
Citation: Li, D.; Ma, D.; Su, D.; Rao,

S.; Wang, W.; Hong, C. Monitoring

Axial Force Development in a

Super-Long Pile during Construction

Using BOFDA and Data

Interpretation Approaches: A Case

Study. Buildings 2022, 12, 1462.

https://doi.org/10.3390/

buildings12091462

Academic Editors: Bingxiang Yuan,

Yong Liu, Xudong Zhang and

Yonghong Wang

Received: 8 August 2022

Accepted: 10 September 2022

Published: 15 September 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

buildings

Article

Monitoring Axial Force Development in a Super-Long Pile
during Construction Using BOFDA and Data Interpretation
Approaches: A Case Study
Dongning Li 1, Deshan Ma 2,3, Dong Su 4,5,* , Shaohua Rao 1, Wenbin Wang 2,3 and Chengyu Hong 4,5

1 Shenzhen Talent Housing Group Co., Ltd., Shenzhen 518040, China
2 China Construction Third Engineering Bureau First Construction Engineering Co., Ltd., Shenzhen 518049, China
3 China Construction Third Engineering Bureau (Shenzhen) Co., Ltd., Shenzhen 518049, China
4 College of Civil and Transportation Engineering, Shenzhen University, Shenzhen 518060, China
5 Key Laboratory for Resilient Infrastructures of Coastal Cities (MOE), Shenzhen University, Shenzhen 518060, China
* Correspondence: sudong@szu.edu.cn

Abstract: Long-term monitoring data for super-long piles are scarce and valuable. This paper reports
axial strain measurements of a cast-in-place large-diameter pile embedded 76.7 m into a “weathered
trench” of granite in Nanshan District, Shenzhen, China, using BOFDA monitoring technology. An
approach based on the load-transfer method to interpret data is proposed, in which the axial load
at the pile head and the shear behavior at the pile–soil interface can be analyzed. Results show that
these data can well reflect the increase in axial strain as the number of floors built increases, although
there is deviation related to fiber cable bending due to the installation and compaction of concrete,
and the complex loading condition at the pile head. Sensitivity analysis of parameters disclosed
that the friction angle between the soil and the pile was approximately 10◦ for the cast-in-place pile
monitored in this study, which is approximately one third of the interface friction angle, considering
the slurry cake effect. The average axial force exerted on the pile head induced by building one floor
ranged from 116.00 kN to 297.43 kN; this increased with the number of floors built and the total loads
of the superstructure. This implies that the raft carried a large portion of the structural load during
the early construction stage; piles gradually carried a major portion of the increased load due to
continuous construction. The overall mobilized percentage of skin friction was approximately 40.8%
when 40 floors were built, and the pile had the potential to carry more axial load.

Keywords: super-long pile; Brillouin Optical Frequency Domain Analysis (BOFDA); load-transfer
method; axial strain; skin friction

1. Introduction

Pile foundations are widely adopted to support heavy structures, such as high-rise
buildings [1] and river bridges [2], due to their significant vertical and horizontal bearing
capacities and the advantages that they provide in controlling long-term displacement. In
many situations, for the sake of both economy and safety, piles are combined with rafts to
form piled raft foundations for super high-rise buildings, for which the soil–pile–structure
interaction is a complex problem. Approaches used to investigate piles or piled raft foun-
dations’ behaviors primarily include 1 g or centrifuge experiments, numerical studies, and
field measurements. Experimentally, small-scale tests facilitate extensive investigation of
the effects of pile number, pile size, embedment length, pile spacing, and soil type on the
group interaction or the load sharing of piled raft foundations (e.g., [3–14]). However, due
to model size limitations, the scale effect and boundary effect are sometimes unavoidable,
which hinders the extension of laboratory observations directly to the interpretation or
design of real foundations. Full-scale field tests and field monitoring, despite their rela-
tively high cost, can produce limited but valuable results (e.g., [15–21]). Full-scale tests
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include short-term measurement as well as long-term observation during and following
the construction period. To investigate the bearing behavior of super-long piles located in
deep soft clay over stiff layers, Zou and Zhao [22] conducted a field load test of a pile with a
diameter of 1.0 m and a length of 60 m. Wang et al. [23] performed a static load test on three
super-long bored piles of diameter 1.5 m and length 80 m in deep fine silty sand layers.
Li et al. [24] investigated two cast-in-situ bored piles of length 56.5 m and 56.6 m subjected
to compressive load. Feng et al. [25] carried out field investigations of two super-long steel
pipe piles of length 85.7 m and 78.7 m in offshore areas. There are two main numerical
approaches for analyzing pile behaviors. First, in the finite element and finite difference
method, soils around the piles are treated as continuum media, and soil–pile–structure
interactions are modeled directly (e.g., [26–29]). In the second approach, the pile is modeled
as an elastic member, whereas the soil is idealized as a discrete set of independent springs
that describes the soil–pile interaction. This includes the “p-y” method for laterally loaded
piles (e.g., [30–32]) and the “t-z” method for vertically loaded piles (e.g., [33,34]).

Long-term monitoring of pile behaviors, especially cast-in-place piles, involves harsh
conditions; sensors must be durable, stable, and have a high survival rate. In recent years,
optical fiber sensing technology has become popular for engineering monitoring [35,36] due
to its good performance under various conditions. Fiber Bragg gratings (FBGs), an optical
fiber technology, have been used to measure the distribution of strain, temperature, and
displacement in civil engineering for both slopes [37,38] and piles [39]. Distributed optical
fiber monitoring technologies such as Brillouin optical time domain analysis (BOTDA) [40],
Brillouin optical time domain reflectors (BOTDR) [41], Brillouin optical frequency domain
reflectors (BOFDA) [42], optical frequency domain reflectometers (OFDR) [43], and dis-
tributed optical fiber sensors (DOFS) [44] have also been widely adopted in engineering
monitoring. For example, Gao et al. [45] used OFDR technology to measure the deformation
characteristics of a PCC pile in small model tests. Liu et al. [46] adopted OFDR optical
fiber sensing technology to measure the horizontal strain of a pile in a cross-rock pillar
excavation model test. Based on DOFS–BOTDA monitoring technology, Wei et al. [47]
measured the internal force of an anti-slide pile in Badong No. 3 High School; monitoring
data verified the long-term effectiveness of anti-slide pile management and the superiority
of the monitoring technology.

This study focuses on the long-term behavior of super-long cast-in-place piles. A
concrete pile 76.7 m in length and 1.6 m in diameter, embedded mainly in strongly weath-
ered granite, was monitored using BOFDA technology. The development of axial strain
in the pile during superstructure construction was measured. An approach based on the
load-transfer method is proposed to interpret data and identify and describe the develop-
ment of the axial load at the pile head and skin friction along the pile shaft. These results
will provide a further understanding of the bearing mechanism of super-long piles in this
project, and provide a good reference for similar projects.

2. Monitoring of Pile Axial Force during Construction
2.1. Engineering Project

As shown in Figure 1, the construction site is located in the high-tech industrial park
on Baishi Road, Nanshan District, Shenzhen, China, to the north of Baishi Road, to the east
of Keji South Road, to the south of Gaoxin South 4th Road, and to the west of Keji South
8th Road. To allow for new building construction, one commercial building and eight
multi-story residential buildings were demolished, including three 62-story residential
buildings, three 44/45-story residential buildings, and other ancillary podium buildings.
Figure 1 provides an aerial photo showing these buildings’ foundation pits.

According to the drilling exposure, strata at the site, from top to bottom are: quaternary
Holocene artificial fill layer (Q4

ml), quaternary Holocene marine continental interactive
sediment layer (Q4

mc), quaternary Holocene alluvial proluvial layer (Q4
mc), quaternary

eluvial soil layer (Qel), and underlying bedrock consisting of Yanshanian phase IV (early
Cretaceous) granite (ηβ5K1). Pile foundations were adopted to support high-rise buildings
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in this project. Piles penetrated through strata primarily consisting of gravelly clayey soil,
completely weathered granite, earthy strongly weathered granite, fragmentary strongly
weathered granite, moderately weathered granite, and slightly weathered granite. Samples
obtained from boreholes are presented in Figure 2. The soils’ mechanical properties, as
provided by the survey unit, are presented in Table 1. The main characteristics of these
strata are as follows:
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Figure 1. The site and foundation pits of the engineering project.

(1) Gravelly clayey soil is maroon, gray–white, isabelline yellow, and other colors. It is in a
plastic to hard-plastic state and contains 20–25% quartz gravel, which is the weathered residual
soil of biotite granite. Some boreholes reveal that this layer is significantly kaolinized, and it
collapses easily in water. This layer is widely distributed throughout the site, is 1.50~28.80 m
thick, with an average thickness of 13.95 m, a top burial depth of 5.20~18.90 m, and a bottom
depth of 13.50~42.40 m. The core recovery rate of this layer is 80–95%.

(2) Completely weathered granite is maroon, brown–yellow, or brown–gray. The rock
is intensively weathered; its organizational structure is damaged, but it is still recognizable.
The rock core is hard soil, the alloy can be drilled, and it collapses easily in water. The rock
is extremely broken and classified as extremely soft rock. The rock mass is basic quality
grade V. This layer is widely distributed throughout the site, is 1.50~19.20 m thick, has a
top buried depth of 11.80~42.40 m, and a bottom depth of 22.00~49.00 m. The core recovery
rate of this layer is 80–90%.

(3) Earthy strongly weathered granite is brownish yellow and brownish gray. Most
of the original rock structure is damaged and most of the minerals, except quartz, have
been weathered into sandy soil. The rock core is relatively hard soil that can be crushed
by hand; it disintegrates easily in water, and dry drilling is possible. There are strongly
weathered rock fragments or moderately weathered rock blocks at the bottom in some
locations. The rock is extremely broken and classified as extremely soft rock. The rock mass
is basic quality grade V. This layer is widely distributed throughout the site, is 2.50~37.80 m
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thick, has a top buried depth of 16.40~49.00 m, and a bottom depth of 43.50~62.50 m. The
core recovery rate of this layer is 75–90%.

(4) Fragmentary strongly weathered granite is brown–yellow, flesh red, and other
colors. Most of the original rock structure is damaged; it has a granite structure, very
developed joints, and some portions rendered by iron oxides. The rock core is broken, soft
rock, mostly fragmentary in shape, and fragile when hammered. The rock is extremely
broken and classified as extremely soft rock. The rock mass is basic quality grade V. This
layer is widely distributed throughout the site, is 0.70~11.70 m thick, has a top buried depth
of 44.10~59.60 m, and a bottom depth of 46.60~63.30 m. The core recovery rate of this layer
is 70–80%.

(5) Moderately weathered granite is flesh red and has a massive granite structure
with structural fissures affected by nearby structural fractures. Rock cores are mostly
fragmentary with short columnar structures and some localized long columnar structures.
The structure is partially damaged, difficult to break, and has a crisp hammering sound.
The rock mass is relatively broken and basic quality grade IV (RQD = 10~60). This layer is
widely distributed throughout the site, has a top elevation of −59.34~−39.09 m, and a top
buried depth of 43.50~63.30 m. The core recovery rate of this layer is 70–80%.

(6) Slightly weathered granite is flesh red and has a massive granite structure with
slightly developed fissures. The rock core has a long columnar structure with few frag-
ments and a brittle rock block hammering sound. The rock is relatively broken ~ rela-
tively complete and basic quality grade IV ~ II (RQD = 20~80). It has a top elevation of
−62.20~−44.67 m and a top buried depth of 49.40~66.80 m. The core recovery rate of this
layer is 75–90%.
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ered granite; (c) earthy strongly weathered granite; (d) fragmentary strongly weathered granite;
(e) moderately weathered granite; (f) slightly weathered granite.
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Table 1. The mechanical properties of soils.

Soil Unit Weight, γ
(kN/m3)

Compression
Modulus, Es (MPa)

Friction Angle,
ϕ (◦) Cohesion, c (kPa)

Gravelly clayey soil 19.0 8 25 22

Completely weathered granite 20.0 12 28 25

Earthy strongly weathered granite 21.0 16 30 28

Fragmentary strongly weathered granite 22.0 / 33 28

Moderately weathered granite 23.0 / / /

The project’s foundation adopted large-diameter (1.2~1.8 m) bored cast-in-place piles
in combination with a raft. After the pile foundation construction unit entered the site,
it was found that, according to advance drilling data, the largest buried depth of the
moderately weathered rock surface in the middle area of a tower in the north area was
approximately 100 m; the height difference in the bearing layer between the pile foundations
in the tower area was approximately 40 m. The survey unit preliminarily judged that there
was a “weathered trench” in the tower site of a dormitory in the north area, because the
site was located in the fracture-affected area. Affected by the fracture, the weathered layer
was uneven; the thickness of the local weathered layer changed greatly, and the bedrock
was broken.

Pile A50, as illustrated in Figure 3, was located in the “weathered trench”. The pile
was 1.6 m in diameter and 76.7 m in effective length. As shown in Figure 4, pile skin
friction was mainly provided by the strata of completely weathered granite and strongly
weathered granite (although the strongly weathered granite contains thin interlayers of
slightly weathered granite), whereas the end bearing capacity was provided by slightly
weathered granite. The piles were cast in place; pile holes were formed using a rotary
drilling method and holes’ walls were protected by slurry. The effect of residual slurry on
skin friction between piles and surrounding soils should be carefully considered.
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2.2. Sensors and Installation

This project used Brillouin optical frequency domain analyzer (BOFDA) monitoring
technology to better understand pile behavior in the “weathered trench”. The BOFDA’s
basic sensing principle is shown in Figure 5. Light from a narrow-linewidth pump laser is
coupled to one end of a single-mode fiber, and the light from a narrow-linewidth probe
laser is coupled at the other end. The pump laser’s frequency is decreased by an amount
equal to the fiber’s Brillouin frequency. The characteristic frequency of a standard telecom
single-mode fiber is approximately 13 GHz. The probe laser’s light achieves an amplitude
with a variable angular modulation frequency. The BOFDA measurement principle is that
alternate parts of the modulated probe and modulated pump intensities are recorded at
the sensor fiber’s end for each probe light. Herein, a pump wave probe induces Brillouin
loss. The photodetector’s output signal is transmitted to the frequency analyzer, which
determines the baseband transfer function of the tested fiber optic sensor. Next, the
baseband transfer function is input to the signal processor to calculate the inverse fast
Fourier transform (IFFT). This IFFT approximates the impulse response of the tested fiber
optic sensor and is similar to the temperature and strain profiles along the fiber.

Figure 6 illustrates fiber optic sensor installation along piles. Four distributed strain
sensors and two distributed temperature sensors were installed from pile top to pile bottom
to measure strain and monitor temperature. Specifically, sensors were symmetrically placed
along the longitudinal bars of a steel cage with rolled belts, forming a U-shaped loop (as
shown in Figure 6a) and fixed using 1–2 m spacing. Sensors were placed inside a steel cage
to avoid direct contact with the surrounding rock, soil mass, and perfusion equipment, as
presented in Figure 6b. Two FBG sensors were also placed on the same longitudinal bar to
calibrate strain measurements from the distributed fiber sensors.



Buildings 2022, 12, 1462 7 of 21

Buildings 2022, 12, x FOR PEER REVIEW 7 of 23 
 

2.2. Sensors and Installation 

This project used Brillouin optical frequency domain analyzer (BOFDA) monitoring 

technology to better understand pile behavior in the “weathered trench”. The BOFDA’s 

basic sensing principle is shown in Figure 5. Light from a narrow-linewidth pump laser is 

coupled to one end of a single-mode fiber, and the light from a narrow-linewidth probe 

laser is coupled at the other end. The pump laser’s frequency is decreased by an amount 

equal to the fiber’s Brillouin frequency. The characteristic frequency of a standard telecom 

single-mode fiber is approximately 13 GHz. The probe laser’s light achieves an amplitude 

with a variable angular modulation frequency. The BOFDA measurement principle is that 

alternate parts of the modulated probe and modulated pump intensities are recorded at 

the sensor fiber’s end for each probe light. Herein, a pump wave probe induces Brillouin 

loss. The photodetector’s output signal is transmitted to the frequency analyzer, which 

determines the baseband transfer function of the tested fiber optic sensor. Next, the base-

band transfer function is input to the signal processor to calculate the inverse fast Fourier 

transform (IFFT). This IFFT approximates the impulse response of the tested fiber optic 

sensor and is similar to the temperature and strain profiles along the fiber. 

Figure 6 illustrates fiber optic sensor installation along piles. Four distributed strain 

sensors and two distributed temperature sensors were installed from pile top to pile bot-

tom to measure strain and monitor temperature. Specifically, sensors were symmetrically 

placed along the longitudinal bars of a steel cage with rolled belts, forming a U-shaped 

loop (as shown in Figure 6a) and fixed using 1–2 m spacing. Sensors were placed inside a 

steel cage to avoid direct contact with the surrounding rock, soil mass, and perfusion 

equipment, as presented in Figure 6b. Two FBG sensors were also placed on the same 

longitudinal bar to calibrate strain measurements from the distributed fiber sensors. 

 

Figure 5. Basic measurement principle of BOFDA. 
Figure 5. Basic measurement principle of BOFDA.

Buildings 2022, 12, x FOR PEER REVIEW 8 of 23 
 

 
(a) 

 
(b) 

Figure 6. Sensor layout scheme: (a) sensor layout; (b) field installation. 

2.3. Measurement Results  

Figure 7 shows raw BOFDA measurement data collected during construction; on 14 

November 2021, 26 November 2021, 5 December 2021, 14 December 2021, 2 January 2022, 

19 February 2022, 9 March 2022, 18 May 2022, and 29 May 2022, the number of floors built 

was 13, 17, 19, 20, 24, 28, 31, 36, and 40, respectively. Measured axial strain increased with 

each increase in floor number and the superstructure’s weight. Generally, strain decreases 

with increasing depth; however, significant local variation is likely due to the bending of 

the fiber cable during concrete installation and compaction. The magnitude of change in 

the strain between depths of 10 m and 15 m seemed to be unreasonably large, which was 

Pile cap

Basement monitoring point

Effective length

Basement floor

Distributed 

optical fiber

FBG sensor

Figure 6. Sensor layout scheme: (a) sensor layout; (b) field installation.



Buildings 2022, 12, 1462 8 of 21

2.3. Measurement Results

Figure 7 shows raw BOFDA measurement data collected during construction; on 14
November 2021, 26 November 2021, 5 December 2021, 14 December 2021, 2 January 2022,
19 February 2022, 9 March 2022, 18 May 2022, and 29 May 2022, the number of floors built
was 13, 17, 19, 20, 24, 28, 31, 36, and 40, respectively. Measured axial strain increased with
each increase in floor number and the superstructure’s weight. Generally, strain decreases
with increasing depth; however, significant local variation is likely due to the bending
of the fiber cable during concrete installation and compaction. The magnitude of change
in the strain between depths of 10 m and 15 m seemed to be unreasonably large, which
was probably due to the complex loading condition at the pile head. Therefore, it was not
feasible to calculate the axial load at the pile head directly from raw data.
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3. The Approach for the Interpretation of Measured Data
3.1. Methodology

This study used the load-transfer method to interpret raw data. As shown in Figure 8,
the pile was divided into a certain number of elements along the axial direction. Based
on the force equilibrium of each element, the relation matrix between the force at the top
of the pile and the axial strain of each element was obtained. Assuming that the soil–pile
interface behavior followed the bilinear model (as shown in Figure 9), the matrix could
be solved for any given axial load at the top of the pile and corresponding axial strains
for each element can be determined. Next, calculated axial strains under different axial
loads were compared with measured data, and the best-fit case was considered as the true
response of the vertically loaded pile. The process used is as follows.
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Figure 9. The bilinear model for the interface behavior.

First, the pile is divided into M elements with an equal length of ∆l, as shown in
Figure 8. It is assumed that the axial strain in the ith element is εi when the axial load at
the top of the pile is N1. At the same time, the axial forces are Ni and Ni+1 at the top and
bottom of the element, respectively, and the corresponding vertical displacements are si
and si+1, respectively. Based on the linear and elastic relationship of the pile,

Ni+ 1
2
=

1
2
(Ni + Ni+1) = Apσi = EApεi (1)
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where Ni+ 1
2

is the average axial force of the ith element, Ap is the cross-sectional area of the
pile, and E is the Young’s modulus of the pile.

According to force equilibrium, the force at the bottom of the ith element can be
determined by

Ni+1 = Ni − ∆Ni = N1 − (∆N1 + ∆N2 + ∆N3 + · · ·+ ∆Ni) (2)

where ∆Ni is the difference between Ni+1 and Ni. As shown in Figure 8, the force difference
is balanced by the frictional force mobilized along the interface between the pile and the
surrounding soil, i.e.,

∆Ni = τiu∆l (3)

where τi is the mobilized shear stress at the interface of the ith element, and u is the pile’s
perimeter.

The magnitude of mobilized shear stress around the pile depends on the relative vertical
displacement between the pile and the surrounding soil (denoted by s) when the pile is
loaded at the pile head. This relationship can be readily determined using the direct shear of
the interface between the soil and a concrete block (mimicking the pile). Usually, the behavior
can be approximately described using the bilinear model, as shown in Figure 9. The bilinear
model is characterized by three parameters: initial stiffness, kini; ultimate shear strength, τu;
and critical displacement, scr. The mobilized shear stress, τi, can be determined as

τi = kisi+ 1
2
=

1
2

ki(si + si+1) (4)

where si+1/2 is the average relative displacement of the ith element of the pile against the
surrounding soil, and ki is the equivalent stiffness. si+1/2 is calculated using

si+ 1
2
=

1
2
(si + si+1) (5)

Next, si and si+1 can be expressed by the vertical displacement at the top of the pile,
s1, and the strains, εi, as follows:

si = s1 − (ε1 + ε2 + · · ·+ εi−1)∆l (6)

si+1 = s1 − (ε1 + ε2 + · · ·+ εi)∆l (7)

On the other hand, the equivalent stiffness, ki, is

ki = kini when si+ 1
2
<scr or (8a)

ki = ksec =
τu

s
when si+ 1

2
≥scr (8b)

Combining Equations (3)–(7), one has

∆Ni =
1
2 ki(si + si+1)u∆l

= ki

(
s1
∆l − ε1 − ε2 − · · · − εi−1 − 1

2 εi

)
u(∆l)2

= kiB
(

s1
∆l − ε1 − ε2 − · · · − εi−1 − 1

2 εi

) (9)

where B = u(∆l)2. Next, based on Equations (1), (2), and (9), one has(
1
2 k1 + k2 + k3 + · · ·+ ki−1 +

1
2 ki

)
ε1 +

(
1
2 k2 + k3 + · · ·+ ki−1 +

1
2 ki

)
ε2

+
(

1
2 k3 + k4 · · ·+ ki−1 +

1
2 ki

)
ε3 + · · ·+

(
1
2 ki−1 +

1
2 ki

)
εi−1

+
(

1
4 ki − EAb

B

)
εi = −N1

B + s1
∆l

(
k1 + k2 + · · ·+ ki−1 +

1
2 ki

) (10)
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On the right side of Equation (10), s1 remains unknown and needs to be resolved or
replaced. To this end, the axial force at the bottom of the pile, NM+1, is assumed to be
linearly related to the pile displacement at the location, i.e.,

NM+1 = ApkbsM+1 (11)

where kb is the stiffness at the bottom of the pile, and sM+1 is the pile displacement at the
bottom, and can be calculated using

sM+1 = s1 − (ε1 + ε2 + · · ·+ εM)∆l (12)

Let I = M in Equation (2), and substituting Equation (7) into Equation (2) yields

NM+1 = N1 − B s1
∆l (k1 + k2 + · · ·+ kM) + B

[(
1
2 k1 + k2 + k3 + · · ·+ kM

)
ε1

+
(

1
2 k2 + k3 + · · ·+ kM

)
ε2+

(
1
2 k3 + · · ·+ kM

)
ε3 + · · ·+ 1

2 kMεM

] (13)

Combining Equations (11) and (12), one has

s1 = 1
A{N1 + Abkb(ε1 + ε2 + · · ·+ εM)∆l

+B
[(

1
2 k1 + k2 + k3 + · · ·+ kM

)
ε1 +

(
1
2 k2 + k3 + · · ·+ kM

)
ε2

+
(

1
2 k3 + · · ·+ kM

)
ε3 + · · ·+ 1

2 kMεM

]} (14)

where A = Abkb +
B
∆l (k1 + k2 + · · ·+ kM).

Finally, substituting Equation (14) into Equation (10) yields{(
1
2 k1 + k2 + · · ·+ ki−1 +

1
2 ki

)
−
[(

1
2 k1 + k2 + · · ·+ kM

)
B + Abkb∆l

]
Ci

}
ε1

+
{(

1
2 k2 + k3 + · · ·+ ki−1 +

1
2 ki

)
−
[(

1
2 k2 + k3 + · · ·+ kM

)
B + Abkb∆l

]
Ci

}
ε2 + · · ·

+
{(

1
2 ki−1 +

1
2 ki

)
−
[(

1
2 ki−1 + ki + · · ·+ kM

)
B + Abkb∆l

]
Ci

}
εi−1

+
{(

1
4 ki − EAb

B

)
−
[(

1
2 ki + ki+1 + · · ·+ kM

)
B + Abkb∆l

]
Ci

}
εi

−
[(

1
2 ki+1 + ki+2 + · · ·+ kM

)
B + Abkb∆l

]
Ciεi+1 − · · · −

[
1
2 kMB + Abkb∆l

]
CiεM

=
(

Ci − 1
B

)
N1

(15)
where Ci =

1
A∆l

(
k1 + k2 + · · ·+ ki−1 +

1
2 ki

)
.

For I = 1 to M, Equation (15) provides algebraic equation groups that describe the
relationship between the force at the top of the pile and the axial strain of each element.
Algebraic equation groups are then solved for different axial loads at the pile head (such as
N1

1 , N2
1 , . . . , Np

1 ), and the corresponding strains, ε
j
i (1 ≤ i ≤ M, 1 ≤ j ≤ p), are also solved.

The Euclidean distances between these strains and measured data are calculated for each
N1 as follows:

dj =

√√√√ M

∑
i=1

(
ε

j
i − εm

i

)2
(1 ≤ j ≤ p) (16)

The trial load at the pile head (i.e., N1) that yielded the minimum Euclidean distance
was considered the true force exerted on the pile head; the corresponding calculated strains
were considered the true responses along the pile, as illustrated in Figure 10.



Buildings 2022, 12, 1462 12 of 21

Buildings 2022, 12, x FOR PEER REVIEW 13 of 23 
 

1 2 1 1 2 1

2 3 1 2 3 2

1 1

1 1 1

2 2 2

1 1 1

2 2 2

1 1 1

2 2 2

i i M b b i

i i M b b i

i i i i M b b i

k k k k k k k B A k l C

k k k k k k k B A k l C

k k k k k B A k l C





−

−

− −

     
+ + + + − + + + +      

     

     
+ + + + + − + + + +  +     

     

     
+ + − + + + +      

     
1

1

1 2 1

1

1 1

4 2

1 1

2 2

1

i

b

i i i M b b i i

i i M b b i i M b b i M

i

EA
k k k k B A k l C

B

k k k B A k l C k B A k l C

C N
B





 

−

+

+ + +

     
+ − − + + + +      

     

    
− + + + +  − − +     
    

 
= − 
 

 (15) 

where 1 2 1

1 1

2
i i iC k k k k

A l
−

 
= + + + + 

  
. 

For I = 1 to M, Equation (15) provides algebraic equation groups that describe the 

relationship between the force at the top of the pile and the axial strain of each element. 

Algebraic equation groups are then solved for different axial loads at the pile head (such 

as 1

1N ， 2

1N ，…，
1

pN ), and the corresponding strains, j

i  （1 i M  ，1 j p  ）, are 

also solved. The Euclidean distances between these strains and measured data are calcu-

lated for each 
1N  as follows: 

( )
2

1

M
j m

j i i

i

d  
=

= − (1 j p  ) (16) 

The trial load at the pile head (i.e., N1) that yielded the minimum Euclidean distance 

was considered the true force exerted on the pile head; the corresponding calculated 

strains were considered the true responses along the pile, as illustrated in Figure 10. 

 

0

10

20

30

40

50

60

70

80

0 50 100 150 200 250 300

D
ep

th
 (

m
)

Strain (με)

N1=15,000 kN

N1=12,000 kN

N1=10,000 kN

measured strain

j m

i i −

Figure 10. Determination of the load at the pile head by the minimum Euclidean distance.

3.2. Interpretation of Measured Data

To interpret measured strain data using the methodology presented in the previous
section, it was important to determine the ultimate skin friction between the soil and the
pile, which is usually calculated using

τu = σh tan α = k0σv tan α (17)

where σh is the lateral soil stress acting on the pile skin, σv is the vertical stress, k0 is the
coefficient of lateral Earth pressure, and α is the friction angle at the soil–pile interface.
Vertical stress is calculated based on the soil’s unit weight. The coefficient of lateral Earth
pressure is determined according to Jake’s equation, i.e., k0 = 1− sin ϕ (ϕ is the friction
angle of soil).

As a major part of the pile shaft was located in strongly weathered granite, direct shear
tests were conducted between the concrete structure and the earthy strongly weathered
granite; the friction angle was determined to be 27◦. However, slurry protected the wall
of the pile hole during construction, and a thin layer of slurry cakes formed after the
concrete was cast. The slurry cake significantly reduced the interface friction; however,
its effect was difficult to quantify as the thickness and properties of slurry cakes were
highly uneven around the pile. For this reason, sensitivity analysis was used to determine
a suitable interface friction. Three values of α, i.e., 5◦, 10◦, and 20◦, were used to conduct
the analysis; Figure 11 presents the results. The value of α significantly affected the axial
load distribution along the pile. As the value of α increased, the friction of soil acting on
the pile’s skin carried more force; correspondingly, the force transferred to the pile end was
smaller. For the cast-in-place pile monitored in this study, the friction angle between the
soil and the pile was approximately 10◦, which is approximately one third of the measured
friction angle when the effect of slurry cakes is not considered.

Another issue requiring careful consideration was strain in the shallow section of the
pile. The measured strain was found to be unreasonably large, probably due to the complex
loading mode. The gradient of the strain against depths between 10 m and 15 m was also too
large. As Figure 12 illustrates, fitting all measured data yielded a larger prediction of strain
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along the pile and the axial load at the pile head; therefore, measured strain above a depth of
15 m was excluded when interpreting these data, to provide a more reasonable prediction.
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Data measured on 14 November 2021, 26 November 2021, 5 December 2021, 14
December 2021, 2 January 2022, 19 February 2022, 9 March 2022, 18 May 2022, and 29 May
2022 were processed using the aforementioned method and technique; the fitted strain
and calculated axial force along the pile shaft are presented in Figure 13. As expected,
processed axial strains were in good agreement with the overall trend in axial strain against
the depth, as observed in the measurements. The slope of the axial force with respect to
depth at the shallow section seems to be reasonable, which tends to be zero at the ground’s
surface. The axial force at the end of the pile increased as floors were built and increased
the upper load; this indicates that more axial load at the pile head was transferred to the
pile end. On 29 May 2022, approximately 12.24% of the axial load exerted on the pile head
was carried by the pile end, whereas the other 87.76% of the load was balanced by skin
friction. Therefore, the long (76.7 m), large-diameter pile embedded primarily in strongly
weathered granite is a typical frictional pile. Figure 14 compares the axial force distribution
along the pile with the results from other tests when the axial forces at the pile head are
all approximately 12,000 kN. The length of the piles in the tests conducted by Zou and
Zhao [22], Wang et al. [23], Li et al. [24], and Feng et al. [25] was 60 m, 80 m, 56.5 m, and
85.7 m, respectively, which fell within the range of super-long piles. The pile investigated
by Feng et al. [25] was a steel pipe pile, while the piles in other studies were bored piles.
Although the variation in the axial force with the depth shows apparent differences in these
studies due to difference in the site conditions and pile geometry, all the results indicate
that the skin friction bore the major part of the load exerted at the pile head.

Figure 15 presents axial loads at the pile head and the number of floors built. The
estimated axial loads were approximately 1508 kN, 2498 kN, 3185 kN, 3822 kN, 5034 kN,
7516 kN, 8993 kN, 10,522 kN, and 11,897 kN on 14 November 2021, 26 November 2021, 5
December 2021, 14 December 2021, 2 January 2022, 19 February 2022, 9 March 2022, 18 May
2022, and 29 May 2022, respectively. The corresponding numbers of floors built were 13,
17, 19, 20, 24, 28, 31, 36, and 40, respectively. The average axial force exerted on the pile
head by one floor during construction was approximately 116.00 kN, 146.94 kN, 167.63 kN,
191.10 kN, 209.75 kN, 268.43 kN, 290.10 kN, 292.28 kN, and 297.43 kN on these dates,
respectively. This project used a piled raft foundation. In the early stages of construction,
the raft carried a large portion of the load induced by the superstructure. However, as
the number of floors built and the total load increased, the piles gradually bore the major
portion of the increased load due to continuous construction.

Mobilized skin friction was estimated using the proposed methodology during different
stages of construction; Figure 16 presents the results. Mobilized skin friction was initially
low along the pile shaft and increased as the vertical load at the pile head increased. Above
10 m, the interface reached the ultimate skin friction on 29 May 2022, but the percentage
of mobilization tended to decrease with increasing depth. To evaluate the pile’s safety, the
overall mobilized percentage (defined as the ratio of integration of mobilized skin friction
against the depth to the integration of the ultimate skin friction against the depth) was
calculated, and is presented in Figure 17. On 14 November 2021, when there were 13 floors
built, the overall mobilized percentage was approximately 5.1%. On 29 May 2022, when
there were 40 floors built, the overall mobilized percentage was approximately 40.8%, which
indicates that the pile was in a sufficiently safe state in terms of loading capacity.

Finally, to disclose the influence of design parameters on pile behavior under the axial
load, sensitivity analyses were conducted with different combinations of pile length, L, and
pile diameter, D. The results presented in Figure 18 show the development of skin friction
for piles having the same diameter (1.6 m) but different lengths when the axial load at the
pile heads is 11897 kN. It is seen that, as the length decreases, the mobilized skin friction at
the shallow part approaches the ultimate value quickly. The overall mobilized percentage
is approximately 38.0%, 47.1%, 59.2%, 75.1%, and 93.4% for L = 80 m, 70 m, 60 m, 50 m,
and 40 m, respectively. Figure 19 presents the results for the piles having the same length
(76.7 m) but different diameters. It is seen that the mobilized skin friction decreases as the
pile diameter increases. The overall mobilized percentage is approximately 53.0%, 46.7%,
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40.5%, 35.3%, and 31.1% for D = 1.2 m, 1.4 m, 1.6 m, 1.8 m, and 2.0 m, respectively. In view
of the results presented in Figures 17 and 18, the pile design can be further optimized in a
small range.
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4. Conclusions

The long-term behavior of a super-long cast-in-place pile was measured using BOFDA
monitoring technology during the construction of a superstructure. Data were reinterpreted
using the proposed method based on the load-transfer mechanism, so that the pile’s charac-
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teristics and the interface between the pile and the surrounding soil could be determined.
The following conclusions can be made based on the study’s results:

(1) Measured data can well reflect an increase in axial strain with an increase in the
number of floors built. However, unwanted data deviation from the real pile response can
be observed in the measured data due to the bending of the fiber cable during concrete
installation and compaction. Complex loading conditions at the pile head also make it
difficult to interpret data in the pile’s shallow section.

(2) Based on the load-transfer method and incorporating the bilinear model for
soil–pile interface behavior, the relationship between the force at the top of the pile and the
axial strain along the pile can be obtained. Sensitivity analysis of parameters can be con-
ducted using the relationship and measured data to obtain best-fit axial strain distributions.
The cast-in-place pile monitored in this study had a friction angle of approximately 10◦

between the soil and the pile, which is approximately one third of the measured friction
angle when the effect of slurry cakes is not considered.

(3) The average axial force exerted on the pile head as induced by one floor during
construction ranges from 116.00 kN to 297.43 kN; axial force increases as the number of
floors built and the total load increases. When 40 floors were built, the overall mobilized
percentage of skin friction was approximately 40.8%, and the pile was in a sufficiently safe
state in terms of loading capacity.
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