certain detector flags indicating the Earth’s FoV occultation emerge as
almost irrelevant factors in prediction. For a complete list of features and their descriptions, refer to
Tables 2 and 3.

3.3.2. Local Explanation

Local explanations focus on individual datapoints, and for this purpose, Kernel SHAP
was utilized. It allows for the generation of explanations that cover the entire NN, providing
a feature importance list for each of the 36 outputs and aiding in debugging unusual
predictions. For instance, Figure 6 showcases an unexpected peak for detector n8 in energy
range r1. Kernel SHAP in Figure 7 highlights the importance of the Fermi geographical
longitude, which is expressed in degrees: it gradually increases to 360◦ and then returns
to 0◦ as expected. However, due to a dataset issue (an interpolation error in longitude
estimation), the value jumps to around 100◦, invalidating the result. The solution involves
rectifying the dataset, as the NN strives to provide the best estimation possible.

Nevertheless, this specific behavior has minimal impact on the application of the
trigger algorithm employed in [9]. The error is confined to a single datapoint, and the
trigger algorithm is sensitive to excessive count rates and not to lower count rates.
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Figure 5. Feature importance as determined by the Morris method for the 2014 dataset. Features are
sorted by their average importance, with the McIlwain L-parameter and Fermi longitude coordinate
as the most influential. In contrast to Figure 4, detector flags representing the Earth’s FoV occultation
play a significant role in prediction. For a complete list of features and their descriptions, refer to
Tables 2 and 3.

Figure 6. Light curve of observed and estimated count rates for detector n0 in energy range r1.
An unexpected peak appears in the estimated count rates due to an error in the dataset for the
longitude estimation.
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Figure 7. Kernel SHAP feature importance for the peak datapoint. The spacecraft geographical
longitude is the most critical feature in determining the sudden count rate increase from a baseline
count rate of 346 to 398 (the peak). This baseline is constructed using 15 datapoints before and after
the peak, which are used for sampling values and perturbing the datapoint to provide an explanation.

Another significant error type, more severe due to its contribution to false positive de-
tections during the 2014 period (characterized by the solar maximum phase with numerous
and significant solar flares), involves sudden steps in the background estimation. Figure 8
illustrates this behavior for detector n8 in energy range r1. In the SHAP analysis (refer to
Figure 9), the most influential features are related to a flag feature: 1 indicates the detector
is visible, while 0 signifies that its FoV is obscured by the Earth. Interestingly, what stands
out is that detector n8 behavior seems influenced by the visibility of other detectors. This
peculiar pattern cannot be attributed to data errors, as their correctness has been verified,
but rather to a learned pattern within the neural network. Figure 8 presents the values of
these features, demonstrating a clear correlation between the step behavior and changes in
these flags.

Figure 8. Observed and estimated count rate light curve for detector n8 in energy range r1. The unex-
pected steps in estimated count rates are attributed to variations in features such as n0_vis, n1_vis
and n7_vis, with n8_vis remaining constant during this unusual estimation period.
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Figure 9. Kernel SHAP feature importance for a datapoint in a step of the estimated background in
Figure 8. Notably, the most influential features are those related to detector visibility, specifically
whether the FoV is obscured by the Earth or not. The baseline for this method is established by using
15 datapoints before and after the datapoint to be explained. These datapoints are used for value
sampling and perturbation of the datapoint during the explanation process.

A potential simple solution in this scenario could involve omitting these features as
inputs and evaluating whether model performance remains consistent and this behavior
subsides. However, it is worth noting that these features might serve a purpose in correcting
for solar activity effects. This contrasts with the 2019 period, during which FoV occultation
was deemed irrelevant in background estimation (see Figure 4). Moreover, it is noted that
the impact of occultation on detectors facing the Sun (from n0 to n5) causes a decrease in
estimated count rates. In contrast, detectors from n6 to nb exhibit behavior similar to that
depicted in Figure 8.

Another potential solution is integrating these features in the last layer only if it
associated with the detector (e.g., n8_r1 count rate and n8_vis).

4. Summary and Conclusions

The detection of GRB transients with spaceborne photon detectors requires a accurate
estimate of background count rates. Our study takes a data-driven approach, using a neural
network that adapts to various spaceborne X/gamma-ray photon detectors to produce a
reliable estimate of background count rates.

Quantile regression played a crucial role in our methodology, offering a nuanced
estimation by providing a confidence range for predictions. Notably, the 90th percentile
from the quantile regression emerged as a robust estimate, enhancing the reliability of our
count rate predictions.

The neural network, designed for multi-output regression, showcased commendable
performance across various training periods. We observed that the model achieved sta-
bility and optimal performance within a 4-month training period, with no substantial
improvement observed beyond this duration.

Crucially, our experiments extended beyond the conventional in-time testing. We
evaluated the NN performance on out-of-time test sets, simulating scenarios where the
model encountered data outside its training period. The results demonstrated a level
of generalization that, while not perfect, remained satisfactory, underscoring the model
adaptability and reliability. Nonetheless, this emphasizes the importance of retraining the
model for each period to achieve better estimates.

To enhance our understanding of the NN behavior, we employed Explainable Artificial
Intelligence (XAI) techniques, including Morris sensitivity analysis and Kernel SHAP.
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The global explanation through Morris sensitivity analysis unveiled the significance
of various features, including the McIlwain L-parameter, geographical coordinates and
detector flags indicating the Earth’s Field of View (FoV) occultation. It was observed that
the importance of these features could vary between different periods, emphasizing the
need for a tailored neural network for each period, as demonstrated in 2014 and 2019.
On the other hand, local explainability using Kernel SHAP assisted in understanding and,
to some extent, debugging the neural network, leading to data fixes or suggestions, such
as incorporating temporal features and investigating the omission of specific variables,
to enhance the overall performance of the machine learning model.

In conclusion, our developed neural network-based background estimator holds
promise for the robust detection of GRBs and other transient phenomena in high-energy
space telescope observations. The data-driven background estimator, featuring robust
techniques like quantile regression and XAI, contributes to the creation of adaptable models
for offline analysis of astronomical data. As we look to the future, XAI could pave the way
for enhanced model performance and a deeper understanding of the underlying processes.
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