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Abstract: The primary motivation of this study is to develop a compound intensity measure (IM)
to evaluate ground motion damage potential based on principal component analysis (PCA) and
canonical correlation analysis (CCA). To illustrate this, this study examines the correlation among
intragroup IMs and intergroup IMs, as well as the correlation between various IMs and response
variables. A compound IM, which can be obtained by a linear combination of ten IMs in the log-scale,
is utilized to measure the ground motion damage potential. Elastoplastic, bilinear and hysteretic
models are utilized to determine peak deformation and hysteretic energy as the response variables of
Single-Degree-of-Freedom (SDOF) systems. On the basis of the SDOF systems, the overall structural
damage index is obtained by a nonlinear time–history analysis for two reinforced concrete moment
frame systems. It is clear that the developed compound IM shows significantly high-level correlation
with structural response. The better the correlations, the more one can measure the earthquake
damage potential. A single IM alone inadequately characterizes structural damage, highlighting the
necessity of multiple IMs to estimate the possibility of structural damage.

Keywords: ground motion damage potential; intensity measures; correlation coefficient; principal
component analysis; canonical correlation analysis

1. Introduction

Performance-based earthquake engineering involves four stages: hazard analysis,
structural analysis, damage analysis and loss analysis. The utilization of IMs as a link
between seismic hazard, structural and damage analysis has introduced significant un-
certainties [1]. The seismic assessment of structures employs various IMs to estimate the
demands induced by earthquakes. An evaluation of these adopted IMs is needed due to
the uncertainties associated with those estimated by Giovenale et al. [2]. In order to capture
the characterization of ground motions, various IMs are often considered to assess the
severity of ground motions [3,4] and characterize the ground motion damage potential [5].
IMs are also employed for scaling the ground motion records, as demonstrated by Kurama
and Farrow [6] and Akkar and Özen [7]. Consequently, the choice and classification of IMs
assume a crucial role in the field of seismic design and analysis.

First-class IMs can be derived from acceleration time histories to characterize ground
motion features [8], such as Peak Ground Acceleration (PGA), Peak Ground Velocity (PGV),
Peak Ground Displacement (PGD) and so on. PGA and PGV are often employed as IMs
for fragility analysis, such as in the study of Akkar et al. [9]. Other IMs describe the time
histories obtained by using the structure-specific parameters, such as spectral acceleration
(Sa), spectral velocity (Sv), spectral displacement (Sd) and so on. Sa has been widely used
in incremental dynamic analysis (IDA) and hazard analysis. Traditional IMs containing
PGA or Sa(T1) may exhibit substantial record-to-record variability by forcing the histories
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of many records to achieve structural response [10]. However, Sa(T1) is more effective
than PGA, as it better captures differences from record to record, elucidating structural
seismic damage. Recent studies have demonstrated that Sa(T1) may not be particularly
efficient or sufficient for near-source ground motions [11] or certain for some long-period
structures [12]. Sa(T1) does not account for stiffness and strength degradation affected
by inelastic lengthening of the period under earthquake ground motions [13]. Sa,avg(T1,
. . . , Tn) is identified as the optimal IM to predict inelastic structural response and account
for the degrading behavior for Multi-Degree-of-Freedom (MDOF) systems with long pe-
riods [14]. Zhou et al. [15] identified optimal IMs for predicting the damage potential of
mainshock–aftershock sequences. The optimal IMs are determined based on efficiency,
proficiency, sufficiency and robustness [14,16,17]. Various IMs suggested by Hariri-Ardebili
and Saouma [18], Kostinakis et al. [19] and Kostinakis and Athanatopoulou [20] are con-
sidered. Some IMs that are dependent on structure-specific parameters can reduce the
dispersion of the nonlinearity response experienced by buildings under ground motion.
Vector-valued IMs based on spectral shape to predict seismic fragility surfaces in reinforced
concrete buildings were proposed by Zavala et al. [21]. The modified intensity measure
method was used to improve accuracy in a seismic fragility analysis [22].

The Single-Degree-of-Freedom (SDOF) system serves as the simplest model applicable
for studying the correlation between IMs and structural response in seismic analysis [23].
The IMs are categorized into acceleration-related, velocity-related and displacement-related
groups [24–28], with a majority exhibiting high correlation among them. SDOF systems are
employed as study objects to quantitatively elucidate the correlation between intragroup
IMs and intergroup IMs, as well as the correlation between various IMs and response
variables. The intragroup IM correlations are the correlation of acceleration-related, the
correlation of velocity-related, or the correlation of displacement-related IMs. The inter-
group IMs correlations are the correlation between acceleration-related and velocity-related,
the correlation between velocity-related and displacement-related, or the correlation be-
tween displacement-related and acceleration-related IMs. However, an individual IM alone
cannot encapsulate sufficient information about ground motion due to the randomness
of earthquake ground motion and the complex mechanisms of structural damage. The
earthquake damage potential refers to the likelihood of structural damage under ground
motion, and the severity of earthquake damage is linked to the IMs. Various IMs are
employed to characterize the ground motion damage potential. Zhai et al. [29] proposed
a comprehensive method for estimating the damage potential of ground motions, which
accounts for the correlation between IMs and response variables to select IMs describing
earthquake damage potential based on experience. Building on this study, Zhai et al. [30]
introduced a vector-valued IM to quantitatively reflect the damage potential of earthquake
ground motion. However, this approach is dependent on ground motion databases and
nonlinear analysis results. Subsequently, hybrid IMs were developed by Ozmen [31] to
measure the damage potential of ground motion. Chen et al. [32] adopted the composite
IM to select the severest input ground motion for underground structures by the rank
method. Liu et al. [33] proposed a compound IM by a partial least square regression model,
which evaluated the compound IM based on probabilistic seismic demand analysis. Ex-
ploratory factor analysis has been proposed for developing a compound IM incorporating
the contributions of multiple IMs for predicting the potential damage of ground motion [34].
Chen et al. [35] assessed the damage potential of the ground motion of a tunnel by canonical
correlation analysis.

As stated previously, the IMs exhibit correlations among themselves, leading to
collinearity issues in multivariate regression models [36]. The diversity in measuring
earthquake damage potential is highly dependent on the IMs in order to better capture
the strength of the earthquake on a specific structure. The methods of PCA and CCA are
employed to mitigate the collinearity problem by reducing the dimensionality of numerous
interrelated IMs while retaining as much information as possible from the ground motion
database [37]. Many researchers have attempted to focus on artificial neural network and
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support vector machine methods to develop a new compound IM. However, a potential
drawback of the artificial neural network is that it is time consuming, and the support vec-
tor machine is strongly dependent on the types of kernel functions. Unlike the past studies,
no optimization algorithm is required in the PCA and CCA, avoiding the dependence on
the optimization methods. This paper utilizes 10 IMs to quantify the potential for structural
damage. The selected IMs cover a wide range of earthquake characteristics with respect
to the peak intensities, mean-square intensities, the spectral intensity and the potential
destructiveness, incorporating the frequency content of ground motions. The foundational
concept of the PCA has motivated subsequent work, employing the method of CCA to
study the relationship between various IMs and structural responses [38].

2. Principles of PCA and CCA
2.1. Principle Component Analysis

The idea of PCA involves transforming a vector into a set of independent variables
within a new coordinate system, aiming to preserve the maximum information from
the original variables [37]. The method seeks linear combinations with large variance,
and the coefficients of these combinations are determined by the eigenvectors of the
covariance matrix.

Suppose x = (X1, X2, · · · , Xp)
T are the random variables, and the main step is to

search a linear function, namely
aT

1 x = α11X1 + α12X2 + · · ·+ α1pXp
aT

2 x = α21X1 + α22X2 + · · ·+ α2pXp
...
aT

k x = αk1X1 + αk2X2 + · · ·+ αkpXp

(1)

where aT
2 x is uncorrelated with aT

1 x, and so on, and aT
k x has a maximum variance subject to

being uncorrelated with aT
1 x, aT

2 x, · · · , aT
k−1x.

The covariance matrix of x is Cov(x) = E[(x − E(x))(x − E(x))T] ≜ Σ. In a realistic
case, Σ is unknown, and its estimation is followed by a sample covariance matrix. The
principal components are solved and correspond to the eigenvalue and eigenvector of Σ in

the multivariate statistical analysis. The eigenvector of Σ, that is, ek =
(

ek1, ek2, · · · , ekp

)T
,

has a unit length corresponding to its kth largest eigenvalue λk; therefore, the kth PC is
given by

Yk = eT
k x = ek1X1 + ek2X2 + · · ·+ ekpXp f or k = 1, 2, · · · , p (2)

with
Var(Yk) = eT

k Σek = λkeT
k ek = λk (3)

Cov(Yj, Yk) = eT
j Σek = λkeT

j ek = 0, j ̸= k (4)

It is defined that when a1 = e1, Var(Y1) is the largest, so that

max
aT

1 a1=1
{Var(Y1)} = Var(eT

1 x) = eT
1 Σe1 = λ1 (5)

Similarly, it is proven that when a2 = e2, Var(Y2) ≤ λ2 ≤ λ1 and Cov(Y2, Y1) = 0.
In general, most of the variation in x will be accounted for by m principal components,

where m < p, and the criterion for choosing m PCs is the cumulative percentage of total
variation exceeding 85%, defined by

αm =
m

∑
k=1

λk/
p

∑
k=1

λk (6)
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where the percentage of variation of the kth PCs is

ωk = λk/
p

∑
k=1

λk (7)

2.2. Canonical Correlation Analysis

Canonical correlation analysis serves as a tool for a multivariate statistical analysis,
with its foundational theory originally developed by Hotelling [39]. The method of CCA
lends the fundamental concept of dimension reduction with PCA. However, the method of
PCA based on the marginal covariance matrix does not account for the correlation between
two pairs of variables, and the method of CCA utilizes a joint covariance matrix to depict
the relationships between two sets by maximizing the Pearson correlation [40].

Suppose x = (X1, X2, · · · , Xp)
T and y = (Y1, Y2, · · · , Yq)

T are the random variables;
therefore, the covariance matrix of x and y is

cov
[

x
y

]
= Σ =

[
ΣXX ΣXY
ΣYX ΣYY

]
(8)

In order to study the correlation between x and y, using the idea of PCA to find the
linear combinations, we consider Ui and Vi as the comprehensive variables, namely

Ui = ai1X1 + ai2X2 + · · ·+ aipXp ≡ aTx (9)

Vi = bi1Y1 + bi2Y2 + · · ·+ biqYq ≡ bTy (10)

under the constraints
Var(aTx) = Var(bTy) = 1 (11)

Given the covariance matrix Σ of random variables x and y, searching for the vectors
a and b, to achieve the maximum correlation between the comprehensive variables Ui and
Vi, the correlation coefficient is given by

ρ =
cov(Ui, Vi)√

Var(Ui)Var(Vi)
=

cov(aTx, bTy)√
Var(aTx)Var(bTy

) (12)

Therefore,
ρ= cov(aTx, bTy) = aTcov(x, y)b = aTΣXYb (13)

Then, the following is defined:

T = Σ−1/2
XX ΣXYΣ−1/2

YY (14)

where λ2
1 ≥ λ2

2 ≥ · · · ≥ λ2
k are the nonzero eigenvalues of TTT and TTT, and γi and δi are

the eigenvectors corresponding to its ith eigenvalues λ2
i .

Canonical correlation vectors ai and bi are given by

ai = Σ−1/2
XX γi (15)

bi = Σ−1/2
YY δi (16)

The canonical correlation variables are defined as follows:

ui = aT
i x (17)

vi = bT
i y (18)
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with

cov(ui, uj) = aT
i ΣXXaj = γT

i γj =

{
1 i = j
0 i ̸= j

(19)

and the same is true for cov(vi, vj).
In order to solve the correlation maximization, we fix b subject to aTΣXXa = 1, i.e., the

following is solved:

max
aTΣXXa=1

(aTΣXYb)2 = max
aTΣXXa=1

(bTΣYXaaTΣXYb) = max(bTΣYXΣ−1
XXΣXYb)

= max(δTΣ−1/2
YY ΣYXΣ−1

XXΣXYΣ−1/2
YY δ) = max(δTTTTδ)

(20)

where aT
1 x and bT

1 y are the first pairs of canonical correlation variables, and so on, aT
i x and

bT
i y are the ith pairs of canonical correlation variables, hence

max
aT

i ΣXXai=1
(aT

i ΣXYbi)
2
= max(δT

i TTTδi) = λ2
i (21)

Therefore, the canonical correlation coefficients are given by

ρi = λi for i = 1, 2, · · · , k (22)

In fact, the joint covariance matrix of x and y is often unknown; therefore, we apply
the sample data to estimate the covariance matrix. In addition, in order to eliminate the
influence of dimension, it is important to standardize the original variables.

3. Selection of Ground Motions and Intensity Measures
3.1. Selection of Ground Motions

Two suites of 40 pairs of horizontal bidirectional ground motions compiled by
Baker et al. [41] for the PEER Transportation Research Program were employed as in-
put ground motions. All ground motions within these sets were obtained from the PEER
Next Generation Attenuation Project ground motion library [42]. The standardized sets of
ground motions presented by Baker et al. [41] were specifically chosen for use in the multi-
hazard probabilistic seismic demand model [43], as well as for the fragility analyses [44,45].

The ground motions considered in this study comprise two sets of broad-band ground
motions for a soil site experiencing a moderately large earthquake at small distances, as
detailed in Baker et al. [41]. These sets are designed to match the median and logarithmic
standard deviations of the response spectra of a generic earthquake in California, with one
set corresponding to a prediction for a magnitude 7 strike-slip earthquake at a distance
of 10 km and the other set corresponding to a prediction for a magnitude 6 strike-slip
earthquake at a distance of 25 km. Both sets of ground motions are characterized by an
assumed average shear wave velocity in the top 30 m of 250 m/s. Assuming that the
selected ground motion contained pulse-like motions with longer periods, more details
about the pulse-like ground motions can be found in Hosseini et al. [46].

For the nonlinear dynamic analyses, we employed two sets of 40 pairs of horizontal
bidirectional ground motions without scaling. This decision was made to avoid altering the
correlation between the IMs and structural damage, which can occur when scaling the ground
motions. The majority of correlation studies utilized unscaled accelerograms [8,44,45]. The
response spectra for the two unscaled suites of 40 pairs of horizontal bidirectional ground
motions are shown in Figure 1.
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3.2. Selection of Intensity Measures

The chosen IM should effectively capture the ground motion damage potential, and
correlation analyses between various IMs and response variables are employed to iden-
tify optimal IMs [47–50]. Riddell [27] proposed a comprehensive evaluation to assess
the effectiveness of 23 IMs, as detailed in Liu et al. [38]. These IMs are categorized into
acceleration-related, velocity-related, and displacement-related indices, following the clas-
sification by Chopra [51]. The results indicated that no single IM exhibits a good correlation
over the entire frequency range. On the basis of the previous study, the concept of combi-
nation IMs was introduced by Ozmen [31] and Morfidis and Kostinakis [52]. Ghotbi and
Taciroglu [53] selected the ground motion based on a multi-intensity-measure conditioning
approach with an emphasis on diverse earthquake contents.

In light of the aforementioned discussions, the methods of PCA and CCA are devel-
oped to identify compound IMs that exhibit a high correlation with structural damage.
The CCA utilizes the key concept of dimension reduction from the PCA to select IMs
extracted from the 23 IMs. It is noteworthy that not all the IMs are utilized to develop the
compound IM due to the possible overlap of information. Increasing the number of IMs in
the developed compound IM can naturally improve the predictive capacity of earthquake
damage potential. However, the growing complexity of a compound IM may lead to the
problem of overfitting.

3.3. Analysis of Correlation between IMs

This paper utilizes 23 IMs compiled by Riddell [27] from the existing literature to
assess the correlation among them on a logarithmic scale. Figure 2 illustrates the correlation
coefficient matrix. Some IMs are excluded, such as asq, ars, arms, vrs, vrms, drs and drms,
because the correlation coefficients between IA, asq and ars are nearly 1 in log-scale, and the
same for Pa and arms, vsq and vrs, Pv and vrms, dsq and drs and Pd and drms. The results from
Figure 2 show that the intragroup IMs present high correlation among them. In general,
the acceleration-related indices include PGA and Ia, and Pa and Ic have high correlation,
as the correlation coefficients are above 0.95 and 0.92, respectively. The velocity-related
indices PGV and IF, vsq and Pv, vsq and IF, vsq and Iv and IF and Iv have high correlation,
as the correlation coefficients are above 0.97, 0.93, 0.91, 0.92 and 0.97, respectively; the
displacement-related indices are highly correlated among themselves. Finally, the results
reveal that the intergroup IMs exhibit low correlation. Specifically, the correlation between
the acceleration-related indices and both velocity-related and displacement-related indices
is weak. However, the correlation coefficient between the velocity-related indices and
displacement-related indices consistently exceeds 0.5. Comparing Figure 2a and Figure 2b,
no matter how the ground motion changes, the fact that the intragroup IMs present high
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correlation and the intergroup IMs exhibit low correlation will not change. These results
align with those presented in the literature by Riddell et al. [27] and Narasimhan and
Wang et al. [36].
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Figure 2. The correlation coefficient matrix of IMs: (a) set #1A; (b) set #1B.
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4. Evaluation of Damage Potential of SDOF Systems Using PCA and CCA
4.1. SDOF Systems

The open-source finite-element software OpenSEES has been developed for earthquake
engineering. OpenSEES 3.3.0 was employed to construct SDOF systems and conduct
nonlinear dynamic analyses. Elastoplastic, bilinear and hysteretic models are utilized to
determine peak deformation and hysteretic energy as demand measures (DMs) for the
SDOF systems. For the SDOF systems implemented in OpenSEES, the Elastic-Perfectly
Plastic material, the Steel01 material and hysteretic materials were adopted, as illustrated
in Figure 3.
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Figure 3. The hysteretic models of SDOF systems based on OpenSEES: (a) Elastic-Perfectly Plastic
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Hysteretic materials incorporating both strength and stiffness deterioration were cate-
gorized into two models, one considering the pinching effect and the other not considering
it. To enhance practicality, four SDOF models were developed utilizing elastoplastic, bilin-
ear and hysteretic materials, as outlined in Table 1. The material characteristics for these
models in OpenSEES are presented in Table 1.
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Table 1. Four SDOF models and the corresponding material characteristics in OpenSEES.

The Model Material The Parameters of Material Characteristics

Model 1 EPP k0 is the elastic tangential stiffness
εp is the yield displacement

Model 2 Steel01
Fy is the yield force

k0 is the elastic tangential stiffness
b = 0.05 is the strain hardening ratio

Model 3 Hysteretic

ε1p, σ1p are the yield displacement and force
ε2p, σ2p are the strain hardening displacement and force

ε1n, σ1n are the negative of ε1p, σ1p
ε2n, σ2n are the negative of ε2p, σ2p

does not consider the pinching effect
the pinching factor for deformation and force during reloading are set to 1

Model 4 Hysteretic

the parameters are the same as Model 3
considers the pinching effect

the pinching factor for deformation and force during reloading are set to
0.8 and 0.2, respectively

The critical damping is assumed to be 5 percent for the computations in the nonlinear
dynamic analysis. The fundamental periods of the 25 SDOF systems are varied from 0.1 s
to 6 s at different intervals. The strength reduction factor R is predetermined at values of 2,
3, 4 and 5 for the elastoplastic systems. For each SDOF system, the yield strength of the
hysteretic loop is varied at four strength reduction levels by dividing the elastic spectral
strength by each of the yield strength reduction factors. Consequently, a total of 400 non-
linear SDOF systems (4 kinds of hysteretic models × 25 vibration periods × 4 strength
reduction levels) are subjected to the selected 160 ground motion records, and 64,000
(160 × 400 = 64,000) runs of nonlinear dynamic analyses are conducted by OpenSEES.

4.2. Analysis of Correlation between IMs and DMs

As previously mentioned, two subsets designated as set #1A and set #1B are employed
for validating the correlation analysis. In this investigation, set #1A is utilized as the
input ground motions. Model 1 is selected as the benchmark model at R = 2, with peak
deformation umax and the hysteretic energy EH serving as the response variables for the
SDOF systems. According to existing research, there is a high linear correlation between
seismic intensity and structural damage in logarithmic space. To accurately measure for the
damage potential of ground motions, this paper performs a logarithmic transformation on
the seismic intensity measures and structural damage. The Pearson correlation coefficients
between the IMs of database set #1A and the DMs of the benchmark model in a logarithmic
scale are shown in Figures 4 and 5. It is worth noting that IA, asq and ars have the same
correlation as the DMs in the log-scale, and so also the same as Pa and arms, vsq and vrs, Pv
and vrms, dsq and drs and Pd and drms. Therefore, asq, ars, arms, vrs, vrms, drs and drms are
excluded. Similar results pertaining to set #1B and other models are omitted for brevity
and clarity.
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Figure 4. Relationships between lnIMs and lnumax: (a) acceleration-related indices; (b) velocity-related
indices; (c) displacement-related indices.

Buildings 2024, 14, x FOR PEER REVIEW 10 of 24 
 

linear SDOF systems (4 kinds of hysteretic models × 25 vibration periods × 4 strength re-
duction levels) are subjected to the selected 160 ground motion records, and 64,000 (160 × 
400 = 64,000) runs of nonlinear dynamic analyses are conducted by OpenSEES. 

4.2. Analysis of Correlation between IMs and DMs 
As previously mentioned, two subsets designated as set #1A and set #1B are em-

ployed for validating the correlation analysis. In this investigation, set #1A is utilized as 
the input ground motions. Model 1 is selected as the benchmark model at R = 2, with peak 
deformation umax and the hysteretic energy EH serving as the response variables for the 
SDOF systems. According to existing research, there is a high linear correlation between 
seismic intensity and structural damage in logarithmic space. To accurately measure for 
the damage potential of ground motions, this paper performs a logarithmic transfor-
mation on the seismic intensity measures and structural damage. The Pearson correlation 
coefficients between the IMs of database set #1A and the DMs of the benchmark model in 
a logarithmic scale are shown in Figures 4 and 5. It is worth noting that AI , sqa  and rsa  

have the same correlation as the DMs in the log-scale, and so also the same as aP  and 

rmsa , sqv  and rsv , vP  and rmsv , sqd  and rsd  and dP  and rmsd . Therefore, sqa , rsa , 

rmsa , rsv , rmsv , rsd  and rmsd  are excluded. Similar results pertaining to set #1B and 
other models are omitted for brevity and clarity. 

   
(a) (b) (c) 

Figure 4. Relationships between lnIMs and lnumax: (a) acceleration-related indices; (b) velocity-re-
lated indices; (c) displacement-related indices. 

   
(a) (b) (c) 

Figure 5. Relationships between lnIMs and lnEH: (a) acceleration-related indices; (b) velocity-related 
indices; (c) displacement-related indices. 

The Tρ −  relationships presented in Figures 4 and 5 encompass the acceleration-re-
lated indices, velocity-related indices and displacement-related indices. Notably, the ac-
celeration-related indices exhibit a high correlation with the DMs within the acceleration 
region (the short period is =0-0.5sT ), and the correlation coefficient ρ  generally in-
creases with the structural period T  within the short period, decreasing ρ  for the ve-
locity region (the intermediate period is =0.5-3sT ) and the displacement region (the long 
period is 3sT > ). For the velocity-related indices, a robust correlation with the DMs is 

0 1 2 3 4 5 6
0.0

0.2

0.4

0.6

0.8

1.0
 lnPGA
 lnIA

 lnPa
 lnIc 
 lnIa 

ρ

 

T(s)
0 1 2 3 4 5 6

0.4

0.6

0.8

1.0

 lnPGV
 lnvsq

 lnPv
 lnPD

 lnIF

 lnSI
 lnIv

ρ

 

T(s)
0 1 2 3 4 5 6

0.2

0.4

0.6

0.8

1.0

 lnPGD
 lndsq

 lnPd
 lnId

ρ

 

T(s)

0 1 2 3 4 5 6
0.0

0.2

0.4

0.6

0.8

1.0
 lnPGA
 lnIA

 lnPa
 lnIc 
 lnIa 

ρ

 

T(s)
0 1 2 3 4 5 6

0.2

0.4

0.6

0.8

1.0

 lnPGV
 lnvsq

 lnPv
 lnPD

 lnIF

 lnSI
 lnIv

ρ

 

T(s)
0 1 2 3 4 5 6

0.0

0.2

0.4

0.6

0.8

1.0

 lnPGD
 lndsq

 lnPd
 lnId

ρ

 

T(s)

Figure 5. Relationships between lnIMs and lnEH: (a) acceleration-related indices; (b) velocity-related
indices; (c) displacement-related indices.

The ρ–T relationships presented in Figures 4 and 5 encompass the acceleration-related
indices, velocity-related indices and displacement-related indices. Notably, the acceleration-
related indices exhibit a high correlation with the DMs within the acceleration region
(the short period is T = 0–0.5 s), and the correlation coefficient ρ generally increases with
the structural period T within the short period, decreasing ρ for the velocity region (the
intermediate period is T = 0.5–3 s) and the displacement region (the long period is T > 3 s).
For the velocity-related indices, a robust correlation with the DMs is observed within the
intermediate period. However, this correlation diminishes with reductions in the short
and long periods. Particularly, the SI differs from other velocity-related indices, presenting
excellent correlation at T= 1 s within the intermediate period but a reduced correlation
coefficient ρ at other period ranges. The correlation of the displacement-related indices
with DMs increases as the structural period T rises, showing high correlation in the long
period, which represents the displacement region. These results align with the findings
presented in the literature by Ye et al. [54].

Based on the above discussion, it is concluded that no single IM presents a satisfactory
correlation with the DMs for all the frequency ranges. Some IMs demonstrate more
advantageous relationships with the DMs than others within specific structural period
regions. Consequently, multivariate statistical tools, i.e., the methods of PCA and CCA, are
adopted to evaluate the compound IMs.

4.3. Evaluation of Damage Potential by Analysis of Correlation between Principal Components of
IMs and DMs

Similar expressions among the IMs themselves lead to the issue of collinearity in
the method of PCA [33]. In order to avoid missing information, this study cannot se-
lect extensively overlapping information. Consequently, some candidate IMs should
be screened to determine the optimal compound IMs. Specifically, ars, vrs and drs dif-
fer only by a power from asq, vsq and dsq in the equations, respectively; arms, vrms and
drms also differ only by a power from Pa, Pv and Pd, respectively; IA is excluded since
it differs only by a constant from asq; and Ic, Ia, IF, Iv and Id are combinations of dura-
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tion and the other IMs in the logarithmic scale. As a consequence, only ten IMs remain,
IM = [PGA, ars, Pa, Ic, PGV, vsq, PD, SI, PGD, dsq], which cover a wide range of earthquake
characteristics with respect to the peak intensities, mean square intensities, the spectral inten-
sity and the potential destructiveness incorporating the frequency content of ground motions.

Subsequently, in accordance with the fundamental principles of PCA, the adoption
of x = ln IM − µln IM as the basic variable is undertaken, and the results of set #1A are
presented below. The covariance matrix Σ of x and the corresponding eigenvector matrix e
are evaluated by the following:

Σ =



0.348 0.238 0.462 0.240 0.250 0.294 0.397 0.274 0.205 0.239
0.238 0.222 0.434 0.289 0.232 0.404 0.427 0.246 0.228 0.400
0.462 0.434 1.002 0.688 0.481 0.883 0.925 0.494 0.473 0.868
0.240 0.289 0.688 0.558 0.319 0.731 0.698 0.321 0.366 0.811
0.250 0.232 0.481 0.319 0.397 0.702 0.685 0.331 0.464 0.859
0.294 0.404 0.883 0.731 0.702 1.637 1.446 0.565 0.992 2.131
0.397 0.427 0.925 0.698 0.685 1.446 1.488 0.574 0.896 1.893
0.274 0.246 0.494 0.321 0.331 0.565 0.574 0.358 0.329 0.565
0.205 0.228 0.473 0.366 0.464 0.992 0.896 0.329 0.727 1.476
0.239 0.400 0.868 0.811 0.859 2.131 1.893 0.565 1.476 3.341


(23)

e =



0.101 0.362 −0.447 −0.411 0.101 0.188 −0.390 −0.048 −0.422 0.335
0.119 0.254 −0.058 −0.129 −0.061 0.375 −0.364 0.357 0.629 −0.319
0.259 0.557 0.274 −0.271 −0.028 −0.401 0.109 −0.199 −0.141 −0.492
0.205 0.285 0.602 −0.100 −0.038 0.170 0.193 0.145 0.126 0.632
0.199 0.120 −0.357 0.119 −0.225 −0.365 0.297 0.719 −0.090 0.088
0.439 −0.039 0.147 0.519 −0.435 −0.044 −0.523 −0.098 −0.198 0.025
0.412 0.119 −0.145 0.402 0.771 −0.083 0.020 −0.070 0.150 0.063
0.159 0.261 −0.289 0.252 −0.275 0.550 0.532 −0.293 −0.043 −0.105
0.282 −0.146 −0.311 −0.253 −0.260 −0.362 0.047 −0.420 0.528 0.288
0.600 −0.543 0.096 −0.398 0.078 0.244 0.133 0.130 −0.201 −0.195


(24)

The corresponding eigenvalue of the covariance matrix Σ of x is shown in Figure 6.
To determine the number of PCs to select, the eigenvalues are examined. The criterion for
selection involves identifying the third point at which the graph approximately forms a
straight line, as illustrated in Figure 6. The results of the first three PCs are depicted in
Figure 7. The first PC accounts for a substantial proportion, amounting to 80.4% of the
total variation. The second and third PCs contribute 13.42% and 2.7% of the total variation,
respectively. Collectively, the first three PCs account for 96.52% of the variation, offering a
comprehensive representation of the total variation and retaining nearly all the information
from the original variables in x.

As stated above, the new variables resulting from the linear transformation of the first
three PCs are presented below:

ln IMPCA =
3

∑
i=1

ωiYi (25)

where ωi is the percentage of variation of the ith PCs, and Yi is the ith PCs.
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To visualize the correlation between the compound IMs and DMs, the correlation
coefficient is quantitatively expressed as follows:

ρPCA =

N
∑

i=1
(ln IMPCA,i − ln IMPCA)(ln DMi − ln DM)√

N
∑

i=1
(ln IMPCA,i − ln IMPCA)

2 N
∑

i=1
(ln DMi − ln DM)

2
(26)

where ln IMPCA and ln DM are the mean values of ln IMPCA,i and ln DMi respectively, and
N is the number of pairs of values (ln IMPCA,i, ln DMi) in the data.

The ρPCA–T relationships are presented in Figure 8. The compound IMs exhibit
advantageous correlations with DMs compared to other individual IMs, and the compound
IMs prove more adept at capturing the characteristics of ground motion. Notably, the
correlation between the compound IMs and DMs for all frequency ranges is relatively
higher and more stable than those of the singe IM. However, it is noteworthy that the
correlation coefficient undergoes changes with nonlinear analysis results, indicating that
it does not consistently maintain a high correlation. Subsequently, the evaluation of
the compound IMs for the optimal correlation with the DMs for all frequency ranges is
conducted based on the method of CCA between the IMs and DMs.
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4.4. Evaluation of Damage Potential by Analysis of Canonical Correlation between IMs and DMs

As previously mentioned, the method of CCA is implemented to determine the corre-
lation between the IMs and structural damage, quantified through the canonical correlation
coefficient. The input variables consist of ten candidate IMs. The peak deformation
umax and hysteretic energy EH are the response variables, namely DM = [umax, EH]. We
perform the canonical correlation analysis on the data matrices x = ln IM − µln IM and
y = ln DM − µln DM of the benchmark model; when the fundamental periods of the SDOF
systems are 1.0 s, the estimated covariance matrices of x and y are given by

Σ =



0.348 0.238 0.462 0.240 0.250 0.294 0.397 0.274 0.205 0.239 0.292 0.510
0.238 0.222 0.434 0.289 0.232 0.404 0.427 0.246 0.228 0.400 0.267 0.481
0.462 0.434 1.002 0.688 0.481 0.883 0.925 0.494 0.473 0.868 0.549 0.963
0.240 0.289 0.688 0.558 0.319 0.731 0.698 0.321 0.366 0.811 0.366 0.661
0.250 0.232 0.481 0.319 0.397 0.702 0.685 0.331 0.464 0.859 0.392 0.638
0.294 0.404 0.883 0.731 0.702 1.637 1.446 0.565 0.992 2.131 0.692 1.171
0.397 0.427 0.925 0.698 0.685 1.446 1.488 0.574 0.896 1.893 0.698 1.179
0.274 0.246 0.494 0.321 0.331 0.565 0.574 0.358 0.329 0.565 0.386 0.674
0.205 0.228 0.473 0.366 0.464 0.992 0.896 0.329 0.727 1.476 0.410 0.672
0.239 0.400 0.868 0.811 0.859 2.131 1.893 0.565 1.476 3.341 0.738 1.245
0.292 0.267 0.549 0.366 0.392 0.692 0.698 0.386 0.410 0.738 0.478 0.777
0.510 0.481 0.963 0.661 0.638 1.171 1.179 0.674 0.672 1.245 0.777 1.426



(27)

Now, we estimate T = Σ−1/2
XX ΣXYΣ−1/2

YY to obtain the nonzero eigenvalues of TTT

and TTT, and γi and δi are the eigenvectors of TTT and TTT, respectively. The first two
eigenvalues are

λ2
1 = 0.9284, λ2

2 = 0.2693 (28)

Then, the first canonical correlation vectors a1 and b1 are given by

a1 = Σ−1/2
XX γ1 = [−0.255, 0.066, 0.240, −0.231, −0.255, −0.166, −0.108, −1.144, 0.161, 0.027]T (29)

b1 = Σ−1/2
YY δ1 = [−0.711, −0.439]T (30)

Therefore, the first pairs of canonical correlation variables are given by

ln IMCCA =
10

∑
i=1

a1i(T)(ln IMi − µln IMi
) (31)
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ln DMCCA =
2

∑
i=1

b1i(T)(ln DMi − µln DMi
) (32)

where a1i and b1i are the canonical coefficients making up the first pairs of the canonical
correlation variable for ln IMCCA and ln DMCCA, respectively, and they are the functions
of the fundamental period T of the SDOF systems. Therefore, the first pairs of the canonical
correlation coefficient are given by

ρCCA(T) =
cov(ln IMCCA, ln DMCCA)√

Var( ln IMCCA)Var( ln DMCCA)
= λ(T) (33)

The canonical correlation coefficient of the 25 SDOF systems corresponding to the
benchmark model under set #1A is illustrated in Figure 9. It is shown that the canonical
correlation coefficient ρCCA surpasses 0.9 for all frequency ranges, with the exception of
T= 0.1 s. Scatter plots illustrating the correlation between the natural logarithms of the
IMs and DMs are presented in Figure 10. It illustrates that ln IMCCA presents excellent
correlation with ln DMCCA at the acceleration region (T= 0.2 s), the velocity region (T= 1 s)
and the displacement region (T= 5 s), where ρCCA is 0.945, 0.964 and 0.963, respectively.
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Figure 9. Relationships of benchmark model under set #1A.
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Figure 10. Canonical correlation analysis between lnIMs and lnDMs: (a) T = 0.2 s; (b) T = 1.0 s;
(c) T = 5.0 s.

As previously mentioned, the canonical correlation coefficient ρCCA undergoes changes
with the canonical coefficients. In order to examine the influence of canonical coefficients,
Figure 11 displays the canonical coefficients of the benchmark model derived from the
input variables and the response variables. The results show that the canonical coefficients
of ln ars, ln vsq and ln SI have larger changes over the entire frequency range and are control
variables of canonical correlation variables ln IMCCA. It can be seen that the canonical
coefficients of ln umax decrease with ln EH increasing at 0.1–6 s, and vice versa.
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Figure 11. The canonical correlation vectors: (a) lnIMs; (b) lnDMs.

4.5. The Effect of Canonical Correlation Analysis

Nine conditions are established based on different models, R values and ground
motions, as indicated in Table 2. Cases 1–4 represent variations in R for Model 1 within
database set #1B. Cases 5–7 illustrate different models at R = 2 within database set 1#B.
Cases 8–9 show different ground motions at R = 5 for Model 4.

Table 2. Number of conditions of different models at different R under different ground motions.

Conditions GMs R The Model Number

Case 1 set #1B 2 Model 1
Case 2 set #1B 3 Model 1
Case 3 set #1B 4 Model 1
Case 4 set #1B 5 Model 1
Case 5 set #1B 2 Model 2
Case 6 set #1B 2 Model 3
Case 7 set #1B 2 Model 4
Case 8 set #1B 5 Model 4
Case 9 set #1A 5 Model 4

The effect of ρCCA–T for different models at varying R values under different ground
motions is depicted in Figure 12. It is concluded that ρCCA for all cases exceeds 0.9 for the
entire frequency region. The correlations generally increase with an increase R for the same
model at the identical period T, with marginal variations noted for different models at
R = 2. Consequently, the effect of ρCCA for different models appears to be less pronounced
compared to the different values of R. Figure 12 also demonstrates significant fluctuations
of ρCCA arising from nonlinear analysis results under different ground motions. Notably,
at R = 5 of Model 4 within database set #1A and set #1B, ρCCA surpasses 0.97 for the entire
frequency region.
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Above all, ρCCA varies concerning different models, R and ground motions. Neverthe-
less, the correlations between ln IMCCA and ln DMCCA are sufficiently high for the entire
structural period region, and the compound IM is introduced as a novel intensity measure,
rendering it available for a seismic analysis of the SDOF systems. Subsequently, the MDOF
systems are evaluated in the subsequent section to portray more intricate nonlinear analysis
results than the SDOF systems are incapable of presenting.

5. Evaluation of Damage Potential of MDOF Systems
5.1. MDOF Systems

The method of CCA was conducted to assess the relationship between the IMs and
DMs for SDOF systems. However, such analyses fall short in capturing the complexities
introduced by a more intricate nonlinear dynamic history analysis in the MDOF systems. In
this investigation, two MDOF systems, featuring four and eight stories, were individually
examined. The two-dimensional models, illustrated in Figure 13, consist of three bay frames
and were implemented by using OpenSEES. A simplified representation of the RC moment
frame system, incorporating key elements, hinges and joints, geometry and dimensions,
followed the frameworks proposed by Haselton et al. [55], Liel et al. [56] and Nasrol-
lahzadeh et al. [57]. Lumped plasticity elements were employed to capture the flexural
behavior of beams and columns. Plastic hinges at the beam and column ends constrained
the finite joint sizes, while beam–column joints were modeled with a joint shear spring.
The joint 2D element in OpenSEES effectively captured these behaviors, contributing to the
construction of a comprehensive two-dimensional beam–column joint element. Outside
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the plastic hinge region, elastic beam–column elements described the material behavior.
The building foundations were assumed to have rotational springs, utilizing zero-length
elements to simulate typical grade beam designs and soil stiffnesses. The behavior of
the rotational spring is generally defined as the trilinear backbone curve and associated
hysteretic rules with degrading strength and stiffness developed by Ibarra et al. [58]. RC
moment frame systems comprised frame structures and leaning columns interconnected
by truss elements. The destabilizing P-∆ effects were accounted for by applying gravity
loads on a leaning column in the analysis model. One important design variable is the ratio
of tributary areas for gravity and lateral loads, which is primarily affected by whether the
building is designed as a space or perimeter frame system. The fundamental periods for
the four-story and eight-story RC moment frame systems were determined to be 0.94 s and
1.8 s, respectively.

 
Figure 13. A simplified N-story model of RC moment frame system.

In order to describe the structural response, a global damage index was proposed by
Park and Ang [59]. In this study, the modified Park and Ang damage index, as developed
by Kunnath et al. [60], is employed. The general local damage measure is defined for each
element as follows:

DI =
θm − θr

θu − θr
+

β

Myθu

∫
Eh (34)

where θm is the maximum rotation; θr is the recoverable rotation at unloading; θu is the
ultimate rotation capacity; β = 0.15 is strength degrading parameter; My is the yield
moment; and Eh is the hysteretic energy.

The overall structural damage index is abbreviated to OSDI, capable of transforming
local indices into global indices through the energy weighting factor in the following formula:

OSDI =∑ (λi)Story(DIi)Story (35)

(λi)Story =

(
Ei

∑ Ei

)
Story

(36)
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where λi and Ei are the energy weighting factor and the total energy absorbed by the ith
story, respectively.

5.2. Determination of the Compound IMs for Representing the Ground Motion Damage Potential

Building upon the canonical correlation analysis of the SDOF systems, two sets of
40 pairs of horizontal bidirectional ground motions were adopted as input. The correlations
between 10 candidate IMs and the OSDI for two RC moment frame systems are presented
in Table 3. It can be seen that IMCCA exhibits a relatively high correlation with the OSDI,
and the canonical correlation coefficients are 0.900 and 0.917 with respect to four-story and
eight-story frames, respectively. These coefficients surpass those of individual candidate
IMs and IMPCA. Consequently, IMCCA is identified as the optimal IM for describing the
ground motion damage potential in this study.

Table 3. Correlation coefficients between IMs and OSDI in logarithmic scale.

Story PGA ars Pa Ic PGV vsq PD SI PGD dsq IMPCA IMCCA

four 0.716 0.827 0.800 0.784 0.873 0.837 0.833 0.896 0.804 0.756 0.836 0.900
eight 0.590 0.755 0.773 0.806 0.861 0.890 0.860 0.873 0.853 0.827 0.873 0.917

As stated previously, the method of CCA is evaluated here to identify the optimal
combinations of 10 IMs for assessing ground motion damage potential. These hybrid
parameters can fully capture the characteristic of amplitude, spectrum and duration of
the ground motion. Importantly, they exhibit a relatively stable correlation with the OSDI,
irrespective of the ground motion database or the number of stories.

Subsequently, the ground motion damage potential is quantitatively determined by
the candidate 10 IMs and the corresponding canonical coefficient:

Pj =
10

∑
i=1

ai(ln IMi,j − µln IMi,j
) (37)

where Pj is the damage potential of the jth earthquake record; ln IMi,j and µln IMi,j
are the

values of the ith lnIM of the jth ground motion record corresponding to the mean value;
and ai is the coefficient of potential measures, the value of which follows below:

ai =

{
[−0.186, 0.385, −0.150, 0.094, 0.360, −0.134, −0.070, 1.068, −0.205, 0.141]T for four-story
[−0.233, −0.391, −0.350, 0.642, 0.032, 0.178, 0.105, 0.803, 0.424, −0.247]T for eight-story

(38)

Therefore, the combined IMs exhibit a robust correlation with the OSDI, providing
insight into the ground motion damage potential with respect to four-story and eight-
story frames. Employing this approach in future studies may be achieved via improved
compound IMs for the evaluation of seismic damage by considering more new models.
Compared with the conventional methods, if a new model is considered in a further study,
then the coefficients in Equation (38) should be re-calculated. However, the presented
approach is an adaptive method, and the main conclusions will not change due to the
change in the coefficients.

6. Conclusions

This study presents the correlation between intragroup and intergroup IMs, as well as
the correlation between various IMs and DMs in an effort to identify the optimal IM for
seismic analysis. However, it is observed that no single IM exhibits satisfactory correlation
with the DMs for all frequency ranges. Therefore, the compound IMs were determined
through the methods of PCA and CCA, both of which demonstrated a high correlation with
the DMs. On the basis of the CCA, the compound IMs were utilized as potential measures
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to evaluate the damage potential of ground motions for MDOF systems. The key findings
are summarized as follows:

1. The intragroup IMs exhibit significant correlation among them in the logarithmic
scale. Specifically, the acceleration-related indices demonstrate high correlation, as
do those associated with velocity-related indices, while the displacement-related
indices are highly correlated among themselves. Conversely, the intergroup IMs
reveal low correlation, as the correlation between the acceleration-related indices with
both velocity-related indices and displacement-related indices is weak. However, it is
observed that the correlation between the velocity-related indices and displacement-
related indices demonstrates a relatively higher improvement.

2. For the SDOF systems, the acceleration-related indices (PGA, IA, Pa, Ic and Ia) demon-
strate a notable correlation with the DMs within the acceleration region (T = 0–0.5 s).
Similarly, the velocity-related indices (PGV, vsq, Pv, PD, IF, SI and Iv) exhibit a high
correlation with the DMs within the intermediate period (T = 0.5–3 s). Furthermore,
the displacement-related indices (PGD, dsq, Pd and Id) correlate significantly with the
DMs during the long period (T > 3 s).

3. The compound IM (IM = [PGA, ars, Pa, Ic, PGV, vsq, PD, SI, PGD, dsq]) determined
through the method of PCA proves to be more adept at capturing the characteristics
of ground motions. The correlation between the compound IMs and DMs for the
SDOF systems is higher and more stable for all the frequency ranges compared to
that of a single IM. This observation serves as a crucial foundation for selecting the
optimal IM in earthquake engineering research.

4. The compound IMs determined through the method of CCA exhibit a high correlation
with the DMs for the SDOF systems. Notably, the canonical coefficients of ln ars, ln vsq
and ln SI have larger changes over the entire frequency range, serving as control
variables in the canonical correlation analysis. It is observed that to enhance the
canonical correlation coefficient ρCCA, there is a decrease in the canonical coefficients
of ln umax with an increase in those of ln EH, and vice versa.

5. The canonical correlation coefficient ρCCA varies concerning different models, R values
and ground motions for the SDOF systems. Generally, it increases with an elevated R
for the same model at a given period T and shows minimal variation for the different
model at the same R. Notably, the ρCCA undergoes significant changes in the nonlinear
analysis results under different ground motions. However, it consistently remains
high for all frequency regions, irrespective of the changes applied.

6. The compound IMs determined through the method of CCA serve as potential mea-
sures for assessing the damage potential of ground motions for the MDOF systems.
The correlation of IMCCA with the OSDI surpasses that of individual candidate IMs
and IMPCA. This approach proves valuable in the selection of unfavorable ground
motions and in predicting the response of nonlinear analysis.
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Abbreviations

Abbreviation Descriptions
PCA Principal component analysis
CCA Canonical correlation analysis
IM Intensity measure
DM Demand measure
PGA Peak ground acceleration
IA Arias intensity
asq Square acceleration
ars Root square acceleration
Pa Mean square acceleration
arms Root-mean square acceleration
Ic Characteristic intensity
Ia Riddell acceleration intensity
PGV Peak ground velocity
vsq Square velocity
vrs Root square velocity
Pv Mean square velocity
vrms Root mean square velocity
PD Potential destructiveness
IF Fajfar intensity
SI Housner spectrum intensity
IV Riddell velocity intensity
PGD Peak ground displacement
dsq Square displacement
drs Root square displacement
Pd Mean square displacement
drms Root mean square displacement
Id Riddell displacement intensity
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