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Abstract: Asphalt pavements are prone to cracking in low-temperature environments, and microwave
heating (MH) can heal the cracks effectively. This research mainly investigates the different MH
effects on the self-healing properties of asphalt mixtures. With this objective, the three-point splitting
test is conducted to generate the cracks. A microwave oven is employed to heat the samples, and
a thermal camera measures the surface temperature. Results indicate that heating power and time
show a positive linear correlation with healing efficiency, and the HI of the samples can reach over
80%. The HI of the samples decreases with the heating cycle, but the sample with reasonable power
and time still has a HI higher than 70% after 5 cycles. The temperature peaks on thermal images
indicate that uneven heating exists during heating, but the heating uniformity is within an acceptable
range. The healing efficiency level (HEL) suggests that asphalt mixtures have very low inefficient
healing behavior if the heating time is below 45 s, but HEL can reach 86.14% at 700 W after 60 s.
Furthermore, although the HI of strength shows ideal results, the recovery of other crack parameters,
including stiffness, fracture energy, flexible index, and crack resistance index, are not satisfactory.

Keywords: asphalt mixture; heating time; heating power; heating cycle; crack parameters

1. Introduction

Asphalt pavements have become the primary type of road due to their driving comfort,
low noise, and short construction period [1–3]. However, the characteristics of asphalt
binder confer on the asphalt mixture a viscoelasticity behavior under specific loading
conditions with a temperature-dependent response [4,5]. This makes asphalt pavement
exhibit different distresses at different temperatures. For example, asphalt mixtures turn soft
and show more viscous properties in high-temperature environments [6,7], making them
prone to deformation and distress [8–10]. In addition to this, the low-temperature distress
of asphalt pavement is particularly noticeable, especially in the Nordic regions. Asphalt
binders tend to become brittle when the temperature is lower, causing the pavement to be
susceptible to cracking [11,12]. The temperature stress can be generated in low-temperature
environments, resulting in the formation of microcracks [13–15]. If the microcracks can not
be repaired in time, they can develop into larger cracks or even lead to structural cracks [16].
This can significantly reduce the service life of asphalt pavements and increase maintenance
costs. As a result, research in low-temperature regions, such as Finland, has focused more
on pavement cracking and repairing [17,18].

Conventional crack maintenance methods typically consist of pouring hot mix asphalt
mixtures into cracks and compacting them again [19]. This method requires asphalt
mixtures to be pre-mixed. In addition, each of the cracks needs to be grouted. This
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method could be more effective and requires significant labor to repair the cracks. In
recent studies, the self-healing properties of asphalt pavements have been investigated
to promote the repair of cracks [20,21]. The asphalt binder turns to a fluid-like state
as temperature increases; it can self-flow into cracks, seal, and partially or fully repair
them when the temperature turns back to service temperature [22–24]. Therefore, the
self-healing properties of asphalt pavements can be empowered if the binder can rapidly
reach an adequate temperature, allowing material mobility. Microwave heating (MH)
represents a valuable option for increasing the temperature of asphalt pavement due to
the advantages of rapid heating efficiency compared to other heating methods, such as
inductive heating [25,26].

In recent years, microwave heating has been applied in pavement maintenance, such
as microwave deicing, snow-melting, and healing [17,27–30]. The road can be directly
heated based on microwave heating pavement maintenance vehicles, as reported in these
papers [17,29]. Gulisano and Gallego summarized the application status of MH technology
in asphalt pavement, indicating that the heating process mainly comes from aggregates [31].
Zhang et al. investigated the link between the thermal conductivity, fatigue, and deforma-
tion properties of asphalt binders and the MH self-healing of mixtures [32]. Garcia et al.
recommended that the optimum moment to heat asphalt mixtures occurs when fatigue
life reduces by 35% [33]. In addition, many researchers tried to accelerate the self-healing
properties by adding wave-absorbing materials, such as carbon nanotubes, steel slag, and
steel fibers, to asphalt binders or mixtures [21,32,34,35]. The asphalt mixtures can also be
prefabricated as the self-healing tack coat to extend the pavement life, which was reported
in these papers [36,37].

According to the above literature review, MH has been successfully applied in asphalt
pavement rehabilitation. However, there are still a number of limitations on the self-healing
properties of asphalt mixtures by MH. First, MH is a complex multifactorial process, with
different heating times, powers, frequencies, and cycles affecting the self-healing results of
asphalt mixtures. Second, the fracture process of asphalt mixtures is similarly complex, and
previous research has focused almost exclusively on strength recovery, with fewer studies
on other fracture parameters [13,20,27,32].

Consequently, the objective of this study is to explore the multiple effects of MH on
self-healing properties, with the evaluation of these properties being conducted across
various crack parameters. For this purpose, semi-circular samples are prepared to carry out
three-point bending (3PB) tests to generate cracks in the specimens. The cracked samples
are then healed by a microwave oven at different times, powers, and cycles to investigate
the multiple effects on self-healing properties. An infrared camera is utilized to measure
the surface temperature of the asphalt mixtures with different MH factors during radiation.
Finally, the crack parameters of the samples are also compared before and after healing. The
testing results are evaluated and analyzed in three aspects: (1) the healing effect of heating
time, power, and cycle; (2) thermal transfer characteristics during microwave radiation;
and (3) crack parameter analysis before and after healing. Furthermore, conclusions can be
drawn based on the result analysis.

2. Materials and Methods
2.1. Materials

The basic materials include asphalt binders, aggregate, and fillers. The asphalt binders
used in this research are 60/80 neat binders; their physical properties meet all the require-
ments according to JTG E20 2011 [38]. The aggregate and fillers are natural limestones, and
their basic properties also meet the requirement of JTE E42 2005 [39].

2.2. Sample Preparation

All the basic materials are mixed together to prepare the Marshall samples. The asphalt
binder content is 4.9%, determined by JTG E20 2011 [38], and the filler content is 5%. An
AC-13 (asphalt concrete with an NMAS (nominal maximum aggregate size) of 13 mm)
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type of asphalt mixture sample with an air void between 3% and 5% is selected [38]; its
graduation curve is displayed in Figure 1. Then, a typical Marshall sample with a 101.6 mm
in diameter and a 63.5 mm in height is cut into semi-circular specimens. Each side of
the Marshall specimen is cut by about 6.5 mm to avoid the effect of uneven density on
the experimental results [40]. The remaining specimen is then cut in the center, and two
cylindrical specimens with the same diameter and a height of about 25 mm are obtained.
Next, each of the cylindrical specimens is cut in half to obtain two semi-circular specimens.
Finally, a 3 mm × 10 mm notch seam is prepared at the bottom center of each semi-circular
specimen to facilitate the formation of cracks; the preparation process is presented in
Figure 2. Generally, the specimen for the semi-circular bending test is prepared from rotary
compaction specimens with a diameter of 150 mm. However, due to the convenience of the
Marshall specimen preparation and the fact that smaller sizes are more convenient to place
in a microwave oven to measure the temperature, the smaller Marshall specimen is chosen
for preparing the semi-circular specimens in this study.
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2.3. Three-Point Bending Test

This test can evaluate the low-temperature crack performance of asphalt mixtures,
which is conducted via a MTS machine. Before the test, all the specimens are placed at
room temperature for 48 h to exclude the moisture effect. The semi-circular specimens are
first conditioned in a thermostatic chamber at −20 ◦C for 2 h and then placed on the testing
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frame, which is shown in Figure 3. A vertical load with a rate of 0.5 mm/min is applied to
induce the formation and propagation of a crack. The test is finished when the applied load
is lower than half of the peak load. The peak load, stress, and strain can be obtained from
the test data, and these parameters can be used for calculating fracture energy (Gf), fracture
toughness (KIC), and crack resistance index (CRI) before and after healing according to JTG
E20 2011 [38]. The stiffness can be determined from the slope of the initial phase of the
stress–strain curve.
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It should be noted that this test has some differences with the conventional semi-
circular bending (SCB) test. First, the termination condition is when the load is reduced
to half of the peak load. This can ensure that the samples are not completely destroyed
and can not be repaired, but at the same time, microcracks can be generated. Secondly, the
diameter of the samples is 100 mm, not the conventional 150 mm. This size is more suitable
for the normal microwave oven for the easy heating of the samples. The application of this
method was also used in other studies [32,41,42].

2.4. Microwave Healing Test

The damaged SCB specimens can recover their properties to a certain extent after
microwave heating due to the self-healing behavior of the mixture associated with the
mobility of the asphalt binders. The damaged SCB specimens are first placed at room
temperature to dry the water on the surface caused by low-temperature conditioning. Then,
a microwave oven with 700 W of outpower and 2.45 GHz frequency is used to perform the
heating procedure. The heating time is 60 s to avoid the excessive softening of the mixtures.
After heating, the specimens are put in a thermostatic box at room temperature for 12 h to
facilitate the repair of the cracks. This process consists of one cycle of the damage-healing
process, and a total of 5 cycles are performed in this study. The healing index can be defined
by the peak load ratio before and after healing based on the literature review, as shown
in Equation (1) [13,32]. An infrared camera is utilized to measure the temperature of the
specimens every 15 s during heating, as shown in Figure 4. The thermal images obtained
from the infrared camera can then be transferred to the temperature data to quantitatively
analyze the thermal characteristics of the asphalt mixtures. Based on previous research,
asphalt mixture can achieve excellent self-healing properties when the surface temperature
reaches 90 ◦C [32,35]. In addition, the mixtures start showing self-healing behavior when
the temperature is above the softening point of the binder. Hence, the temperature between
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this range can be considered the effective healing temperature, and the healing efficiency
level can be defined in Equation (2).

HIi =
Pi
P0

× 100% (1)

where HIi (%) is the healing index of the i th time; Pi (kN) and P0 (kN) are the peak loads of
the i and initial time.

HEL =
Ae f f ective

Atotal
× 100% (2)

where HEL (%) is the healing efficiency level; Aeffective is the surface area where the tempera-
ture is in the effective healing temperature range; Atotal is the entire area of the specimen.
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3. Results and Discussion
3.1. Healing Effect of Asphalt Mixtures

The healing properties can be evaluated based on HI, defined in Section 2.4. The
healing efficiency can be affected by multiple factors, such as heating time, heating output
power, and heating cycle. Figure 5 shows the healing efficiency of the asphalt mixtures
with different heating times. It can be found that the HI is much higher when the heating
time is longer at 120 W. The HIs of asphalt mixtures with 15 s and 30 s of heating times are
both lower than 30%; this healing level can not be considered effective based on previous
research [32]. The asphalt mixture has the potential to crack again. However, the HI
increases to above 60% when the heating time is longer than 45 s. When the output power
is 280 W, the samples with longer heating time also possess better healing properties. The
HI of the asphalt mixtures with 60 s heating time is 70.92%, which is 1.466, 1.474, and
1.25 times that of the samples with 15 s, 30 s, and 45 s heating time, respectively. When the
output power is 540 W, all the samples’ HIs are higher than 50%; this means the strength of
the mixtures can be recovered by half of the initial value. When the output power is 700 W,
the healing efficiency has a strong linear relationship with the heating time. It can be found
that the HI of asphalt mixtures with 15 s heating time is 55.59%, and the HI can increase
by 17.72%, 26.34%, and 47.91%, respectively. The lack of a significant linear relationship
between heating time and HI at the first three output powers can be attributed to the
different heating modes of the microwave oven. The microwave oven can continue to heat
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when the output power is 700 W. However, the microwave oven can heat up intermittently
when the output power is lower than 700 W, this is reported in Lou’s research [42]. Hence,
a long, continuous heating time leads to better healing efficiency. This can also be verified
in Figure 5, where the samples after 60 s of microwave radiation always have higher HI
values than the samples at other radiation times at all different output powers.
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Figure 5. HI of samples with different heating times.

The HI of the samples with different output powers is shown in Figure 6. It can be
found that the HI basically increases with the output power. When the heating time is 15 s,
the samples with 120 W output power have the lowest HI of 30.05%. HI can then increase
to 48.37%, 56.47%, and 55.59% with 280 W, 540 W, and 700 W output powers, respectively.
The samples with 120 W output power still show the lowest healing efficiency after 30 s,
which is 28.43%. The HIs of the other samples are obviously higher than in the latter case;
their HIs can increase by 69.17%, 82.51%, and 130.22% with 280 W, 540 W, and 700 W output
powers. This reveals that the healing efficiency is too low to apply microwave heating
technology when the heating power and time are both small. This finding is consistent
with the conclusions of Zhu’s work in 2020 [43]. When the heating time is above 30 s,
the healing efficiency increases. The samples with different output powers after 45 s of
radiation time show similar HI values. Their HIs are all between 50.6% and 70.23%. When
the heating time is 60 s, the samples with 700 W of output power have the highest HI of
82.23%, which is 1.26, 1.16, and 1.25 times that of the samples with 120 W, 280 W, and 540 W.
From Figure 6, it can be revealed that the higher the output power, the better the healing
efficiency is. The samples obviously can not meet the high-efficiency healing requirement
when the heating power is small (120 W) and the heating time is low (below 30 s).

Figure 7 shows the HI values of the samples with different heating powers and cycles
after 60 s radiation time. All the curves have downward trends with the heating cycles,
which suggests that the healing properties have become worse. Frequent heating can have
an aging effect on the asphalt mixtures according to the previous research basis, reducing
the viscous properties of the asphalt binders [44,45]. Besides, the softening point of the
aged binder is higher, which increases the initial healing temperature of the samples [44].
As a result, the HI of the samples decreases with the increase in the heating cycle. It can be
clearly observed that the samples with 700 W power always have the highest HI during
five cycles; they are 82.23%, 80.98%, 75.47%, 78.64%, and 74.75%, respectively. Obviously,
the samples with 120 W power have the lowest HI during five cycles, which are 60.62%,
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35.54%, 34.38, 27.62%, and 19.34%, respectively. When reaching the last heating cycle (cycle
five), the samples with 700 W can still possess a HI higher than 80%. This HI is 1.52, 2.20,
and 3.87 times that of the samples with 540 W, 280 W, and 120 W powers. Similarly, the
HI of the samples with 700 W of power and 60 s of time is higher than that of the same
samples with the same heating conditions, as reported in Zhu’s work [43]. Hence, it can
concluded that 700 W of the output power is the optimum heating power among those
adopted in this research.
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3.2. Thermal Transfer Characteristic

The self-healing mechanism is a consequence of the increased mobility of asphalt
binders at higher temperatures, allowing the material to flow into cracks and repair them
during microwave radiation [22–24]. Such a process requires that the temperatures of the
samples be higher than the softening point of the binders. The thermal images in Figure 8
demonstrate the thermal characteristics of the samples during microwave heating. The
surface temperatures of all the samples are basically the same without much difference
after 15 s. Then, temperatures are concentrated at one or multiple points on the samples.
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This part of the concentrated heat gradually spreads to the entire volume of the specimen,
thus increasing the temperature of the surrounding environment. Therefore, from Figure 8,
it can be observed that temperature peaks increase gradually in intensity, and the diffusion
area turns bigger with heating time. The reason for this uneven heating is due to the
different wave-absorbing properties of the materials in the mixtures, with better absorbing
properties of aggregate compared to binders [17,46]. Asphalt binder is a low wave-sensitive
material, while aggregates are sensitive, causing the inconsistent increase in temperature.
Besides, although there are no other additives in the mixtures, different sizes of the same
aggregate can have various microwave-heating properties, for example, Gao et al. indicated
that 4.75–9.5 mm of aggregate shows excellent wave-absorbing properties [47]. Hence, it is
necessary to investigate the heating temperature and differences to control uneven heating.
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Figure 9 shows the surface temperature of the asphalt mixtures with different powers
during microwave radiation. The temperatures of all the samples are close to 25 ◦C when
the heating time is 15 s. This condition indicates that the asphalt mixtures do not absorb
enough microwave energy to be converted into heat energy. Then, the temperatures of
the samples increase with heating time. The surface temperatures of the samples with
120 W, 280 W, 540 W, and 700 W powers can achieve 2.00, 2.42, 2.42, and 2.24 times their
initial temperatures after 60 s. In terms of heating power, the surface temperature also rises
linearly with the heating power, but it is not obvious within a short heating time (within
30 s). Temperature and power show a stepwise linear relationship when heating time is 45 s
and 60 s. The temperature-rising mechanism is the same as the previous work, and they
all show a linear relation with heating power and time, but there exist some differences in
detailed data [43].

A higher temperature makes it easier to melt the asphalt binders and heal cracks, but
the healing properties are also affected by the uniformity of the temperature distribution. If
the heating is not uniform, one part of the mixture may be too hot and cause the aging of
the binders; the temperature of the other part may be too low to heal the cracks [44,45,48].
This uneven heating can not be avoided because the mix is a heterogeneous material, so
the heating uniformity needs to be controlled within a reasonable range. Figure 10 shows
the standard deviation (St.d) of the samples after heating; this parameter allows for a
quantitative evaluation of the heating uniformity. The lower energy absorbed by the mix
makes the temperature difference smaller, resulting in a lower St.d at 15 s. Similarly, St.d
increases with the heating time, suggesting the temperature differences turn larger with a
longer heating time. The highest St.d of the samples with 120 W, 280 W, 540 W, and 700 W is
8.96 ◦C, 9.64 ◦C, 13.06 ◦C, and 19.5 ◦C occurring at 60 s. These values are considered within
a reasonable range based on the previous research [13,32,47]. In addition, the heating
uniformity deteriorates with heating time and power. It can be explained by the fact that
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the wave-sensitive material in the mixture warms up more quickly when heating power
and time are both higher.
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Figure 9. Surface temperature of the samples with different powers and times.
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Figure 10. St.d of the samples with different powers and times.

A high-temperature environment can promote the self-healing properties of the asphalt
mixtures, but excessive temperatures can also cause overheating issues and damage to
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binders. HEL can evaluate the effective healing area of the mixture based on the definition
in Section 2.4, and its result is shown in Figure 11. It can be observed that the HEL of all
the samples is 0% after 15 s of microwave heating. This indicates that the temperature
of asphalt binders is still below their softening point and keeps a solid state. The asphalt
binders can not flow into the cracks and do not possess self-healing behavior. After 30 s of
radiation, all the samples start to heal the cracks with a very low efficiency (below 20%).
From 45 s, the HEL of samples with 120 W power is much lower than that of other samples.
In addition, the HEL also begins to be linearly distributed with the heating power. The HEL
of the samples with 120 W, 280 W, 540 W, and 700 W is 41.7%, 64.42%, 80.5%, and 86.14%.
A higher power and time can achieve the highest HEL value. It should be noted that all the
HELs increase with radiation time, but HEL will decrease when more temperatures exceed
the effective healing range than enter the range. This conclusion has been identified by
these papers [13,32]. The HEL curves in Figure 11 do not show a downward trend within
60 s, suggesting that all the samples do not have overheating issues with this heating time.
In addition, the samples with 700 W of power can achieve the highest HI (82.23%) and HEL
(86.14%) after 60 s of heating time. Hence, it is recommended that the AC-13 samples be
microwave-heated at 700 W for 60 s.
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3.3. Crack Parameters of Asphalt Mixtures

The healing index in the previous research has mainly been defined by the strength
ratio of the mix before and after healing [13,32]. However, the fracture recovery of the mixes
should be evaluated in terms of different properties, and a single evaluation of strength is
limited. The highest HI of strength is noticeable in the samples with 700 W of power and
60 s of heating time after one cycle. Hence, the HI of this sample is further investigated in
this section in terms of fracture energy (Gf), fracture toughness (KIC), crack resistance index
(CRI), and stiffness. These parameters can be defined by Equations (3)–(5) and Figure 12.

G f =
W f

Aing
× 106 (3)
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FI =
G f

|m| × A (4)

CRI =
G f

Pmax
(5)

where Gf is the fracture energy (J/m2); Wf is fracture work (J), which can be obtained from
Figure 12; Aing is ligament area (mm2); FI is the flexible index; m is the absolute value of
the slope of the tangent line, which can be obtained in Figure 12; A = 0.01; CRI is the crack
resistance index (J/kN); Pmax is peak load in Figure 12.
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Figure 13 represents these crack parameters of the samples before and after healing.
The stiffness of the samples after healing is higher than that before healing. This means
that a smaller strain is required if the sample cracks again [49]. This is because microwave
healing only partially restores the mixture’s properties, making it more susceptible to
secondary cracking. The Gf of the samples before and after healing is 846.08 J/m2 and
310.01 J/m2, which only restore 36.04% of the initial Gf. Similarly, the FI of the samples
also reduces after healing, which is 33.46% of the FI before healing. The CRI of the samples
recovers more than the above parameters, at 44.56%. However, this value is still below
50%, and the samples with a CRI of 215.27 J/kN after healing are easier to crack again.
Although the strength of the samples after healing can be recovered up to 80%, the other
crack parameters also need to be considered.
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4. Conclusions

This study investigates the various effects of microwave heating on the self-healing
properties of asphalt mixtures, including heating time, power, and cycle, based on three
three-point bending tests and microwave heating technology. In addition, the surface
temperatures are recorded during microwave radiation to investigate the thermal transfer
characteristics of samples, and the crack parameters are also compared before and after
healing. The main conclusions can be drawn as follows:

(1) Heating time and power that are too low are not enough to heal the asphalt mixture;
on the contrary, 60 s heating time at 700 W power can restore the strength of the
asphalt mixture to more than 80%.

(2) There is a linear correlation between the healing level of the asphalt mixture and
the heating time and power, and this relationship continues to exist as the heating
cycle increases.

(3) Asphalt mixture temperature uniformity can be observed in the heating process, and
the temperature turns more uneven with the heating time and power increase.

(4) The asphalt mixture does not have a healing behavior at the beginning of microwave
radiation, but the effective healing area increases with time up to more than 80%.

(5) Microwave heating can promote the recovery of the strength of asphalt mixtures.
However, other crack parameters, including fracture energy, flexible index, and crack
resistance index, all recovered at less than 50%.

Based on the conclusions, MH can be considered to be a promising pavement main-
tenance method. Some waste slags, such as steel slag, have excellent wave-absorbing
properties, and using slags as road aggregates have been identified. Hence, replacing
conventional aggregate with slags has the potential to accelerate self-healing properties,
and this also can provide a solution for waste disposal, which will be further investigated
in the future work.
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