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Abstract: The synthesis of silver nanoparticles (AgNPs) holds significant promise for various applica-
tions in fields ranging from medicine to electronics. Accurately predicting the particle size during
synthesis is crucial for optimizing the properties and performance of these nanoparticles. In this
study, we compare the efficacy of tree-based models compared with the existing models, for predict-
ing the particle size in silver nanoparticle synthesis. The study investigates the influence of input
features, such as reaction parameters, precursor concentrations, etc., on the predictive performance
of each model type. Overall, this study contributes to the understanding of modeling techniques
for nanoparticle synthesis and underscores the importance of selecting appropriate methodologies
for accurate particle size prediction, thereby facilitating the optimization of synthesis processes and
enhancing the effectiveness of silver nanoparticle-based applications.

Keywords: silver nanoparticle; machine learning; particle synthesis; particle size prediction;
tree-based modelling

1. Introduction

The characteristics of a nanomaterial and its functional properties for biomedical
applications are governed by various parameters pertaining to its synthesis comprising
starting precursor materials besides temperature, pressure, and design of the lab scale
reactors. It is mostly a trial-and-error approach that is followed to synthesize nanomaterials
with the desired properties. This is an expensive, time-consuming, and low-efficiency
procedure. With the growing demand for nanomaterials for various applications, it is
critical to quickly and precisely predict the characteristics based on synthesis factors [1].

Computer algorithms are used in machine learning (ML), a branch of artificial intel-
ligence, to create mathematical models that can carry out particular tasks like clustering,
dimensionality reduction, and prediction directly from collected data, such as graphs,
images, or numerical data, as opposed to from established physical laws. These ML models
are especially helpful in situations where interrelationships between input experimental
variables and output results are complex, lacking detailed mechanistic understanding
governed by fundamental physical laws. Applications of ML include chemical recognition,
materials design and discovery, synthesis reaction prediction, and nanoparticle size predic-
tion. Depending on how they learn, machine learning algorithms can be divided into three
categories: semi-supervised learning techniques (generative models), unsupervised learn-
ing (clustering, association rules, etc.), and supervised learning (decision tree, boosting,
support vector machine (SVM), etc.) [2,3].

Nonlinear machine learning models, which involve interactions between input cir-
cumstances and outputs properties that are not linear, can be categorized into two types
of algorithms: instance-based and model-based. By using a model that is defined by a
collection of variables that are inferred through training, model-based techniques create
predictions. Deep learning and tree-based algorithms are two examples of model-based
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techniques that have been extensively used for the prediction of results in nanoparticle
synthesis. Supervised learning is essentially an attempt to investigate an unknown function
in which there is a relationship amongst the variables that are input and an unknown target
for the output. Labelled data are used in supervised learning techniques to build a machine
learning model that predicts the association between desired attributes and characteristics.
We must identify both dependent and independent variables before selecting an algorithm.
Next, the correlation between both the independent and dependent variables ought to be
ascertained. Unlike supervised algorithms used for predictions, unsupervised methods are
utilized for statistical analysis and visualization and do not require training with previous
experiments. A type of unsupervised algorithms known as generative machine learning
models seeks to produce new data points that resemble those in a selected dataset [4].

Reaction conditions, such as reaction temperature, reaction time, chemical reagent
concentration ratio, reaction precursors, reaction ligands, solution reagents, microreactor
channel structure, external stimuli, and so forth, are typically chosen as independent
variables in nanoparticle preparation techniques, while the dimension, shape, and electronic
and optical characteristics of the nanoparticles are typically chosen as dependent variables.
The gathering and preparation of the dataset is a crucial step before developing a machine
learning model [3]. The trial-and-error approach used to collect experimental data for
optimizing the synthetic procedure for nanoparticle synthesis is time-consuming and not
economical [1]. Therefore, with the physics-informed ML models, it is possible to optimize
and predict the feasible synthetic procedures for producing nanoparticles. Alternatively,
for the training of machine learning models, reputable datasets from published articles,
on nanoparticle synthesis, are another source. In addition, online search engines could
be used to find pertinent datasets from open-source shared information and repositories.
Typically, a dataset is separated into two parts: the test set and the training set. The
majority of the dataset is used for training the suitable machine learning model, which
is subsequently assessed using the test dataset. Typically, two datasets with an 8:2 or
7:3 ratio are created from the data for training and testing the ML models. The superior
performance of the machine learning approach cannot be simply assessed using the training
set alone [1–4]. Any computational technique that helps narrow down the design space
by forecasting desired process variables prior to synthesis would be beneficial to reduce
the number of steps involved to produce nanoparticles by chemical routes. One crucial
physio-chemical characteristic of nanoparticles that can influence their use in nanomedicine
is size. For example, it has been discovered that a nanoparticle’s size has a significant
role in in vivo experiments performed for various therapeutic applications. Since the size
of the nanoparticle influences its permeability and retention, size optimization is also
crucial for the design and development of nanoparticles used to treat a range of tumors [5].
Particle size and particle density index (PDI), two crucial metrics for evaluating a drug-
loaded nanoparticle formulation, depend on a number of factors such as composition, the
duration of sonication, and extrusion temperature. For achieving an ideal particle size
with a narrow size distribution, empirical methods are often employed to adjust these
independent parameters through iterative trial-and-error methodology [6].

Various studies have considered the best model to use for predicting size of the
nanoparticles. Silver is one of the most commonly studied nanoparticles, synthesized
either through a chemical or green synthesis route. Several studies have been carried out
using silver nanoparticles for various fields like biomedical applications [7], cosmetics [8],
electronic field [9], etc. Determining the size of the particle is important, for example in the
antibacterial activity of the particle [10,11], central metabolism of wheat seedlings [12], etc.
In order to predict the size of silver nanoparticles (AgNPs) made using a green approach,
Shabanzadeh et al. [13] proposed an artificial neural network (ANN) model. A number of
variables that affect the size of the nanoparticles are taken into consideration by the ANN
model, including temperature, starch concentration, and NaOH volumes. The Levenberg–
Marquardt (LM) back-propagation algorithm was used to train the network. The coefficient
of determination value for the test data was 0.9787, for the best predictive model.
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The size of AgNPs in montmorillonite/starch bionanocomposites, prepared through
chemical routes, was predicted using an ANN model by Shabanzadeh et al. [14]. With a
log-sigmoid transfer function for hidden layers and a linear transfer function for output
layers, the ideal ANN architecture was found to be 4:10:1. To ascertain AgNP’s size, TEM
was employed. The concentration of silver nitrate (AgNO3), the reaction temperature, the
starch weight percentage, and the concentration of NaBH4 served as independent variables.
As AgNO3 concentration, starch percentage, and NaBH4 concentration increase, the size of
the nanoparticles decreases, according to the modelling results.

An ANN was used as computational tool by Shabanzadeh et al. [15] to model the size
of AgNP in montmorillonite/chitosan bionanocomposites (BNCs). The montmorillonite
(MMT) interlayer space has been utilized as an adsorbent for cationic ions, as a substrate for
anchoring transition metal complexes, and for the production of material and biomaterial
nanoparticles. In this study, a one-hidden-layer neural network with a single output was
utilized as an ANN. AgNP size was modelled as a function of several parameters, such as
d-spacing of clay layers, reaction temperature, percentage of chitosan, and concentration
of silver nitrate. The ANN is trained using the back-propagation Levenberg–Marquardt
(LM) algorithm. Furthermore, the AgNP particle size and distribution prepared at various
experimental values showed that larger AgNP particle sizes were obtained at higher
reaction temperatures and Ag+ ion concentrations; however, AgNP diameters decreased as
chitosan percentages increased.

To design an environmental friendly and efficient process for the preparation of AgNP
in BNCs matrix through a green synthesis technique, Shabanzadeh et al. [16] used the
relationships between multi-input variables, such as AgNO3 molar concentration, reaction
temperature, percentage of starch, and amount of MMT. MATLAB is used to put the
suggested method into practice. To forecast the size of AgNPs, an ANN network consisting
of a 4-10-1 feed-forward multilayer perceptron (MLP) with a linear function at the output
layer and a tangent sigmoid transfer function at the hidden layers was employed in
this study.

The prediction model for determining the size of AgNPs made via green synthesis
was developed by Sattari and Khayati [17] using the gene expression programming (GEP)
technique. The data required to build the GEP models were gathered by the researchers
through 30 distinct experiments. Plant extract, reaction temperature, AgNO3 concentration,
and stirring duration are among the input factors taken into account by the model.

Nathanael et al. [18] proposed a technique that combines machine learning with a
T-junction microfluidic system to optimize the synthesis of the AgNPs and to forecast the
particle size of AgNPs synthesized in microfluidic systemsusing trisodium citrate (TC),
tannic acid (TA), and silver nitrate as reducing and stabilizing agents. They have employed
a decision-tree-guided design of experiments for determining the size of AgNPs. The
synthesized silver nanoparticle’s stability is affected by storage temperature, pH, and
concentrations of trisodium citrate, which have influenced nucleation and growth rate—the
nucleation constant (k1) and growth constant (k2). The Finke–Watzky (F–W) two step
mechanism was used in an independent set of beaker experiments to derive the nucleation
and growth constants. Table 1 summarizes the training features (inputs) with the range of
those features that have been studied.

Shafaei et al. [19] predicted the size of AgNPs made using a green synthesis technique
using a hybrid artificial neural network particle swarm optimization approach. In order
to attain the smallest possible size of AgNPs, the study also focused on optimizing the
practical procedure. Silver nitrate, the precursor of silver, and opium syrup, a reducing
and stabilizing substance, were used to create silver nanoparticles. An experiment using a
factorial D-optimal array design was used to gather the experimental data. The ratio of
AgNO3 to opium syrup, the feed rate at which the reducing agent is added, pH, reaction
temperature, and agitation speed all affect the size of the samples. The size of the silver
nanoparticle was chosen as the output and the process parameters as the inputs for the
optimization process.
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Table 1. Inputs and their investigated range, adapted from [18].

Input Parameters and Their Investigated Range

Feature Range Investigated

Nucleation constant (min−1) 0.0011–0.1

Growth constant (M−1min−1) 13.66–77.97

Storage temperature (◦C) 0–20

Dean number/Reynolds number 0–0.41

Reynolds number 0.0849–16.96

Using Vitex negundo L extract as a reducing agent and stabilizer, Shabanzadeh
et al. [20] demonstrated the biosynthesis of silver nanoparticles. The additional reagents
that were utilized were Muller Hinton agar, AgNO3, methanol, and nutrient agar. An ANN
model was used in order to predict the nanoparticle size. Thirty produced samples from ex-
perimental datasets were used in their work. The molar concentration of AgNO3, weight%
of Vitex negundo extract, reaction temperature, and stirring time are significant variables
that can affect the size of silver nanoparticles. Using experimental data for training, the
ANN model demonstrated excellent accuracy in forecasting the size of nanoparticles under
various conditions. This ANN model served as a valuable tool for developing a sustainable
and efficient process for producing silver nanoparticles. It was found that the concentration
of AgNO3, temperature of reaction, stirring time, and the quantity of Vitex negundo L
extract had an impact on the size of the nanoparticles; an increase in AgNO3 concentration,
temperature of reaction, stirring time, produced larger nanoparticles, and an increase in
Vitex negundo L extract produced smaller nanoparticles.

The use of an ANN model to predict the size of AgNPs synthesized in the interlayer
space of montmorillonite was reported in the work of Shabanzadeh et al. [21]. The ANN
model assisted in optimizing the design parameters and in minimizing costly experimental
research. For the purpose of modelling AgNP size prediction in their study, a multilayer per-
ception (MLP)-based feed-forward ANN that makes use of an LM-based back-propagation
learning method was used. Three sets of the experimental data were randomly selected to
serve as training, validation, and testing, respectively. Absolute average deviation, coeffi-
cient of determination, and root mean square error are calculated to assess the predictive
performance of the ANN model. Their work focused on how various parameters, including
montmorillonite d-spacing, UV–visible wavelength, reaction temperature, and AgNO3 con-
centration, affect AgNP size. The results of the analysis indicate that the two main variables
influencing the size of the nanoparticles are temperature and AgNO3 concentration.

In the present study, the data were collected from four distinct experimental sets and
employed conventional machine learning models. The datasets used for modelling include
those from Nathanael et al. [18], Shafaei et al. [19], Shabanzadeh et al. [20], and Shabanzadeh
et al. [21]. The experimental datasets used were synthesized either by chemical or green
synthesis routes. The complete dataset for each experiment was split to test and train. Tree-
based models such as decision tree regressor, random forest regressor, and extreme gradient
boost regressor were used to assess the prediction of the size of the silver nanoparticles.
The efficiency of the model was evaluated by determining the coefficient of determination
(R2), mean absolute error (MAE), and mean square error (MSE) for all the three models.

When the data availability is less, traditional models can, at times, provide better
accuracy compared to other complicated models used. In this paper, the Section 2 details
the processes involved and the various models utilized in our current study. The Section 3
provides an overview of the different performance measures considered to determine the
efficiency of the models. The Section 4 assesses the effectiveness of several models and
presents different plots to corroborate the findings. Moreover, it provides insight into the
significance of the features in the model. The summary of the findings is included in the
Section 5.
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2. Methodology

The Python programming language was utilized in conjunction with the scikit-learn
package (version 1.3.2) to perform the machine learning analysis. Various tree-based ML
techniques such as decision tree (DT), random forest (RF), and extreme gradient boosting
(XGBoost) were utilized to assess the predictive accuracy for estimating the size of AgNPs.
In numerous applications, these ML techniques have been widely applied. Figure 1 shows
the machine learning process involved to predict the nanoparticle size.
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The dataset collected from the literature was first split to train and test data. This is
performed in order to make sure that the model works well on unseen data. Choosing
the right model is crucial in the prediction. Here, we have considered tree-based models.
Hyperparameter tuning helps to determine the best parameters suitable for the model
that can significantly impact the model’s predictive performance. For regression models,
the coefficient of determination, mean square error, and mean absolute error are the most
commonly used evaluation techniques.

2.1. Decision Tree

The machine learning technique of a decision tree is quite flexible and can be used for
problems involving several outputs in addition to classification and regression [22]. Capable
of fitting intricate datasets, these algorithms are incredibly strong [23]. For researches on
medical application [24–26], road safety [27–29], to manage and analyze the data on metal
nanoparticles [30], DT methodology is becoming very popular. DTs require very little
data preparation, which is only one of their numerous benefits. Scikit-learn employs an
optimized version of the classification and regression (CART) algorithm to build models
that predict values of target variables by learning basic decision rules inferred from data
features. The CART cost function for regression is given by Equation (1).

J(k,tk)=
mle f t

m
MSEle f t +

mright

m
MSEright (1)

where
MSEnode = ∑

i ∈ node
(ŷnode − y(i))

2

ŷnode =
1

mnode
∑

i ∈ node
y(i)

where m is the number of the samples, mleft and mright represents the number of samples
that fall into the left child node and right child node, respectively, after splitting the
dataset based on the chosen feature and threshold. MSEleft and MSEright represents the
mean squared error measure for the samples in the left child node and right child node,
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respectively. The number of samples that belong to the node is represented by mnode. ŷnode
represents the predicted value of the node. The predicted value for the ith sample in the
dataset is represented by y(i) [23].

DTs are a non-parametric supervised learning method used for regression and classifi-
cation. The concept is actually very straightforward: the algorithm uses a single feature
‘k’ and a threshold ‘tk’ to first divide the training set into two subsets. The pair (k, tk)
that generates the purest subsets (weighted by their size) is sought after. After splitting
the training set into two successfully, it recursively divides the subsets using the same
reasoning, then the sub-subsets, and so on. When it reaches the maximum depth (specified
by the max_depth hyperparameter) or fails to locate a split that will lower impurity, it
ceases recursing [23].

Depending on the variables’ state, DTs can be seen in two different ways. The problem
can be resolved within the framework of regression if the target variable is numerical; if
not, it is a classification problem. The decision tree regressor class in scikit-learn is used to
construct a regression tree. The CART method seeks to minimize the mean squared error
(MSE) by dividing the training set into smaller segments. DTs are prone to overfitting in
regression problems, just as they are in classification tasks. DTs are powerful, adaptable,
easy to utilize, and simple to comprehend and interpret. Unless adjusting the random_state
hyperparameter, significantly different models are obtained from the same training set of
data as the training process is stochastic in scikit-learn [23,25].

2.2. Ensemble Methods

Compared to a single estimator, ensemble technique improves generalizability and ro-
bustness by combining the predictions of many base estimators constructed using a particu-
lar learning methodology. Random forests and gradient-boosted trees are
two prominent examples of ensemble methods. The term “ensemble” refers to a set of
predictors, hence the names “ensemble learning” and “ensemble method” for the technique
and algorithm used [23].

2.2.1. Random Forest

One of the most widely used machine learning algorithms is a random forest devel-
oped by Breiman in 2001, which is simply an ensemble of DTs [23]. In 1994, Breiman
developed the concept of “bagging” to lower a learning algorithm’s variance while main-
taining a relatively small bias. By using distinct randomized versions of the initial learning
sample for every run, RF either explicitly incorporate randomization within the learning
algorithm or takes advantage of it to generate an ensemble of models that are more or less
strongly varied. Subsequently, a simple average is used to combine the predictions made
by several models, or the vote of the majority if classification is involved. Other super-
vised learning algorithms, such as SVM or neural networks, are frequently not competitive
with these general randomization approaches, which frequently significantly increases the
accuracy of decision or regression trees [31,32]. RF is an advancement over the bagged
regression tree. To build individual trees, it still relies on bootstrapped sampling. At each
splitting node of the tree, it only permits the use of a random subset of features rather than
all of them. It, thus, mandates variation amongst basic models. Variance of RF for a total
number trees (K) is given as

ρσ2 +
1 − ρ

K
σ2 (2)

where σ2 is the variance of each individual tree, and ρ is the correlation between the
trees [33]. Breiman suggested this approach as an improvement on tree bagging. It employs
a bootstrap replica of the learning sample, the CART algorithm avoiding pruning, with
the random subspace method’s modification to build a tree. Finding a random subset of
size K of candidate attributes at each test node yields the best split. In order to increase
predictive accuracy and reduce over-fitting, a random forest meta estimator fits many
classification decision trees on different subsamples of the dataset and then averages the
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results. If bootstrap = true, as is the default, the sub-sample size is managed using the
max_samples argument; if not, each tree is constructed using the entire dataset [31]. The
number of trees in an RF model can be found without following any set rule. Typically,
when the “out-of-bag” (OBB) error rate has reached a consistent minimum error rate value,
this is the point at which the number of trees is at its best [34].

2.2.2. Extreme Gradient Boost

Adding additional models to the ensemble in a sequential manner is the basic notion
behind boosting. A new, weak base-learner model is trained at each iteration based on the
error of the entire ensemble that has been learned a priori. Gradient-boosting machines, or
GBMs for short, use a learning process that fits new models one after the other to produce
a response variable estimate that is more accurate. The main idea behind this technique is
to build new base-learners that have the highest possible correlation with the ensemble’s
negative gradient of the loss function [35]. An open-source program for approximate
tree learning, XGBoost, is a unique sparsity-aware algorithm proposed by Chen and
Guestrin [36]. It has been demonstrated that the XGBoost method offers significant model
performance while lowering calculation costs. Scalability in all circumstances is the primary
reason behind XGBoost’s success. XGBoost can use the least number of resources to
solve issues at real-world scale [37]. The block storage structure, which supports parallel
computing, was adopted. Even with a lot of data, the algorithm can continue to operate
quite efficiently. The loss function is given as:

L(ϕ) = ∑i l(ŷi, yi) + ∑k Ω( fk) (3)

where Ω (f ) = γT + 1
2 λω2

The difference between the target yi and the predicted value ŷi is measured by the
differentiable convex loss function, denoted by l in this case. The model’s complexity is
penalized by the second term, Ω. In order to prevent over-fitting, the extra regularization
term smoothens the final learned weights [1,36]. This algorithm, which uses the gradient-
boosting method, is the creation of a decision-tree-based model with boosting. In order
for the integration process of this CART model to produce an effective prediction model
with good time efficiency, the XGBoost algorithm reduces the gradient to form a basic
classification and regression tree (CART) model using the errors from the previous model.
The XGBoost algorithm’s primary boosting concept is to start with a basic, inaccurate CART
and iterate with a model that assesses the prior error to obtain an accurate model [38].

3. Evaluation Matrix

The quality of training and the predictability of the models were validated using
coefficient of determination (R2), shown as Equation (4); mean absolute error (MAE),
shown as Equation (5); and mean square error (MSE), shown as Equation (6); all are
given below.

R2 = 1 − ∑n
i=1(Xi − Yi )

2

∑n
i=1

(
Y − Yi

)2 (4)

MAE =
1
n

n

∑
i=1

|Xi − Yi| (5)

MSE =
1
n

n

∑
i=1

(Xi − Yi)
2 (6)

In the equations, n is the number of samples within training and testing datasets, Xi
is the predicted ith value, Yi is the actual ith value, and Y is the mean of true values. An
improved model fit to the data is shown by R2 values that are closer to 1. Regression model
accuracy describing the experimental data should be improved by smaller values of MAE
and MSE. To measure the variance amongst the actual and expected outcomes for each
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observation, the mean square error, or MSE, is employed. The model’s predicted values
and actual values are quantified by the mean absolute error (MAE), which measures the
average absolute difference between them [6,39].

4. Results and Discussion

The first experimental dataset used for modelling is from the study reported by
Nathanael et al. [18]. Using titanium citrate and tannic acid as reducing agents and silver
nitrate as the precursor, they synthesized AgNPs by a chemical route, as shown in Figure 2.
In order to direct the experiments, Nathanael et al. created a DT algorithm that was
based on 20 samples that were repeated three times each. To improve the efficacy of the
prediction models, they employed ten additional trials, including three replications that
were conducted randomly or in accordance with the DT-guided design of experiments. The
machine learning model considers the size of the particle, characterized by transmission
electron microscopy and dynamic light scattering measurements, as the dependent variable.
The independent variables are the nucleation constant, growth rate constant, storage
temperature, Reynolds number, and ratio of dean number to Reynolds number. Table 2
presents performance measure of the original dataset and the decision-tree-guided design
of experiments approach for AgNP size prediction using all the three models adopted in
their work [18].
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Table 2. Performance measures of the existing model.

Dataset Model MSE MAE R2 Score

Original dataset
Random forest 9.42 2.52 0.44
Decision tree 9.43 2.46 0.45

XGBoost 8.88 2.27 0.47

Designed
experiments

Random forest 5.82 1.96 0.66
Decision tree 6.41 2.01 0.62

XGBoost 6.56 2.16 0.61

In the present investigation, we used the original dataset collected from the litera-
ture [18], which consisted of 20 samples that were replicated three times for a total of
60 datasets. All three models employed the same dataset, and the more accurate predictive
model is obtained with appropriate hyperparameter optimization. The best performance is
showcased by XGBoost model with learning_rate = 0.15, max_depth = 4, and gamma = 0.2,
which results in the highest coefficient of determination of 0.973 and the lowest MSE and
MAE of 1.09 and 0.73, respectively. Figure 3a compares the actual and the predicted values
using the scatter plot. In the scatter plot, the points lie close to the best fit line with less de-
viation, indicating that it is a good model, and by plotting the probability density function
for actual and predicted values, as in Figure 3b, it is observed that the peak of the actual
and predicted values matches, which emphasizes the better predictability of the model.
The results of the evaluation matrix for all three models are shown in Table 3.
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Table 3. Performance measures of the new model for dataset 1.

Model MSE MAE R2 Score

Random forest 1.18 0.75 0.971

Decision tree 2.28 1.13 0.95

XGBoost 1.09 0.73 0.973

A summary plot is useful to obtain a thorough insight of each feature value’s contri-
bution to the final forecast for each data point. The impact of each synthesis parameter
is displayed in Figure 4 based on the feature value. For the model output, the synthesis
parameters are organized in decreasing order of significance. This indicates that growth
constant has the most influence on the outcome of the prediction, whereas the Reynolds
number has the least for this model. The R2 score of the model considering the most
significant features such as the growth constant and nucleation constant is 0.973. If these
two independent parameters are not considered, the accuracy of the model drops, giving
an R2 score of 0.561, showing how important these features are for predicting a size of
the particle. Figure 5 shows the scatter plot with the error graph of actual values versus
predicted values, avoiding the significant features in which the points lie away from the
best fit line.

Tree-based models were used to assess the second batch of the 103 dataset, which
was derived from Shafaei et al. [19] where they have synthesized AgNPs through the
green approach. Shafaei et al. used a factorial D-optimal array design of experiments
to gather experimental data in order to investigate the size of AgNPs. The AgNPs’ size
was examined by X-ray diffraction. For training and optimization, their study adopted
particle swarm optimization (PSO) and ANN techniques. The AgNO3/opium ratio, feed
rate, pH, temperature, and agitation speed were among the independent characteristics
that were used in the investigation. Throughout the synthesis process, these factors were
altered to study its influence on the AgNPs’ estimated grain size, which was determined
using Scherer’s equation. Since the findings from the various ANN PSO networks were
inconsistent, the model was assessed using a combined function as in Equation (7), where
the network with a combined function closer to zero has been proposed to perform better.
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Because ANN-PSO 9’s combined function value is less than 0.101, and the R2 score is equal
to 0.9972, it is regarded as the best network.
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Combined function = RMSE + MAPE + 1/R2 (7)

To simplify the modelling process, we have employed tree-based models in this
instance. The models’ efficiency was assessed using the R2 score, MAE, and MSE. Table 4’s
results demonstrate that XGBoost with learning_rate = 0.05 and max_depth = 3 outperforms
the other two tree models in terms of performance. Figure 6a,b display scatter plot with
error graph and kernel density plot for actual values and the predicted values, showing the
performance the model. It is observed that in the scatter plot, the points are more scattered
and in the plot for probability density function, it is noted that there is a deviation between
the peaks of the actual value and the predicted value, which shows the predicted value has
a deviation from the actual value. In this case, the size of the particles was examined using
XRD, indicating that it is the grain size rather than the AgNP particle size. This could be
the reason for the models’ lower score when compared to the datasets from the other three
experiments. Figure 7 illustrates the relative importance of each feature and their role in
AgNP size prediction. The relevance of the most important feature for this dataset is shown
in Figure 8 by plotting the scatter plot. It is observed that the points are more scattered than
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Figure 6a where all the features are taken into consideration for modelling. The accuracy of
the model reduced, giving an R2 score of 0.65 from 0.79 on avoiding the most significant
feature contributing to the model prediction.

Table 4. Performance measures of the tree-based model for dataset 2.

Model MSE MAE R2 Score

Random forest 44.1 5.3 0.725

Decision tree 34.5 4.5 0.785

XGBoost 33.5 4.3 0.79
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The experimental dataset 3 used for our modelling is the synthesized AgNPs by
Shabanzadeh et al. [20] using Vitex negundo L. extract as a reducing agent and stabilizer;
thirty prepared samples were made by this route. Using the weight percentage of Vitex
negundo L. extract, reaction temperature, stirring time, and AgNO3 molar concentration
as input parameters, an ANN model was created to forecast the size of the nanoparticles
in order to construct an efficient green nanoparticle synthesis process. The synthesized
AgNPs’ TEM analysis confirms the nanoparticles’ size. The dataset was split into train, test,
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and validation sets in this study. The correlation coefficient of the ANN model is around
0.998, with a mean square error of 0.4576.
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Table 5 shows the results of the MSE, MAE, and R2 score on employing the tree-based
models. The dataset is split to train and test sets, with a best train score of 99.9 and test
score of 99.4 exhibited by XGBoost with hyperparameter values of learning_rate = 0.15,
max_depth = 3. This model has led to an R2 score of 0.994, MSE of 0.145, and MAE of 0. 292.
The result shows that the traditional models could also produce high precision in prediction
while comparing with the complex neural networks. Figure 9a,b show the different plots
of performance of the model, the scatter plot, and plot for probability density function
comparing actual values and predicted values. Both plots reveal that model designed to
predict the size of the particle performs well. For predicting the size of the nanoparticle in
a model, each feature has its own importance and from Figure 10, we observe that plant
extract contributes the most, giving a feature score of 0.750. As shown in Figure 11, we can
observe more scattering of points in the plot, showing that there is a decrease in accuracy
as we remove the most important feature from the model as compared to Figure 9a. The
predictive ability of the model has decreased. When the most significant feature is not
taken into account, the model’s R2 score is 0.93, which is less than the score obtained when
the feature is taken into account.

Table 5. Performance measures of the tree-based models for dataset 3.

Model MSE MAE R2 Score

Random forest 0.41 0.55 0.980

Decision tree 0.39 0.52 0.984

XGBoost 0.145 0.292 0.994

The fourth set of data was obtained from Shabanzadeh et al. [21]. Here, the research
group has used an ANN with four neurons in one hidden layer to model the optimum size
of AgNP nanoparticles to investigate the effects of different input parameters—AgNO3
concentration, temperature, wavelength, and MMT interlayer d-spacing. The dataset was
split into a test, train, and validation set to determine the best model. RMSE and R2 score
values are 0.7917 and 0.955 for test set.
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Table 6 shows the performance measures of the tree-based models in which the DT
model shows the best performance giving the coefficient of determination as nearly 1.
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Figure 12a shows the plot for the actual versus predicted values. Both visualizations in
Figure 12a,b offer valuable insights into the regression model’s performance: the scatter
plot directly compares the model’s predictions to the actual values, while the probability
density function plot provides a deeper understanding of error distribution. Here in the
scatter plot, the points lie almost on the line and the kernel density plots overlap each other,
showing the decision tree models predict extremely well. The data are split in the ratio of
80:20. The model gives the best train score of 100 and test score of 99.95. The RMSE value
is 0. 045. The concentration of silver nitrate is the most important feature that contributes
to the prediction of size of AgNPs, giving a score of 0.964. Figure 13 shows the feature
importance of the model. Figure 14 illustrates the scatter plot avoiding the most significant
feature of the model. The model’s accuracy has declined, resulting in a lower R2 score
of 0.65.

Table 6. Performance measures of the tree-based models for dataset 4.

Model MSE MAE R2 Score

Random forest 0.0026 0.039 0.9992

Decision tree 0.0019 0.0316 0.9995

XGBoost 0.017 0.086 0.995
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5. Conclusions

In the present work, the size of the silver nanoparticles synthesized using chemical and
green synthesis methods is predicted using tree-based machine learning models. Tree-based
models exhibits strong predictive accuracy. In each of the reference papers considered in
this work, researchers have used different independent features for synthesis. Results show
that the tree-based models predict well for different synthesis parameter and, hence, could
serve as substitutes for the complex models, which are computationally intensive. The
optimal models for every dataset are listed below, along with the accuracy attained.

• For dataset 1 used from Nathanael et al. [18], instead of modelling their dataset
directly, they used DT, RF, and XGBoost, which were assisted by a DT-based design
of experiments. This allowed them to achieve the highest score across all three tree
models. 0.66 was the group’s highest R2 score. Modelling the original dataset directly
with a tree-based model, they achieved an R2 score of 0.47 with XGBoost. Here, we
used the original dataset for the nanoparticle synthesis, and acheived R2 score of 0.973
with the XGBoost model.

• Shafaei et al. [19] used 103 datasets to obtain a model for predicting the grain size of
nanoparticles, which was determined through XRD. The ANN PSO model achieved a
best R2 score of 0.9972. Using the tree-based models in our study, XGBoost is found to
be the best model among the other two models with a R2 score of 0.79.

• Shabanzadeh et al. [20] synthesized AgNPs utilizing Vitex negundo L. extract as a
stabilizing and reducing agent This is dataset 3 for our models. An ANN model
was constructed using thirty prepared samples. Size confirmation of the synthesized
AgNPs is made by TEM image analysis. According to their analysis, the ANN model’s
correlation determination is approximately 0.998, with a MSE of 0.4576. The XGB
model shows a better MSE value of 0.145 and MAE of 0.292 when compared to the
three tree-based models in this study, and it shows an R2 score of 0.994, which is
compatible with the ANN model. As compared to complicated neural networks, the
outcome demonstrates that tree-based models in the present work could also make a
better prediction of size of nanoparticles.

• The fourth dataset for modelling was gathered from Shabanzadeh et al.’s [21] study.
RMSE and R2 values for the test set are 0.7917 and 0.955 respectively. Considering
these data for tree based modelling, the DT model performs the best, with a coefficient
of determination 0.999 and an RMSE equal to 0.045, as observed in the present work.
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