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Abstract: The negative stiffness bistable damper (NSBD) was proposed to suppress structural
dynamic responses in our previous study. The vibration mitigation performance of the NSBD
is influenced by its design parameters, including negative stiffness, cubic stiffness, and damping
coefficients. However, it is extremely challenging to directly acquire the ideal design parameters of the
NSBD owing to its inherent nonlinearity. To address this disadvantage, the optimal design approach
for the NSBD, based on the equivalent linearization method (ELM) and genetic algorithm (GA), is
presented in this paper. The nonlinear NSBD system can be transformed to a linear system utilizing
the ELM based on the pseudo-excitation method (PEM). The linearization model that corresponds to
the nonlinear NSBD is fairly accurate in its approximation and can be indicated from the numerical
results. Then, the main structure’s peak response is minimized through the optimization of the
design parameters of the NSBD using the H∞ norm and GA. Moreover, the proposed approach’s
effectiveness is assessed using the optimal parameters to calculate the displacement responses of a tall
building equipped with the NSBD during various seismic excitations. As revealed by the numerical
results, the displacement of the tall building can be effectively restrained by the optimized NSBD.

Keywords: equivalent linearization; genetic algorithm; Monte Carlo method; negative stiffness
bistable damper (NSBD); negative stiffness; optimal design; tall building

1. Introduction

Structural vibration control is well developed but is still a potentially developing
field and is an effective earthquake protection method for building structures in civil
engineering [1]. Based on different types of damping strategies, structural control ap-
proaches are often categorized as passive control, active control, semi-active control, and
hybrid control [2]. Among these approaches, passive control, such as tuned-mass dampers
(TMDs) [3–6] and energy dissipation devices [7,8], is the most widely utilized structural
control technology owing to its high dependability and effectiveness in real-world applica-
tions. Practical applications in civil engineering are demonstrated by examples such as the
Sydney Chifley Tower and Shanghai Center Tower [9,10].

Generally, the natural frequencies and models of civil engineering structures play a
dominant role in vibration control. The frequency of the conventional tuned-mass damper
(TMD) is designed based on the frequency of the main structure, greatly reducing the miti-
gating effect of the dampers once there is an inconsistency with the frequency of the main
structure. Therefore, the detuning of the main frequency is a major disadvantage of the
conventional tuned-mass damper (TMD). To address this shortcoming, numerous negative
stiffness dampers (NSDs) have been proposed to upgrade the efficacy of structural control
systems. Pasala et al. [11] proposed a combined NSD–structure system consisting of an
adaptive negative stiffness system (ANSS), a viscous damper, and a combination of NSDs.
This novel damper can significantly mitigate the acceleration, displacement, and base shear
of the main structure. A further experimental and numerical simulation study demon-
strated the effectiveness and superior performance in reducing the vibration responses
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of the main structure under earthquake excitations [12]. Li et al. [13] and Sun et al. [14]
proposed an innovative negative stiffness apparatus and damper system, respectively, to re-
duce the seismic responses of highway bridges. The experimental results demonstrated the
effectiveness of the analytical model of the NSD in retaining the displacements of the base
and bridge. Sun et al. [15–17] invented a new passive negative-stiffness-amplifying damper
(NSAD) for preserving the significant damping magnification effect and property of the
negative stiffness, which can greatly reduce the responses of the structure when exposed to
earthquakes. Zhou and Li [18] and Chen et al. [19] introduced negative stiffness devices
(NSDs) using a self-contained highly compressed spring to mitigate stay-cable vibrations,
as investigated by numerical simulation and experimental tests. Shi and Zhu [20,21] and
Shi et al. [20–22] investigated the significant vibration-damping performances of two inno-
vative devices of magnetic negative stiffness dampers (MNSDs) compared with different
active control approaches, as successfully verified by laboratory experiments. Furthermore,
numerous other innovative negative stiffness dampers [23–28] have been explored for the
vibration damping of structures, showing a significant control effect.

Meanwhile, the bistable structure can provide both negative stiffness and cubic stiff-
ness properties, presenting an excellent vibration-damping effect when installed in dampers.
The bistable damper installed on the main structure has two stable equilibrium positions,
which can maintain a stable motion state without the continuous input of the external
energy and can achieve rapid conversion between steady-state configurations under the
driving force of the main structure’s conduction. These special structural characteristics
make the bistable structure extensively utilized in vibration attenuation and vibration
isolation. As for the research on vibration reduction, experiments and analytical models
have been carried out to investigate the dynamic response control under harmonic and
earthquake excitations, and the results indicated that the vibration-reducing effects of a
bistable attachment [29] and a bistable tuned-mass damper (BTMD) [30] were effective for
a bistable oscillator and a bridge deck, respectively. In addition, bistable vibration isolation
(BVI) [31,32] and quasi-zero stiffness (QZS) [33] isolation devices have been developed,
and experiments have shown that these devices can significantly improve the vibration
isolation effect through the snap-through effect of the bistable structures.

The NSBD has been proposed in our previous study [34] to reduce the structural dy-
namic responses, inspired by the properties of the negative stiffness and bistable structure,
which benefit the passive control. Based on previous experimental research, this paper
further studies and proposes a detailed optimization design method to achieve the excellent
vibration control of high-rise structures. The design parameters of the NSBD, such as nega-
tive stiffness, cubic stiffness, and damping coefficients, can have a significant impact on the
vibration control performance. Therefore, to maximize its vibration suppression capability
when used to mitigate structural vibrations, it is important to set the optimal design param-
eters for the NSBD. Since the negative stiffness element installed in numerous dampers to
attenuate vibration responses has been proposed by several researchers, various design
approaches have been developed to reduce vibrations caused by various types of excitation
sources by installing vibration-suppressing devices on various primary structures. Li and
Sun [35] invented an optimization objective function for the rail-type negative stiffness con-
trol system according to the characteristics of the negative stiffness control system. Dai and
Zhao [36] optimized the equal-peak design of a dynamic vibration absorber with negative
stiffness and analyzed the effects of the structural parameters on the effective damping
frequency’s bandwidth, achieving a reduction percentage of over 40% within the effective
damping frequency’s band range. Li et al. [37] and Ullslam et al. [38] proposed an innova-
tive dynamic vibration absorber (DVA) and a vibration isolator using negative stiffness and
focused on examining the optimal frequency ratio and negative stiffness ratio using the
fixed-point theory. Zhang et al. [33] invented a tuned-mass damper with a negative stiffness
device (TMD_NSD) and verified its excellent vibration-suppressing effect by experimental
tests. Charef et al. [39] studied a non-traditional tuned-mass damper (NTTMD) employing
negative stiffness to dampen a primary system, achieving better optimal tuning parameters.
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Moreover, many other novel and valuable algorithms and methodologies [40–44] can lead
to more accurate and automated mechanical systems shortly.

However, the NSBD’s inherent nonlinearity makes it impossible to directly compute
its transfer function using analytical methods. Although the numerical simulation method
is sufficient to compute dynamic responses of the nonlinear system, it is still challenging
to optimize the parameters of the NSBD owing to the massive numerical analysis. The
optimal design for an NSBD installed on a damped structure cannot be determined through
analytical solutions. To address this issue, this paper recommends a strategy using the
ELM and GA to optimize the design parameters of the NSBD initially. First, utilizing the
ELM and PEM, the NSBD is transformed to a linear system. Second, the optimal design
parameters of the NSBD are calculated using the optimal design method to decrease the
peak displacement response of the primary structure. The GA is utilized to achieve an
optimal solution during the optimization procedure. Furthermore, to evaluate the efficacy
of the suggested approach, the NSBD-installed tall building’s dynamic responses under
different seismic excitations are numerically computed using the optimal parameters.

2. Control Equations of a Single-Degree-of-Freedom (SDOF) Structure Equipped with
an NSBD
2.1. Mechanism Characterization of the NSBD

A linear SDOF structure equipped with an NSBD was introduced in our previous
study [34]. For the dynamic analysis of beam-like structures, the Galerkin-assumed modal
approach [45–48] has been applied in practical applications [48–50] and has led to remark-
able results. On this basis, this paper further simplifies the beam-like structure to a cosine
beam structure for the mechanical performance analysis. According to a study by Qiu
et al. [51], based on the assumption of a small deformation, the bending deformation of
the buckling beam is considered, while because the shear deformation has a relatively
small impact on the buckling beam’s direction of motion, the shear deformation is ignored.
Then, the mechanical constitutive equation for the displacement of the buckling beam (as
illustrated in Figure 1) under the external force is as follows:

F0 = (
3π4Q2

2
)∆[∆ − 3

2
−

√
1
4
− 4

3Q2 ]× [∆ − 3
2
+

√
1
4
− 4

3Q2 ] (1)

where F0 = Fl3
c

EIδ , ∆ = σ
δ , and Q = wx

δ are dimensionless normalization parameters. The
geometric parameters of the buckling beam include the span (lc) and the thickness (δ); σ,
which is the intermediate deformation of the buckling beam under external force F; and the
arching height (wx).
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Figure 1. The buckled beam with pre-stress.

As derived in our previous study [34], the mechanical constitutive equation for the
bistable buckling beam is

F = −(
3π4wy

2EI
2δ2l3

c
− 2π4EI

l3
c

)x +
3π4EI
2l3

c δ2
x3 +

2π4EIwy

l3
c

(2)
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As shown in Equation (3), the mechanical constitutive law of the buckling beam
consisted of the negative stiffness term and the cubic stiffness term.

Fs = knx + kcx3 (3)

where the negative stiffness coefficient is kn = −(
3π4wy

2EI
2δ2l3

c
− 2π4EI

l3
c

), and the cubic stiffness

coefficient is kc =
3π4EI
2l3

c δ2 .

2.2. Kinematic Equations for an NSBD-Equipped Structure

For brevity, a simplified single-degree-of-freedom (SDOF) structure equipped with
an NSBD is illustrated in Figure 2. Parameters m, c, and k represent the mass, damping,
and stiffness of the host structure, respectively. Earthquakes are assessed based on the base
acceleration (

..
xg). Furthermore, ms is the NSBD’s mass; cs is the damping of the NSBD; kn

and kc represent the negative stiffness and the cubic stiffness of the NSBD, respectively; and
x and xs represent the relative displacements of the structure and the NSBD with respect to
the ground, respectively.
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In structural analysis, the governing differential equations of an SDOF system equipped
with an NSBD subjected to base excitation can be directly derived from Newton’s second
law and expressed as

m
..
x + c

.
x + kx + cs(

.
x − .

xs) + kn(x − xs) + kc(x − xs)
3 = −m

..
xg

ms
..
xs + cs(

.
xs −

.
x) + kn(xs − x) + kc(xs − x)3 = 0

(4)

Equations (4) can be expressed in matrix form as follows:[
m 0
0 ms

]{ ..
x
..
xs

}
+

[
c + cs −cs
−cs cs

]{ .
x
.
xs

}
+

[
k + kn −kn
−kn kn

]{
x
xs

}
+ {Q} =

{
−m

..
xg

0

}
(5)

{Q} =

{
kc(x − xs)

3

kc(xs − x)3

}
(6)

where kn represents the negative stiffness coefficient, and kc represents the cubic stiffness
coefficient.



Buildings 2024, 14, 744 5 of 19

3. Equivalent Llinearization of the NSBD
3.1. Equivalent Linearization Method (ELM)

The NSBD is a nonlinear system, as outlined in Section 2. The fundamental-frequency-
based TMD parameters’ design may not be sufficient for NSBDs. To overcome this limita-
tion, in this section, the optimization parameters of the nonlinear NSBD are determined
using the ELM to linearize them to a linear system.

In the realm of nonlinear random-vibration-engineering analysis, the ELM has ad-
vanced significantly, offering an effective, straightforward approach. This method repre-
sents an approximate solution for predicting a nonlinear system’s stochastic responses,
holding considerable practical application potential. The core principles of the ELM are
to substitute a nonlinear NSBD system with a linear one having an exact solution and to
minimize their differences statistically. The control equation of the NSBD–structure system
is as follows:

M
..
X + C

.
X + KX + Q = −M1P

..
xg (7)

where Q represents the nonlinear part, and P = [1 0]T denotes the position vector of the
seismic excitation. Assuming that a stationary response for the system given by Equation (7)
is achievable, the NSBD–structure system is approximately replaced with an equivalent
linear system, as per the ELM, as expressed in Equation (8).

M
..
X + C

.
X + (K + Ke)X = −M1P

..
xg (8)

where Ke represents the equivalent stiffness matrix.
To render the system given by Equation (7) as being equivalent to the linear system

described in Equation (8), one must strive to minimize the mean square value of the
difference (e) between these equations.

e = Q − KeX (9)

The necessary condition for this equivalence is

∂

∂[Ke]ij
E[eTe] = 0 (10)

where (i, j = 1, 2), and E represents the expectation of the variable. Equation (11) can be
obtained by solving Equation (10).

Ke = E
[

3kc(E(x2)− 2E(xxs) + E(x2
s )) −3kc(E(x2)− 2E(xxs) + E(x2

s ))
−3kc(E(x2)− 2E(xxs) + E(x2

s )) 3kc(E(x2)− 2E(xxs) + E(x2
s ))

]
(11)

The pseudo-excitation method (PEM) was employed to iteratively compute Ke in
Equation (11). The PEM, as proposed by Lin et al. [52–54], is gaining acceptance as an
advanced and reasonable analysis tool that adequately accounts for the statistical proba-
bility characteristics of earthquake occurrences. Owing to the PEM’s speed and efficient
use of storage space, the structure’s responses, such as displacement and acceleration, can
be efficiently computed on ordinary microcomputers. This advanced structural modeling
approach ensures greater accuracy in engineering structural analyses.

In the case of the NSBD–structure system, a pseudo-harmonic excitation can be ex-
pressed by Equation (12).

..
xg =

√
S ..

xg
(ω)eiωt (12)
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where S ..
xg

denotes the spectral density function. As given by Equation (13), the Kanai–
Tajimi [55] model was employed in this paper.

S ..
xg
(ω) = S0

1 + 4ξ2
g(ω/ωg)

2

[1 − (ω/ωg)
2]

2
+ 4ξ2

g(ω/ωg)
2

(13)

where S0 denotes the power spectral density of the bedrock’s acceleration, while ξg and ωg
represent the damping ratio and rotational angular frequency, respectively, of the site’s soil.
The parameters of the Kanai–Tajimi spectrum are detailed in Table 1.

Table 1. Parameters of the Kanai–Tajimi spectrum.

Parameter
Type of Site

I II III IV

S0 (m2/s3) 0.0072 0.0091 0.0111 0.0166
ζg 0.64 0.72 0.80 0.90

ωg (rad/s) 20.94 15.71 11.42 8.38
I, II, III, and IV represent the first, second, third, and fourth types of sites, respectively.

Therefore, Equation (8) is expressed as follows:

−ω2M + iωC + (K + Ke)){X} = {P}
√

S ..
xg
(ω)eiωt (14)

As is known,

E(x2) =
∫ +∞

−∞
|x|

2
dω, E(xxs) =

∫ +∞

−∞
|x||xs|dω, E(x2

s ) =
∫ +∞

−∞
|xs|

2
dω (15)

By iteratively computing Equations (7), (8), (10), (11), (14) and (15), one can derive the
equivalent linearization parameters of an NSBD. The calculation details are as follows:

Step 1: Given that the equivalent mass and damping matrices are zero, computing
only the equivalent stiffness matrix is required using Equations (7), (8) and (10);

Step 2: Determine the appropriate input power spectrum according to the properties
of the external excitation;

Step 3: Initially set the values of the equivalent linearization parameters before em-
ploying Equation (14) to compute the pseudo-responses. Subsequently, obtain the variance
and covariance by solving Equation (15), leading to the replacement of the equivalent
parameter matrices with new ones using Equation (11);

Step 4: Continue with step 3 until the parameters meet the specified criteria (The
relative error value of the adjacent variances for each variable is greater than 10 × 106);

Step 5: By solving Equation (11), the equivalent parameter matrices can be determined
for the original nonlinear system.

3.2. Monte Carlo Method

The Monte Carlo random simulation method [56–58], grounded in the central limit
theorem of probability theory, is a widely recognized random method. Theoretically, its
accuracy is enhanced with an increment in the number of samples. Applicable to diverse
problems, the Monte Carlo method facilitates modeling and solving both mathematical
models and complex systems in practical contexts. Particularly for complex problems, the
Monte Carlo method often yields relatively accurate estimates. This method is an effective
tool widely used in mathematical modeling and practical problem-solving and is noted for
its flexibility, accuracy, and interpretability.

For analyzing the dynamic responses of structures with random parameters using the
Monte Carlo method, the basic steps include the following:
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Step 1: Generate N samples of random parameters reflecting the statistical characteris-
tics prescribed. The stochastic excitation sample can be simulated using Equation (16).

..
xg =

N

∑
k=1

Ak cos(ωkt + θk) (16)

where ∆ω= (ωn − ω1)/N, A2
k = 4S ..

xg
(ωk) · ∆ω, and ωk = ω1 + (k − 1

2 ) · ∆ω for k =

1, 2, · · · , N. N represents the number of samples for random parameters; ω1 and ωn specify
the limits within the frequency range; θk denotes a random number in [0, 2π];

Step 2: Insert sampled values of structural parameters into the structure’s vibration
equation;

Step 3: Employ numerical methods to solve the structure’s kinematic equation and
determine its dynamic responses;

Step 4: Repeat from steps (1) to (3) to generate N samples of structural dynamic
responses and subsequently calculate their statistical characteristics.

3.3. Numerical Analysis

To ascertain whether the equivalent linearization of the NSBD–structure coupled
system corresponds to the dynamic responses of the original nonlinear system, the dynamic
responses are compared between the two systems computed using the Monte Carlo method.
As per Equation (16), 1000 seismic excitations were randomly generated, each lasting 200 s.
The parameters for the stochastic excitation sample include N = 10,000, ω1 = 0 Hz, and
ωn = 100.0 Hz. The peak acceleration of the stochastic excitation is set at 1 m/s2.

Figure 3 depicts the root mean squares (RMSs) of the primary structural displacements,
where rx represents the RMSs of the structural displacements for 1000 stochastic excitations.
From Figure 3, it is evident that the RMSs of the dynamic responses of the structure align
closely for both calculation methods. The maximum relative error (rx) between the two
systems amounts to 0.7%. The peak structural displacements are presented in Figure 4,
where xmax denotes the peak structural displacement at each time. The maximum relative
error (xmax) between the two systems is as low as 1.7%. Figure 5 displays the variances in
the displacements, where σ2

x represents the variance in the structure’s displacement. The
results of the dynamic responses calculated using the equivalent linearization model show
remarkable agreement with those of the original nonlinear system, with the maximum
relative errors of σ2

x between the two systems being just 1.15%. In Figures 3–5, the statistical
calculation results of the equivalent linearization model demonstrate high accuracy.

For further verification of the accuracy of the equivalent linearization of nonlinear
systems, comparisons were made between the dynamic responses of the two systems
subjected to 16 seismic excitations across four site categories. In accordance with the
standards in [59], 16 seismic records were selected, with their peak ground acceleration
(PGA) uniformly established at 1 m/s2, as detailed in Table 2.
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Figure 4. Peak structural displacements versus time.
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Figure 5. Variances in the structural displacements versus time.

Table 2. Earthquake records.

Site Classification Earthquake Name Year Station Name Magnitude

I

Northern Calif-07 1975 Cape Mendocino 5.2
Helena-01 1935 Carroll College 6.0

San Fernando4 1971 Castaic–Old Ridge Route 6.61
Parkfield 1966 Temblor Pre-1969 6.19

II

Kern County1 1952 Taft Lincoln School 7.36
San Fernando2 1971 Gormon–Oso Pumping Plant 6.61
Borrego Mtn. 1968 El Centro Array #9 6.63

Northern Calif-03 1954 Ferndale City Hall 6.5

III

Point Mugu 1973 Port Hueneme 5.65
San Fernando3 1971 Palmdale Fire Station 6.61

Hollister-02 1961 Hollister City Hall 5.5
Kern County3 1952 LA–Hollywood Stor FF 7.36

IV

Northern Calif-02 1952 Ferndale City Hall 5.2
Kern County2 1952 Santa Barbara Courthouse 7.36
San Fernando1 1971 Lake Hughes #1 6.61
Kern County4 1952 Pasadena–CIT Athenaeum 7.36

Figure 6 displays the seismic responses of the structure equipped with an NSBD for
various earthquakes. Table 3 details the peak structural displacements with an NSBD
for 16 varied earthquakes. In all the calculations, a mass ratio of 0.02 is assumed for the
NSBD. As demonstrated in these figures, there is a close match between the two systems.
Table 3 indicates that the relative error in the seismic responses for various earthquakes
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remains below 4.5%. The simulation results suggest that the equivalent linearization
system equipped with an NSBD exhibits high accuracy. Consequently, the consistency of
the calculation results confirms the accuracy of the equivalent linearization system.
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Table 3. Seismic responses of the primary structure with an NSBD for various earthquakes.

Earthquake
Peak Displacement (cm)

Nonlinearity Equivalent Linearity Relative Error (%)

Northern Calif-07 0.144 0.149 3.0
Helena-01 0.512 0.5099 0.4

San Fernando4 0.6856 0.703 2.5
Parkfield 0.8458 0.8707 3.0

Kern County1 2.158 2.118 1.85
San Fernando2 2.157 2.123 1.6
Borrego Mtn. 4.904 4.783 2.5

Northern Calif-03 4.919 5.018 2
Point Mugu 6.6 6.518 1.24

San Fernando3 6.846 6.631 3.1
Hollister-02 6.761 6.737 0.3

Kern County3 7.13 6.833 4.2
Northern Calif-02 7.704 7.511 2.5

Kern County2 7.999 7.87 1.6
San Fernando1 8.461 8.253 2.5
Kern County4 11.1 11.5 3.5

To explore the influence of the excitation amplitude on the equivalent linearization
accuracy of the negative stiffness bistable damper (NSBD), the equivalent linearization
results of the structure equipped with a damper for different PGA values are calculated.
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As shown in Figure 7, with the increase in the PGA value, the structural displacement
responses of the equivalent linearization system and the original nonlinear system are less
consistent, which shows that the excitation amplitude becomes an important limiting factor
for the negative stiffness bistable structure.
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4. Optimal Design of the NSBD

The design parameters of the NSBD, such as negative stiffness, cubic stiffness, and
damping, have substantial impacts on its vibration suppression. Thus, for the effective
enhancement of the NSBD’s damping effect, the optimization of the design parameters is
necessary. In this study, the ELM and GA are employed to optimally design a damped tall
building equipped with an NSBD, using the H∞ norm as the objective function.

4.1. Control Equations of a Tall Building Installed with an NSBD

As depicted in Figure 8, a mathematical model of a tall building controlled by an
NSBD is chosen for the vibration control analysis example. The tall building has a total
height of 162.15 m and a 49-story framed shear-wall structure. To simplify the numerical
analysis, this building is simplified as a benchmark model [60] for the calculations. These
49 degrees of freedom represent the lateral displacement of each layer, and the structural
damping is taken as 0.05. The first three natural frequencies of the tall building are 0.32 Hz,
0.84 Hz, and 1.33 Hz. In Figure 8b, mi, ki, and ci are the ith floor’s mass, stiffness, and
damping of the tall building, respectively. As shown in Figure 8b, an NSBD is mounted on
the top floor of the primary structure.
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The control equations of the primary structure with an NSBD are presented in
Equation (17), following the derivation outlined in Section 3.1.[

Ms 049×1
01×49 ms

]{ ..
x
..
xs

}
+

[
Cs 049×1

01×49 0

]{ .
x
.
xs

}
+

[
Ks 049×1

01×49 0

]{
x
xs

}
+ Q1 =

{
−MsP

..
xg

0

}
(17)

Q1 =


048×1

ms
..
x49 + 3kc(x49 − xs)

3

3kc(xs − x49)
3

 (18)

where Ms, Cs, and Ks represent the mass, damping, and stiffness matrices of the primary
structure, respectively. Additionally,

..
x,

.
x, and x denote the acceleration, velocity, and

displacement vectors of the primary structure, respectively, and P symbolizes the location
vector of the seismic excitation.

4.2. Equivalent Linearization of NSBD–Structure System

Optimizing the NSBD–structure system with the H∞ norm precludes the direct acquisi-
tion of the coupled structure’s transfer function owing to the damper’s unique nonlinearity.
Consequently, the initial linearization of the coupled structure via the ELM is essential. The
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kinematic equations for the NSBD–structure system’s equivalent linearization, formulated
using the ELM, are presented in Equation (19).

Mt
..
X + Ct

.
X + (Kt + Ke)X = −MtP

..
xg (19)

where

Mt =

[
Ms 049×1

01×49 m2

]
, Ct =

[
Cs 049×1

01×49 0

]
, Kt =

[
Ks 049×1

01×49 0

]
, and

Ke =

048×48 048×2
3kc(E(x2

49)− 2E(x49xs) + E(x2
s )) −3kc(E(x2

49)− 2E(x49xs) + E(x2
s ))

02×48 −3kc(E(x2
49)− 2E(x49xs) + E(x2

s )) 3kc(E(x2
49)− 2E(x49xs) + E(x2

s ))

 (20)

where kc represents the cubic stiffness coefficient.
By building Simulink models in MATLAB(R2020a), the dynamic equations of the main

structures with and without the NSBD are analyzed and solved, and the top displacement
responses of the main structure under the two working conditions are calculated separately.
Figure 9 depicts the top displacement responses of the primary structures, while Figure 10
presents the structures’ displacement envelope diagrams. The PGA of the earthquake is
adjusted to 1.5 m/s2, and the NSBD’s mass ratio is maintained at 0.02.
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4.3. H∞ Norm of the NSBD–Tall Building System

Minimizing the peak response of the structure is important in the vibration control
of tall buildings. The H∞ norm [61,62], a prevalent indicator, is extensively used in
optimizing damper designs. A key advantage for applying the H∞ norm to linear systems
is the achievement of the desired results independently of specific excitations. Herein,
the H∞ norm is defined as the peak value of the maximum singular value within the
frequency domain of the structure. Consequently, a lower H∞ norm suggests the reduced
vibration response and output energy of the structure. Thus, the H∞ norm can serve
as the main objective function for optimizing parameters that influence the structure’s
vibration reduction.

The governing equations of the NSBD–tall building system can be replaced by Equation (21).

M
..
X + C

.
X + KX = −MtP

..
xg (21)

where M = Mt, C = Ct, and K = Kt + Ke.
The state space of Equation (21) is expressed as

.
z =

∼
Az +

∼
Bw

y =
∼
Cz +

∼
Dw

(22)

where
.
z represents the state vector of the system, y is the output vector of the system, and

z =

[
X
.

X

]
, w = −P

..
xg,

∼
A =

[
0 I

−M−1K −M−1C

]
,
∼
B =

[
0
P

]
,
∼
C =

[
I 0

]
, and

∼
D = 0 (23)

The transfer function of Equation (22) is

G(s) =
∼
C(sI − A)−1∼B +

∼
D (24)

The mathematical expression of the H∞ norm is shown as Equation (25) [63].

∥G(s)∥∞ = sup
∥w∥2 ̸=0

∥y∥2
∥w∥2

= sup
∥w∥2=1

∥y∥2 (25)

where y represents the system’s output, w represents the seismic input, and ∥y∥2 and
∥w∥2 are defined as their L2 norms, symbolizing the system’s output energy and the
earthquake’s energy, respectively. From this derivation, it becomes evident that the NSBD–
structure system’s output energy diminishes as H∞ norm decreases; thus, achieving the
minimum value of H∞ ensures the optimal damping effect of the NSBD. Furthermore,
considering the specific spectral characteristics of the seismic excitation, this study employs
the Kanai–Tajimi response spectrum to measure the input seismic excitation.

4.4. General Optimization Procedure

The genetic algorithm (GA) [64–66], mimicking natural selection and genetic mecha-
nisms of evolution, serves as a method for finding optimal solutions by simulating these
evolutionary processes. This technique operates directly on structural objects, uncon-
strained by differentiation or functional continuity; it exhibits inherent parallelism and
superior global optimization capabilities. Utilizing probabilistic optimization methods, this
approach allows for the automatic acquisition and guidance of the optimized search space,
facilitating the adaptive adjustment of the search direction. The specific steps to optimize
NSBD parameters via the GA include the following:

Step 1: Identify the variables and their optimization ranges; in this case, the key
variables include negative stiffness, cubic stiffness, and damping;

Step 2: Choose the optimization model and functions;
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Step 3: Establish the chromosome encoding and decoding methods;
Step 4: Set quantitative evaluation criteria for the fitness;
Step 5: Define the parameters of the GA; for this optimization, these include 200

iterations, a population size of 100, and crossover and mutation probabilities of 0.7 and
0.03, respectively;

Step 6: Compute the global optimal solution, which, in this case, involves determining
the optimal parameters of the NSBD.

To prevent settling for a local optimal solution, it is crucial to establish the feasible
range of optimization parameters based on linear dampers’ design principles prior to
the computation.

4.5. Numerical Analysis

The primary goal of this optimization endeavor is to minimize the H∞ norm associated
with the top floor’s displacement. The optimization parameters for the NSBD comprise
negative stiffness, cubic stiffness, and damping.

(1) The range of negative stiffness values for the NSBD is set between −9 × 106 and
−1 × 106;

(2) The cubic stiffness of the NSBD varies from 2 × 1010 to 3 × 1010;
(3) The damping for the NSBD falls within the range from 0 to 1,716,100.

The convergence trajectory of the H∞ norm is depicted in Figure 11. Initially, the H∞
norm stands at 5.8, but after 100 generations, it converges to 2.4. The optimal parameters
obtained through the optimization calculations are as follows: the negative stiffness value
is −2.663 × 106 N/s, the cubic stiffness is 6.5045 × 1010 N/m3, and the damping is
211,485.3 N·s/m.
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For assessing the accuracy of the optimized design, in this section, we calculate and
compare the displacement responses of tall building structures with and without the NSBD,
focusing on the top floor’s displacements. The top floor’s displacement histories for the
primary structures with and without dampers are illustrated in Figure 12. It is noted from
Figure 13 that the suppression of the peak displacement by the NSBD is apparent at the
first-order frequency of the tall building. The peak displacement and vibration reduction
ratios for the top floor for various seismic excitations are detailed in Table 4. In these
calculations, the peak ground acceleration (PGA) is set at 1.5 m/s2, and the NSBD’s mass
ratio remains at 0.02. Having determined all the NSBD’s parameters through the proposed
optimization methods, it is evident that the top floor of the tall building equipped with
the NSBD undergoes significant vibration mitigation for various seismic excitations. The
NSBD exhibits its most effective damping for the Hollister-02 earthquake, achieving a
displacement mitigation ratio of 52.99%. Furthermore, the vibration mitigation ratios of the
NSBD exceed 22% for all the selected earthquakes. Figure 12 illustrates that when the PGA
value in the simulation calculation is less than 0.15 g, the displacement response of the top
floor of the structure does not exceed 1.0 m, and the same is also reflected in Table 4. The
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calculation results show that when the PGA value is less than 0.15 g, the negative stiffness
bistable structure has a good damping effect.
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Table 4. Peak displacements of the primary structures for various seismic excitations.

Earthquake
Peak Displacement (cm) Vibration Mitigation

Ratio (%)Uncontrolled With Optimal NSBD

Northern Calif-07 2.151 1.273 40.82
Helena-01 4.073 4.487 38.94

San Fernando4 3.528 2.130 39.63
Parkfield 4.229 3.065 27.52

Kern County1 13.184 6.672 49.39
San Fernando2 20.51 12.64 38.37
Borrego Mtn. 24.75 17.42 29.62

Northern Calif-03 24.48 16.57 32.29
Point Mugu 43.94 26.49 39.71

San Fernando3 54.90 35.42 35.48
Hollister-02 47.33 22.25 52.99

Kern County3 55.64 35.45 36.29
Northern Calif-02 93.18 71.97 22.76

Kern County2 99.00 69.68 29.62
San Fernando1 84.77 57.23 32.49
Kern County4 96.61 51.59 46.60

The numerical simulation results suggest that the NSBD effectively controls the top
floor’s displacement in tall building structures for diverse seismic excitations, demon-
strating that the NSBD parameters, derived from the proposed optimization method, are
highly effective in vibration reduction. The vibration mitigation ratio (w) is calculated using
Equation (26).

w =
m0

m1
× 100% (26)

where m0 and m1 denote the maximum displacements at the top of the structures with and
without the NSBD, respectively.

5. Conclusions

This paper introduces a robust method employing the ELM and GA for optimizing
NSBD parameters. The efficacy of this approach is evaluated by applying the optimized
NSBD to a tall building and assessing the displacement of the tall building for various
seismic excitations. The most important findings from the numerical simulations are
summarized below:

1. Utilizing the Monte Carlo simulation calculation method, the maximum root-mean-
square error for applying the nonlinear NSBD and equivalent linear dampers to the
structure is 0.7%, the maximum peak displacement error is 1.7%, and the maximum
displacement variance error in the structure is 1.15%. The dynamic responses calcu-
lated using the equivalent linearization model show remarkable agreement with those
of the original nonlinear system;

2. According to the pseudo-excitation method (PEM), the simulation results suggest
that the displacement response’s error in the structure will not exceed 4.5% when the
building is equipped with the nonlinear NSBD and equivalent linear dampers for
different earthquakes. The NSBD can be approximated by a linear system with the
help of the ELM, which can be vital for the NSBD’s optimal design, as demonstrated
by these simulation calculations;

3. As a main objective function, the H∞ norm serves as a very precise method for
optimizing parameters that influence the structure’s vibration reduction. The genetic
algorithm (GA) is perfectly suitable for obtaining the design parameters of the NSBD
within an appropriate range. After 100 generations, the H∞ norm converges to
2.4, indicating that the genetic algorithm can simulate and calculate optimization
parameters very accurately and quickly;
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4. The displacement responses of the tall buildings with and without an NSBD are simu-
lated utilizing the optimized parameters solved through the GA. The best damping
for the Hollister-02 earthquake can achieve a displacement mitigation ratio of 52.99%,
and the vibration mitigation ratios of the NSBD exceed 22% for all the selected earth-
quakes. The simulation results suggest that the effective restraint of the structural
vibration for different earthquakes can be achieved using the NSBD with the optimal
parameters. The proposed method is effective in implementing the optimal design of
the NSBD.

There are also some limitations that warrant further investigation and research. This
paper focuses solely on optimizing the design analysis for nonlinear NSBDs through nu-
merical simulation calculations. In our future work, detailed experiments will be conducted
to verify the accuracy and rationality of the obtained optimized design parameters. Further-
more, the design of the NSBD for high-rise structural vibration reduction control adopts a
distributed layout, achieving multi-modal vibration reduction control, which will also be
studied in future work.
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