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Abstract: This study examines the evolution of dislocation density in cold rolled 1050 Al alloy.
Various techniques such as numerical approaches, indentation techniques, X-ray diffraction line
profile analysis, and electron backscattering diffraction were employed for the characterization of the
deformed state. These methods allowed us to determine the nature of the evolution of the dislocation
substructure during cold rolling. The investigated material was subjected to thickness reductions
varying from 5% to 47%, which resulted in a continuous increase in hardness while the estimated
dislocation density showed a tendency towards a less intense increase after a ~30% straining level.
The numerical approaches employed, such as the Kubin–Estrin and a modified version of this
model, are capable of ensuring a reasonable estimation of dislocation density at low and moderate
deformation levels (~5–30%), while the discrepancy between the measured and simulated data is
negligible when the material has been exposed to more severe rolling reductions.

Keywords: dislocation density; Al alloys; X-ray line profile analysis; microhardness

1. Introduction

The extraordinary material properties of aluminum alloys, such as their strength to
weight ratio, ductile nature, cryo-tolerance, corrosion resistance, and high energy absorp-
tion capacity, make them outstanding candidates in terms of their applicability in a wide
range of products. In numerous cases, Al alloys are used in the form of flat products, the
production of which involves a sequence of heat treatment and deformation processes
or a combination of both. Throughout the thermomechanical processing of rolled sheets,
the polycrystalline aggregate experiences morphological changes on the microscopic level,
whereas the specific crystal lattice planes slip along glide planes on the nano-scale [1–4].
For FCC materials with a high stacking fault energy (SFE), this mechanism of deforma-
tion induces the generation of one-dimensional lattice defects [4], known as dislocations,
which tend to block the slippage of each other, and thus resist deformation [2,3]. In both
hot and cold rolling, the formation of dislocations takes place, while the annihilation of
dislocations occurs during the process of annealing [4]. In cold rolling, deformation tends
to break and offset the lattice planes, which increases the number of dislocations [1]. On the
macroscopic level, the accumulation of dislocations enhances the hardness in the deformed
metal, whereas during annealing the dislocation structure plays an important role from
the point of view of morphological changes such as grain structure and crystallographic
texture [4,5]. Given this, the assessment of substructure evolution in metallic systems is of
crucial importance.
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Both direct and indirect techniques are employed for the estimation of dislocation
density. Typically, the number of one-dimensional defects is determined using transmission
electron microscopy (TEM), which provides a direct image of the substructure that has
evolved. As an alternative to TEM, the quantity of dislocations can also be evaluated
indirectly by X-ray diffraction line profile analysis (XLPA) [6–8], indentation techniques [9]
or electron backscattering diffraction (EBSD) [10]. In XLPA, the data are obtained in
the form of diffraction lines and the parameters of the defect structure are extracted by
analyzing the width and shape of the diffraction peak profiles [6–8]. The advantages of
XLPA over TEM are related to the field of view (bulk in XLPA and very local in TEM) and
the possibility of choosing any arbitrary area. The X-ray line profiles are usually broadened
due to the finite crystallite size and the lattice defects, such as dislocations. The whole line
profile can be obtained as the convolution of the peak components related to the crystallite
size and dislocations. Thus, the Fourier transform of the line profile is the product of the
Fourier transforms of the size and dislocation peak profile components, denoted by AS and
AD, respectively. This product can be expressed as [11–13]:

A(L) = AsAD = As exp
[

1
2

(
−πb2

)
ρL2

(
g2C

)
f(η)

]
(1)

where g defines the magnitude of the diffraction vector, b is the Burgers vector of a disloca-
tion, ρ is the average dislocation density, C is the average dislocation contrast factor, η =
L/Re (Re is the effective outer cut-off radius of dislocations), L is the Fourier length [11–13].
AS is a function of L as well as the median and the variance of the crystallite size distribu-
tion function. The f(η) function in Equation (1) is known as Wilkens’ strain function and is
valid for dislocations in the entire L range (0 ≤ L ≤ ∞) [14]. A reliable evaluation of the
X-ray diffraction patterns based on Equation (1) is the so-called convolutional multiple
whole profile (CMWP) fitting method. In this procedure, the diffraction pattern is fitted by
the sum of a background spline and the calculated intensity profiles for all available peaks
where each peak profile is obtained as the convolution of the size and dislocation peak
profiles, i.e., practically as the inverse Fourier transform of Equation (1) [14]. In addition, an
experimentally determined instrumental profile is also convoluted to each calculated peak
used for fitting. In the CMWP analysis, the calculated pattern depends on two parameters
of the assumed log-normal crystallite size distribution (the median and the log-normal
variance) and three parameters of the dislocation structure for face-centered cubic crystals
(ρ, Re and a parameter characterizing the contrast factor C). The pattern fitting results in
these parameters of the microstructure.

Indentation techniques are a useful tool for the study of dislocations due to their
ability to assess the evolution of crystal imperfections over a larger area (~mm2 or even
larger) [9,15–18]. By approximating the flow stress σy from the Vickers hardness Hv (σy
≈ Hv/3.06 [19]), the stored energy (ED), caused by the presence of dislocations, can be
estimated from the measured Hv values via the following relationship [9,15]:

ED =
H2

v

G[3.06Mα]2
(2)

where M stands for the Taylor factor, α is the geometric constant (~0.5) and G is the
shear modulus.

The stored energy and the dislocation density ρ are related to each other as [4]:

ED = αρGb2 (3)

By combining Equations (2) and (3), one can estimate the dislocation density by using
Equation (4), although it should be mentioned that this is an approximative method.

ρ =
1
α3

(
Hv

3.06MGb

)2
(4)
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The total dislocation density evolved in deformed materials consists of two parts:
(i) geometrically necessary dislocations (GNDs), and (ii) statistically stored dislocations
(SSDs). The GNDs appear due to the geometrical constraints encountered by the system,
while the SSDs evolve from random trapping processes during plastic deformation [3].
The GNDs can be calculated from the EBSD data by the determination of the lattice
curvature induced Nye’s tensor component fields using orientation maps or by computing
Kernel average misorientation [10,20–23]. Examination of GNDs via orientation imaging
microscopy reveals the heterogeneity of the dislocation density throughout the volume of
the material [20–23].

There have been many attempts to estimate the evolution of dislocations by employing
analytical or empirical approaches. The original Williamson–Smallman method [24,25]
was used for the assessment of ρ during severe plastic deformation and strains of moderate
value [26–28]. This approach suggests that the dislocation density is a function of crystallite
size D and microstrain ε m:

ρ =
3
√

2 εm

Db
(5)

It should be noted that the Williamson–Smallman method cannot be used for the
precise determination of the dislocation density since Equation (5) is only valid for a special
arrangement of dislocations. In addition, the microstrain caused by dislocations is not a
single value, but rather, depends on the indices of reflections due to the strain anisotropy
of dislocations [8], which limits the reliable application of Equation (5). Furthermore,
the correlation between the macroscopically imposed strain and the microstrain is not
straightforward and this also complicates the applicability of the above-mentioned ex-
pression. As an alternative to the Williamson–Smallman method, the analytical approach
developed by Csanádi et al. enables the computation of dislocation density as a function of
macroscopically applied strain ε [29,30]:

ρ(ε) =
2C1

C4
−

(
2C1

C4
− ρ0

)(
1 +

C4ε

2

)
exp(−C4ε) (6)

The model parameters C1 and C4 for aluminum are 2.33 × 1014 m−2 and 1.15, respec-
tively [30].

The present work aims to reveal the evolution of dislocation density in cold rolled
1050 Al alloy by using different methods in a comparative manner. Validation of different
techniques can provide ideas for an efficient approach to the calculation of dislocation
density in deformed materials under particular physical conditions.

2. Materials and Methods

The investigated 1050 Al alloy (Al-0.3 wt% Fe) was chosen because of its low solute
content, and it was subjected to diverse cold rolling reductions. Prior to deformation,
the initial material (sample A) was annealed at 550 ◦C to ensure a fully recrystallized
state. Thickness reductions of 5.3% (sample B), 15.8% (sample C), 21.1% (sample D), 28.9%
(sample E) and 46.8% (sample F) were performed in one rolling pass at room temperature
using laboratory rolling with a roll diameter of 150 mm. Diverse straining levels guaranteed
the evolution of various substructures in the rolled sheets B–F.

The development of microstructural features at different length scales was examined
through X-ray diffraction, EBSD and indentation techniques. First, the investigated mate-
rials were exposed to X-ray diffraction line profile analysis, which allows the dislocation
density to be calculated by analyzing the broadening of diffraction lines by the method
described in great detail in [6,8]. Both annealed and deformed samples were studied on
the plane perpendicular to the normal direction (ND plane). Mechanically grinded and
polished samples were electropolished at a voltage of 20 V and current of 1 A for 8 s at room
temperature using a solution of 70 vol.% ethanol, 20 vol.% perchloric acid and 10 vol.%
glycerin. The X-ray diffraction patterns were measured on the electropolished surfaces
by a high-resolution rotating anode diffractometer (type: RA-MultiMax9, manufacturer:
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Rigaku, Tokyo, Japan) with CuKα1 radiation (wavelength, λ = 0.15406 nm). The height
and the width of the rectangular X-ray spot on the sample surface were 1.5 and 0.2 mm,
respectively. The peak profiles were evaluated by the CMWP fitting procedure [14]. The
first nine reflections were used in the evaluation, which can be found at a diffraction angle
(2θ) ranging between 30◦ and 150◦. The CMWP fitting procedure allows the assessment of
the dislocation density. More details about the XLPA evaluation can be found in [31].

The studied samples were also subjected to EBSD measurements across the thickness,
which allows for fast data collection. In the case of the virgin sample (annealed sheet
prior to rolling, sample A), the EBSD patterns were collected at a relatively high speed
of ~100 frames per second (fpc), whereas the cold rolled sheets were measured at a data
acquisition rate of ~10 fpc. The EBSD was conducted on a plane perpendicular to the
sample transverse direction (TD-plane). The orientation patterns were obtained by using
the Hikari-type® detector (EDAX Inc., Mahwah, NJ, USA) attached to a high-resolution
scanning electron microscope (FEG-SEM) FEI-TENEO® (Thermo Fisher Scientific, Brno,
Czech Republic), whereas the post-processing was conducted with the commercial OIM-
TSL-8® software (EDAX Inc., Mahwah, NJ, USA). The annealed sample was subjected to
orientation imaging microscopy (OIM) measurement at the acceleration voltage of 20 kV,
while the pattern acquisition of deformed counterparts was performed at lower acceleration
voltages (17–19 kV) to avoid overlapping of the acquired patterns originating from the
surface and deeper layers. In the SEM chamber, the examined samples were tilted 70◦ with
respect to the EBSD detector. The orientation distribution functions (ODFs) were displayed
in the form of pole figures.

The sample preparation for OIM investigation was completed by the typical met-
allographic procedure developed for EBSD. This method includes mechanical grinding,
polishing, and electrolytic polishing. The mechanical polishing was finished with two
Struers®-type DiaDuo suspensions (Struers, Ballerup, Denmark), which contain 3 and
1 µm diamond particles, respectively. Afterward, the mirror quality surfaces were cleaned
with liquid soap and rinsed with warm water and dried. The electrolytic polishing was
conducted for 45–60 s at voltages ranging from 20 to 30 V with A2 Struers® electrolyte
(Struers, Denmark). The A2 electrolyte was cooled to temperatures ranging between 0 and
5 ◦C.

To investigate both the strain hardening phenomena and evolution of dislocation
density, both annealed and deformed samples were subjected to indentation measurements,
which were conducted by the Zwick/Roell® ZHVµ-type Vickers microhardness tester
(ZwickRoell, Brierley Hill, West Midlands, UK). The hardness measurements were carried
out under loads ranging from 10 gf to 2 kgf by making square-shaped indents on the
polished surfaces of the TD and ND planes.

The evolution of dislocation density was investigated on the ND-plane in the subsur-
face region inasmuch as the XLPA and indentation techniques require sample preparation,
which involves the removal of ~1/5th of the half-thickness from the surface layer.

3. Results and Discussion
3.1. Evolution of Microstructure, Texture, and Hardness

The evolution of microstructure during deformation was investigated by means of
the orientation imaging contrast technique, which reveals both morphological changes
in the grains involved in deformation and the development of orientation gradients in
the crystals. Figure 1 indicates that the morphology of the deformed grains is correlated
to the amount of deformation applied. After the 15.8% reduction, the majority of high
angle grain boundaries are aligned along the rolling direction (RD). Since sample A was
heat treated prior to cold rolling, the inverse pole figure (IPF) presented in Figure 1a
shows either negligible orientation deviation within each grain or a few low angle grain
boundaries in some instances. These microstructural features are characteristic of annealed
materials. Figure 1b–f show the evolution of misoriented structures caused by cold rolling.
It is obvious that increasing the degree of straining level induces grain fragmentation
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in the investigated materials (see Table 1). The development of orientation gradients
in the grains of deformed materials B–F occurs simultaneously with the evolution of
crystallographic texture (Figure 2) and generation of dislocations, that is, these processes
are tightly connected to each other.

Table 1. Average M values, grain sizes, and e calculated investigated materials A–F.

Sample Reduction (%) Grain Size (µm) M e

A 0 74.8 3.09 0
B 5.3 70.0 3.1 0.06
C 15.8 66.4 3.1 0.20
D 21.1 64.2 3.1 0.27
E 28.9 61.0 3.1 0.40
F 46.8 54.7 3.16 0.74

Figure 2 shows the crystallographic aspects of the microstructural changes involved
in deformation. Plane strain compression, as a major strain mode of rolling, causes reorien-
tation of recrystallization (RX) texture components towards the deformation counterparts.
In the present case, the cube-dominate texture of annealed sample A rotates to the so-
called β-fiber (see Figures 2 and 3 for details). This complex-shaped fiber connects copper
{112}<111> and brass {011}<112> via the S-component in Euler space, and the Miller indices
of all orientations belonging to this fiber are described in detail by Sidor and Kestens [5].

Knowing the texture, one can compute the Taylor factor M for each orientation and
estimate the average value for the entire polycrystalline aggregate. Table 1 shows the
calculated average Taylor factor for investigated materials A–F. This parameter is a measure
of the crystallographically resolved hardness of a given orientation and it provides a guess
of the hardening of textured metals. The average value of M is necessary for the estimation
of the dislocation density by employing Equation (4). It was already shown [32], that RX
orientations have lower Taylor factors compared to deformation components, and therefore
the tendency towards an increase in M in rolled materials (see Table 1) can be explained
by the enhancement in the fraction of rolling textures in the deformed materials B–F (see
Figure 2).

The presence of dislocations in deformed polycrystalline aggregates accounts for
strain hardening, since the flow stress as well as the hardness are proportional to the ρ0.5 [4].
Figure 4 shows the strain hardening phenomenon caused by the thickness reduction in
rolling. The equivalent strain e (see Table 1) for the investigated subsurface region was
calculated by means of the flow line model [33,34] in order to consider the amount of
shear strain localized in this layer. It is obvious that a 5.3% thickness reduction leads to a
considerable increase in hardness (HV0.5), implying that the evolution of the substructure
is intensive even at small straining levels. The hardening rate tends to decline after the
21.1% reduction and induces a slight increase in HV0.5.
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Figure 1. Inverse pole figure (IPF) maps measured on the transverse direction (TD) plane in the subsurface region after
different rolling reductions by Electron Backscatter Diffraction (EBSD): (a) Sample A (0% reduction); (b) Sample B (5.3%
reduction); (c) Sample C (15.8% reduction); (d) Sample D (21.1% reduction); (e) Sample E (28.9% reduction); (f) Sample F
(46.8% reduction).
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Figure 2. {111} Pole figures measured by EBSD: (a) Sample A (0% reduction); (b) Sample B (5.3%
reduction); (c) Sample C (15.8% reduction); (d) Sample D (21.1% reduction); (e) Sample E (28.9%
reduction); (f) Sample F (46.8% reduction).

Figure 3. Key to {111} Pole Figure, showing the major orientations that tended to evolve in the
investigated samples.
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Figure 4. Change in hardness HV0.5 with strain, measured by microhardness tester with a load of
0.5 kgf.

3.2. Estimation of Dislocation Density by XLPA

A measure of the dislocation arrangements in polycrystalline aggregates can be per-
formed by comparing the X-ray line profiles in deformation-free and strained materials.
The presence of dislocations causes lattice distortions, and therefore the resulting X-ray
diffraction lines tend to broaden (see Figures 5 and 6). By following the methods developed
in [6,8,14,35], it is possible to evaluate the measured diffraction profiles by the convolu-
tional multiple whole profile fitting procedure so as to determine the dislocation density.
As an example, Figure 5 shows the CMWP fitting for sample F rolled with a reduction of
46.8%. Other examined samples revealed qualitatively identical diffraction patterns. It
should be mentioned that for samples A (deformation free) and B (5.3% reduction), the dis-
location density was lower than the detection limit (~1013 m−2) of the X-ray diffractometer
employed. The dislocation density values computed by the XLPA are listed in Table 2. After
the 15.8% reduction, the value of ρ increased to ~0.7 × 1014 m−2 and was further enhanced
by increasing the rolling reduction to 29%. In this state, the ρ was ~1.2 × 1014 m−2, whereas
additional straining did not yield further increases in the dislocation density.

Table 2. Evolution of dislocation density as predicted by the X-ray Line Profile Analysis (XLPA) and
average cell size approximated from the data of [36].

Sample ρ × 1014 (m−2) d (µm)

A <0.1 -
B <0.1 1.9
C 0.7 ± 0.1 1.1
D 0.9 ± 0.1 1
E 1.2 ± 0.2 0.9
F 1.2 ± 0.2 0.7

Figure 6 reveals the effect of deformation on the broadening of {311} diffraction peaks
in the investigated materials. The degree of broadening increases with the amount of strain.
The diversity between the undeformed sample A and one rolled with the 5.3% (sample
B) is negligible; thus, Figure 6 shows the reflection for the latter only. It is also obvious
that the peak broadening for sample F (46.8% reduction) is more extensive as compared to
sample E rolled with 28.9%; however, the calculated dislocation densities in both materials
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seem to be identical within the experimental error. This effect can be explained by the
dynamic equilibrium between the multiplication and annihilation of dislocations, resulting
in a saturation of ρ. The difference in the breadth values of the {311} diffraction peaks for
samples E and F could be caused by the different arrangement of dislocations, since not
only the density, but also the arrangement of dislocations influence the peak broadening.
The crystallite size cannot be determined from the present XLPA measurements since the
broadening of the peaks was suppressed by the instrumental effect. Thus, the average
cell size d, was approximated from the dependence of d over the strain in Al alloys, as
published in [36]. The cell size values are listed in Table 2. These values are higher than
the detection limit of XLPA for the crystallite size in the present study (about 500 nm),
but it is apparent that the value of d follows a downwards trend with the increase in e.
Although, the error of the cell size values was not determined, the difference between
the cell size for samples E and F is clearly marginal, similar to the trend observed for the
dislocation density.

Figure 5. Measured X-Ray Diffraction (XRD) pattern (open circles) and corresponding diffractogram
calculated by the convolutional multiple whole profile (CMWP) method (solid line) for the sample F
rolled to 46.8% reduction. The magnified inset, corresponding to {311} reflection, reveals the quality
of the fitting. The difference between the measured and fitted data can be seen at the bottom of
the inset.

Figure 6. Broadening of {311} reflection as a function of thickness reduction.
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3.3. Indentation

As shown in Figure 4, the hardening behavior of a material, which is related to the
number of dislocations, can be indirectly quantified by indentation techniques. According
to Equation (4), it is possible to follow the progress of the generation of dislocations by
the measurements of the indentation hardness. In the current case, the Vickers indenter
with square-based pyramidal geometry was forced onto the surfaces of the investigated
samples with loads ranging from 10 gf to 2 kgf. Knowing the geometry of the indenter,
the diagonals, d of the resulting square-shaped impression enable the calculation of the
indentation depth, h. Figure 7 shows the dependence of the hardness (normalized by the
saturation value HVs) on indentation depth for a spectrum of loads used in the current
study. In sample A (5.3 % thickness reduction), the hardness tends to decline in the range
from 10 gf to 100 gf and becomes saturated (HVs) after applying a load of 200 gf. Other
samples revealed similar evolutionary patterns of hardness variation over the indentation
depths (see Figure 7); however, this effect becomes less pronounced with an increase in
the deformation level and seems to vanish at 47.7% reduction. At smaller straining levels,
we observe the so-called indentation size effect (ISE), when the hardness of a material is
larger at lower scales compared to macroscopic one. Analysis of the ISE makes it possible
to calculate the amount of GNDs and SSDs by using the Nix–Gao model [18], though this
technique requires the application of loads lower than 10 gf (generally nanoindentation
is employed).

Figure 7. Variation in Vickers hardness with indentation depth after various straining levels. The
HVs corresponds to the saturation level, i.e., when the hardness levels off.

In order to calculate the dislocation density, the geometric parameter α should be
defined, which is generally considered to be independent of the degree of deformation;
however, more accurate calculations show that this parameter may vary for the population
of edge and screw dislocations for various materials subjected to a wide spectrum of
straining, and can be estimated as [4]:

α ∼=
(1− 0.5ν)

4π(1− ν)
ln
(

ρ−0.5

b

)
(7)

where ν is a Poisson ratio (for Al ν = 0.35).
Equation (7) suggests that the value of α depends on the dislocation arrangements

and their quantity, since the mean free path of dislocations is inversely proportional to
the ρ0.5 [4]. As it also follows from Equation (7), the calculation of α requires defining the
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ρ, and because the latter is unknown, the assessment of dislocation density can be done
by implementing numerical approximations, which are independent of α. By employing
Equation (6), one can approximate the value of ρ(ε), and then compute the variation in α for
a wide spectrum of reduction levels. Figure 8 shows the variation in α for different straining
degrees, calculated by combining Equations (6) and (7). It is obvious that using commonly
accepted α of ≈0.5 is justified for high strains, whereas this parameter is higher for lower
deformation levels. The decrease in αwith the strain applied agrees with the increase in
the average Taylor factor (Table 1), which is a dimensionless measure of the dissipated
plastic power in a polycrystalline system. The Taylor factor can also be considered as the
degree of the dislocation arrangement since it was shown that a system with a less clustered
dislocation arrangement is characterized by the high M value [37]. Such polycrystalline
aggregates reveal a tendency to reduce dislocation hardening, which corresponds to a
smaller value of α.

Figure 8. Dependence of α on the strain.

The calculation of ρ with Equation (4) was performed by (i) using the Taylor factors
listed in Table 1, (ii) considering HVs from the saturation zone (i.e., for loads above 100 gf),
and (iii) computing α by Equation (7) (see Figure (8)). It should be noted that the value of
HV in Equation (4) should be expressed in Pa. Table 3 reveals the estimated dislocation
densities for the cold rolled materials B–F with the Burgers vector b = 0.286 nm, and shear
modulus G = 26 GPa. It is obvious that when the α = 0.5 was employed for all thickness
reductions, the ρ was significantly overestimated compared to the values obtained by the
XLPA method (see Tables 2 and 3). In the case when the α was calculated by Equation
(7), the dislocation densities estimated from the indentation experiments revealed good
agreement with those measured by the X-ray diffraction (Table 2), except of dislocation
density, calculated for the 5.3% (ρ(XLPA) < 0.1 × 1014 m−2 and ρ(Indentation) = 0.38 × 1014

m−2). It seems that the assessment of ρ by microhardness overestimates the dislocation
density at lower deformation degrees. This effect may be caused by the development of
additional dislocations during hardness testing. Indeed, deformation under the indenter
can increase the dislocation density and this effect is more pronounced for lower strains
when the material contains only a very low density of dislocations. Furthermore, estimation
of the dislocation density in the unstrained sample A gives a value of ~1013 m−2, which
does not sound physically possible, and hence, the evaluation of ρ by Equation (4) for very
low strains (or unstrained materials) should be treated with particular care.
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Table 3. Evolution of dislocation density calculated by Equation (4) with various values of α.

Sample ρ × 1014 (m−2), (α = 0.5) ρ × 1014 (m−2), (α by Equation (7))

B 1.02 ± 0.13 0.38 ± 0.04
C 1.47 ± 0.07 0.73 ± 0.04
D 1.76 ± 0.11 0.94 ± 0.07
E 1.99 ± 0.07 1.17 ± 0.05
F 2.25 ± 0.51 1.52 ± 0.20

3.4. Numerical Assesment of Dislocation Density

When the polycrystalline system is subjected to plastic deformation, the formation of dislo-
cations leads to strain hardening, as shown in Figure 4. Numerous studies [4,29–31,36,38] claim
that the correlation between the flow stress σ and dislocation density ρ is described by the
Taylor equation, where σ is proportional to the

√
ρ. This relationship holds for both pure

metals and alloys [36,38]. To address the problem of dislocation generation and stress satu-
ration during plastic deformation, various models have been developed [29–31,36,38,39].

To assess the evolution of dislocations during deformation with high accuracy, it is
necessary to consider the phenomena of dislocation formation and annihilation [36,38–
41]. Apart from this, the linear defects may interact with each other, leading to them
being trapped. In view of this, researchers in this area have defined mobile ρm and
forest ρf dislocations [36,38,39], and the total dislocation density is composed of these two
components. In our analysis, we employed the Kubin–Estrin (K–E) model [39], which
requires a numerical solution for the following equations:

dρm

dε
= C1 − C2ρm − C3ρ

1
2
f (8)

dρ f

dε
= C2ρm + C3ρ

1
2
f − C4ρ f (9)

In the given approach, the model parameters Ci are related to the competing meso-
scopic processes, which tend to take place in the course of plastic deformation. The first
two coefficients, C1 and C2 are responsible for the multiplication of mobile dislocations
and their mutual trapping, whereas the immobilization via interaction with the forest
dislocations is controlled by the C3, while C4 parameter governs the dynamic recovery. The
following values of model parameters Ci were defined for Al [30]: C1 = 2.33 × 1014 m−2,
C2 = 1.1, C3 = 4 × 105 1/m, C4 = 1.2. The K–E model requires the initial dislocation
density, a characteristic of the unstrained material, which was approximated by the
ρ (ε = 0) = 1010 m−2, while the fraction of mobile and forest dislocations can be set to
ρm = ρf = ρ(ε = 0)/2 [29,30]. Figure 9 shows that the qualitative evolutionary pattern
of dislocation density during rolling can be reasonably captured with the K–E model,
while this approach also provides good agreement between the measured and simulated
counterparts. For samples B–F, the predicted ρ values are of the same order of magnitude
compared to the experimentally observed ones (see Tables 2–4), whereas for reductions
close to 48% this approximation ensures a very accurate estimate of ρ.

Table 4. Dislocation densities ρ × 1014 m−2 computed by various models.

Sample K–E Modified K–E

B 0.14 0.14
C 0.46 0.46
D 0.62 0.63
E 0.90 0.90
F 1.59 1.59
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Figure 9. Evolution of dislocation density in 1050 Al alloy defined by both experimental measure-
ments and simulations.

Figure 10 shows the contribution of individual components to the total dislocation
density computed with the K–E approach. It is obvious that for small strains there is
an order of magnitude difference between the amount of mobile and forest dislocations;
however, this deviation tends to decline with the increase in straining level. A similar
evolutionary tendency was predicted by the discrete dislocation dynamic simulations [42].

Figure 10. Contribution of the mobile and forest dislocations to the total dislocation density calculated
by the K–E model [39].

The description of the evolution of dislocation density can also be conducted by
the simplified K–E model, which was developed by Csanádi et al. [29,30]. The results
of numerical simulations showed that for numerous metals [29,30], deformed at various
temperatures, the model parameters C2 and C4 are nearly identical, and therefore, these
two coefficients can be considered as equal quantities (C2 = C4). This simplification enables
us to find the analytical solution (see Equation (6)) for the system of Equations (8) and
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(9). The simulation of dislocation density evolution by Equation (6) was performed with
the C1 = 2.33 × 1014 m−2, C4 = 1.15 [30] and ρ0 = ρ(ε = 0) = 1010 m−2. The simplified
K–E approximation (Equation (6)) provides nearly equal values, compared to the original
K–E model, as shown in Figure 9. The discrepancies observed between the experimental
and simulated values can be explained by the fact that the Ci coefficients found in the
literature sources [29,30] were defined for pure Al, whereas the investigated 1050 Al
alloy can be considered as technically pure Al with traces of iron, which can affect the
model parameters.

This study investigated the evolution of ρ at relatively low deformation degrees
(ε < 1), which provides a dislocation density of ~1014 m−2; however, when higher strains
are applied (ε > 3), the K–E-type models produce a saturation value of ~3.95 × 1014 m−2

(see Figure 11). This implies that in Al alloys with a low content of solutes, the rate of
dislocation formation is high at lower strains and tends to level off at higher straining
levels.

Figure 11. Results of simulations performed for Al with the Kubin–Estrin [39] and modified K–E [29]
models.

4. Conclusions

The evolution of dislocation density during cold rolling can be successfully traced
by both X-ray line profile analysis (XPLA) and microhardness indentation. Both methods
provide comparable values for dislocation density; however, the indentation method tends
to overestimate the quantity of dislocations at low deformations (~5%). Likewise, the
indentation technique is not applicable for the assessment of dislocation quantity in the
unstrained materials, and it leads to significantly high values. This is caused by the fact
that microhardness testing may cause the formation of additional dislocations due to the
deformation under the indenter. This effect is more pronounced for low strains when the
material contains a very low density of dislocations.

Implementation of numerical approaches suggests that approximations like the Kubin–
Estrin model or its simplified modification are capable of providing a reasonable estimate
for the evolutionary pattern of dislocations. These models ensure a rational approximative
value for the dislocation density at small and moderate reduction levels (5–30%), while
the discrepancy between the measured and simulated counterparts is negligible when the
material is exposed to more severe straining (~47%).
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