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Abstract: By comparing different settlement forecast methods, eight methods were selected con-
sidering the creep of marine soft soils in this case study, including the Hyperbolic Method (HM),
Exponential Curve Method (ECM), Pearl Growth Curve Modeling (PGCM), Gompertz Growth Curve
Modeling (GGCM), Grey (1, 1) Model (GM), Grey Verhulst Model (GVM), Back Propagation of
Artificial Neural Network (BPANN) with Levenberg–Marquardt Algorithm (BPLM), and BPANN
with Gradient Descent of Momentum and Adaptive Learning Rate (BPGD). Taking Lingni Seawall
soil ground improved with prefabricated vertical drain-assisted staged riprap filling as an example,
forecasts of the short-term, medium-term, long-term, and final settlements at different locations of the
soft ground were performed with the eight selected methods. The forecasting values were compared
with each other and with the monitored data. When relative errors were between 0 and −1%, both
the forecasting accuracy and engineering safety were appropriate and reliable. It was concluded
that the appropriate forecast methods were different not only due to the time periods during the
settlement process, but also the locations of soft ground. Among these methods, only BPGD was
appropriate for all the time periods and locations, such as at the edge of the berm, and at the center of
the berm and embankment.

Keywords: settlement forecast; marine soft soil ground; prefabricated vertical drain (PVD); staged
riprap filling

1. Introduction

In coastal areas, the increase in population and economy induces a surge in land
reclamation [1]. Construction in such low land areas comprised of soft soils is associated
with serious post-construction settlement-related problems [2]. Therefore, settlement
control is significant for the soft soil ground, and the ground settlement calculation and
forecast play a vital role in all stages of engineering design, construction, and operation [3].

Terzaghi’s consolidation theory (1923) [4] states that the consolidation time is propor-
tional to the square of drainage distance. Several techniques were developed to reduce the
consolidation time by shortening the drainage distance [5], such as the vertical drainage
wells and utilization of Prefabricated Vertical Drain (PVD). PVD production consumes low
energy, leading to fewer emissions and lower costs. Consequently, PVD is considered as an
efficient and relatively cheap soft ground improvement technique [6].

Analytical calculation, numerical simulation, and prediction are commonly adopted
in the engineering project design and construction for the settlement evaluation of soft
soil ground. However, despite the extensive progress in PVD, several issues regarding
the PVD design, installation, and performance are not well understood, including the
smear zone dynamics [7], buckling and clogging of the PVD [8], and soil inhomogeneity,
consequently leading to significant limitations in the existing consolidation and settlement
evaluation theories [9]. For example, the layerwise summation method does not take into
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account the lateral deformation [10], and the actual drainage performance of PVDs cannot
be accurate when considered with existing analytical calculations during the consolidation
and settlement over time.

In addition, numerical simulation has been widely employed as an alternative to avoid
the analytical approaches of complex PVD-assisted preloading projects [11]. However,
the prediction precision of numerical approaches is significantly affected by the material
constitutive model and parameter selection. Furthermore, these methods are computa-
tionally intensive due to complicated boundary and loading conditions [2]. In particular,
proper determination of the smear zone properties of PVDs is challenging [12]. Moreover,
PVD is usually modeled as a solid element in a plane-strain state [13], resulting in signifi-
cant computational difficulties and a remarkable difference in the soil-PVD configuration
compared to the field [14]. Therefore, developing a reliable PVD model, considering the
drainage consolidation effect without increasing the finite element nodes and excluding the
plane-strain equivalent transformation, is greatly needed, but not completely solved yet.

In order to avoid the disadvantages associated with the analytical calculation and
numerical simulation, the idea of settlement prediction based on the measured and moni-
tored settlement data has been proposed [15]. Predictions and forecasts are simple and easy
mathematical approaches, and have more accuracy as they fully consider the monitored
data, which can reflect the real drainage effect of PVDs and the soil inhomogeneity. More-
over, settlement forecasts can be used for the real-time instruction of construction based on
the real-time monitored data [16].

Most traditional settlement forecasts are based on the Empirical Formula Method
(EFM), such as the Three-Point Method (3PM) [17], Asaoka Method (AM) [18], Hoshino
Nori Method (HNM) [19], Hyperbolic Method (HM) [20], and Exponential Curve Method
(ECM) [21], which are widely applied due to their simplicity [22]. Meanwhile, the Growth
Curve Modeling (GCM) is referred to as a logistic curve with an S-shape having a sim-
ilar pattern to the ground settlement [23]. It provides higher accuracy in forecasting
settlement [24], such as Weibull Growth Curve Modeling (WGCM), Pearl Growth Curve
Modeling (PGCM), and Gompertz Growth Curve Modeling (GGCM) [25].

Besides, Grey system theory is commonly used for sequence, topology, and system
predictions [26]. The Grey (1, 1) Model (GM) is a basically and widely used Grey Prediction
Model (GPM), especially for sequences with strong exponential regularity [27]. In addition,
the Verhulst Model was aimed to limit the whole development for a real system and
effectively describes a specific phenomenon, such as an S-shaped curve with a saturation
region [28]. The newly combined utilization of Grey and Verhulst models, known as Grey
Verhulst Model (GVM), was adopted in the deformation prediction [29].

Furthermore, Artificial Neural Network (ANN) is a powerful tool for tackling non-
linear problems and has been successfully adopted in optimizations [30], predictions, and
forecasts [31]. Settlement is a complex nonlinear problem and is often difficult to express
using an explicit mathematical expression [32]. Back Propagation (BP) is the most widely
applied model in ANN [33]. For the BP of ANN (BPANN), in mathematics and computing,
the Levenberg–Marquardt (LM) algorithm [34,35] is used to solve nonliear least squares
problems. Despite the advantages of BPANN, there are still some shortcomings associated
with the traditional BPANN with LM algorithm (BPLM) [33], including: (i) it easily falls
into local minimum rather than global optimum; (ii) it has a long training time and slow
convergence speed for dealing with a huge amount of data; and (iii) the learning rate must
be artificially selected before training. Thus, an improved BPANN with gradient descent of
momentum and adaptive learning rate (BPGD) has been proposed [36].

The above methods are widely and successfully used in settlement predictions and
forecasts for various types of soils in different engineering projects, such as in soft soils
improved with vacuum-prefabricated vertical drain [37], foundation pit of artificial fill and
silty clay layers [16], subgrade filled with construction and demolition waste [10], metro
shield tunnel in saturated sand [38], and the full load-settlement curve of a strip footing [39].
Although the prediction or forecast accuracy has been significantly improved, there are
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still errors between the predicted and observed magnitudes of settlements [40], which may
be due to the application limitation and different suitability of each prediction or forecast
method for varied situations and time periods. Consequently, it is particularly important
to select the appropriate and reliable method according to the different soil properties and
project characteristics.

Furthermore, especially, few studies considered settlement forecasting of deep marine
soft soil ground improved with Prefabricated Vertical Drain (PVD)-assisted staged riprap
filling technique [41], while studies comparing and optimizing the forecasting methods for
such soft ground are lacking. Furthermore, there is no clear mechanism on the settlement of
soft soil ground under this technology by reasons of the complexity of influencing factors
during construction and limited engineering project data.

Therefore, in this study, by comparing the settlement forecast methods as summarized
in Table 1 [42–45], the eight methods from four forecast types were selected considering
the creep of soft soils, including HM, ECM, PGCM, GGCM, GM, GVM, BPLM, and BPGD,
in which the GVM and BPGD were optimized from GM and BPLM, respectively. Taking
Lingni Seawall constructed by PVD-assisted staged riprap filling as an example, forecasts
of the short-term, medium-term, long-term, and final settlements at different locations
of soft soil ground were performed. Moreover, the forecasting values were compared
with each other and with the monitored data. In addition, relative errors and evaluation
metrics in regression were analyzed for quantitatively studying the accuracy and reliability
of various methods. Finally, the optimal methods of settlement forecasts in different
locations and different time periods were studied to provide a reference for the selection
of forecast methods for similar engineering projects, and to give a theoretical basis for
practical engineering embankment settlement forecasts.

Table 1. Comparisons of different settlement forecast methods [42–45].

Forecast Method Consideration of Creep Requirement for Monitored Settlement Data

EFM

3PM No Constant load period, equidistant time seriesAM No

HNM No
Constant load period, any time seriesHM Yes

ECM Yes

GCM
WGCM Yes

Whole or constant load period, equidistant time seriesPGCM Yes
GGCM Yes

GPM GM Yes Constant load period, equidistant time series
GVM Yes Whole or constant load period, equidistant time series

BPANN BPLM Yes Whole or constant load period, equidistant time seriesBPGD Yes

2. Methodology

In this study, taking Lingni Seawall constructed by PVD-assisted staged riprap filling
as a case study, HM, ECM, PGCM, GGCM, GM, GVM, BPLM, and BPGD methods were
adopted to analyze and forecast settlement processes and final settlements, as shown
in Figure 1. It must be noted that for settlement monitoring data recorded at irregular
intervals, a transformation to a regular interval is required when using GCM, GPM, and
BPANN for forecasting [46]. Interpolation is commonly used to transform the unequal time
interval settlement data; here, the cubic Spline method [47] was used to interpolate the
recorded data.
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Figure 1. Forecast methods used in this study.

2.1. Case Study
2.1.1. Project Description

The Lingni Seawall project is located in Wenzhou, Zhejiang Province, China, as shown
in Figure 2. Lingni Seawall is a stone embankment connecting Lingkun Island and Niyu
Island. The embankment crest width is 10.5 m, with a crest elevation of 5.63 m in National
Height Datum 1985 of China. The underlying ground exploration and boring data revealed
that the soil profile was mainly comprised of marine muck with a thickness of about
30 m and mucky clay in deeper layer [48,49]. The combined PVD with the staged riprap
preloading technique was adopted to improve the soft ground comprising the seawall
foundation. The typical and representative foundation treatment and settlement monitoring
cross-section of Lingni Seawall is shown in Figure 3.

Figure 2. Geographic position of Lingni Seawall (Google Maps).
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Figure 3. Typical foundation treatment and settlement monitoring cross-section of Lingni Seawall.

2.1.2. In Situ Settlement Monitoring

For controlling the riprap rate and monitoring the consolidation settlement regulation
of Lingni Seawall, in situ monitoring and measurements of the ground surface settlements
were performed. The positions of settlement measuring instruments are presented in
Figure 3. Due to the symmetry of the embankment, Point A (the edge of the berm), Point B
(the center of the berm), and Point C (the center of the embankment) were selected as the
monitoring and forecasting points in this study.

The loading stages for various cross-sections or different parts of the same cross-section
of the embankment were divided into different levels to reliably consider the difference
construction conditions. For example, at Points A, B, and C of the representative foundation
treatment cross-section, the riprap loading process (loading steps in kPa) was divided into
3, 3, and 7 stages, respectively. The monitored data of vertical ground surface settlements
at Points A, B, and C are illustrated in Figure 4 and Table A1. We can see from Figure 4
that, in the first and second loading stages at Point C, the ground settlements at different
points from large to small are as follows: Point A > Point B > Point C. However, with
the loading increasing at the center of the embankment (after the third loading stage at
Point C), the ground settlements from large to small become as follows: Point C > Point B >
Point A. The reasons for these phenomenons are mainly due to the inconsistency of the
magnitude and time of loading at each point, the mutual influence between adjacent
loadings and soils, and the heterogeneity of the ground soil distributions. Because of
the complexity of ground settlement variability, it is difficult to use a unified formula or
law to describe the settlements at different points of the soft ground. Therefore, in situ
monitoring is a reliable method to accurately acquire the performance caused by loadings
and PVDs [3], the settlement monitoring data was a comprehensive reflection of all the
influencing factors on soft soil ground settlement in the processes of preloading, staged
loading and constant loading. By forecasting the monitoring settlement data in advance,
not only the staged riprap filling rate can be adjusted in time to guide the construction, but
also the risk of excessive settlement can be forecasted in advance to avoid the occurrence of
embankment instability.
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Figure 4. Staged riprap loading and monitored settlement data at Points A, B, and C. (Notes:
550 d—The full loading time at the center of the embankment, after which the loading will keep
constant for the rest period; 665 d—The time of boundary point for settlement fitting and forecasting).

2.2. Empirical Formula Method (EFM)

The settlement forecast model can be established based on the measured settlement
data, and the relationship between settlement and time for each measuring point will be
obtained to forecast settlement variation [50]. Among all the settlement forecasting models,
the empirical formula method (EFM) has the advantages of simple utilization and wide
application range in engineering practices. Miyakawa (1961) [19] presented a settlement
curve shape as a hyperbolic curve. Hoshino (1962) [19] modified the hyperbolic method
with the proposal that settlement including shear strength is proportional to the square
root of time. The previous studies have shown that the hyperbolic method (HM) gave
very good forecasts of ultimate primary settlements for both laboratory oedometer tests
and field settlements for clays with vertical drains [51,52]. In addition, the exponential
curve method (ECM) has been shown to be reasonable and correct in the forecast of vertical
ultimate bearing capacity of single pile [21] and the sure part of the roadbed settlement [53].
However, the applicability of these two most commonly used EFMs is worth discussing for
the forecast of the PVD-assisted staged riprap filling foundation in deep marine soft soils.

2.2.1. Hyperbolic Method (HM)

The hyperbolic method assumes that the time dependence of settlement following a
hyperbolic pattern as described in Equation (1) [20]:

St = S0 +
t− t0

a + b(t− t0)
(1)

where St is the settlement at the time t; S0 is the settlement corresponding to the time t0;
a and b are fitting parameters.
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2.2.2. Exponential Curve Method (ECM)

The exponential curve describes the time dependence of settlement using an exponen-
tial formula as shown in Equation (2) [21]:

St = S0 + a(1− e−
t−t0

b ) (2)

where St, S0, t, t0, a, and b hold the same meaning as in Equation (1).

2.3. Growth Curve Modeling (GCM)

Growth Curve Modeling (GCM) is widely used in fields such as ecology and demog-
raphy. GCM is an S-shaped curve that reflects the process of a phenomenon happening,
developing, maturing, and tending to saturation (limit) [23]. According to the theory of soil
mechanics, the total ground settlement due to increased stresses can be divided into 3 parts:
immediate settlement, primary consolidation settlement, and secondary compression settle-
ment [54]. With the increase in load and time, the variation of foundation settlements can
be divided into the following 4 stages: (1) The stage of the linear growth of the settlement.
At the initial stage of loading, the soil is still in an elastic state. As the load increases, the set-
tlement increases approximately linearly; (2) The stage of increasing settlement rate. As the
load increases, the settlement and settlement rate of the soil ground increase continuously,
showing obvious nonlinearity; (3) The stage of decreasing settlement rate. When the load
no longer increases, due to the unfinished consolidation and the rheology of the soil, the
ground settlement will continue to increase with the decreasing of the settlement rate; and
(4) The stable stage of settlement. Theoretically, when the time tends to infinity, the ground
settlement reaches the limit state of stability. From the above 4 stages of ground settlement
process, we can see that it is very similar to the S-shaped development regulation described
by GCM. Therefore, GCMs can be used to forecast the variation of ground settlement with
time [55]. In this study, the commonly used Pearl Growth Curve Modeling (PGCM) and
Gompertz Growth Curve Modeling (GGCM) were selected for the settlement forecasting of
deep marine soft soils.

2.3.1. Pearl Growth Curve Modeling (PGCM)

The Pearl curve is referred to as a logistic curve with an S-shape, which is named
after the American biologist and demographer Raymond Pearl [23]. The Pearl curve can be
expressed as shown in Equation (3) [23]:

St =
a

1 + be−ct (3)

where t is the serial number of equidistant time series; St is the settlement at time serial
number t; a, b, and c are fitting parameters.

2.3.2. Gompertz Growth Curve Modeling (GGCM)

The Gompertz Growth Curve Modeling (GGCM) is a type of mathematical model for
a time series, named after the British statistician and mathematician Benjamin Gompertz
(1779–1865). It is a sigmoid function which describes growth as being slowest at the start
and end of a given time period, as described in Equation (4) [25]:

St = ae−be−ct
(4)

where t, St, a, b, and c hold the same meaning as in Equation (3).

2.4. Grey Prediction Model (GPM)

Grey system theory is an interdisciplinary scientific area that was first introduced by
Deng (1982) [26]. The application fields of the Grey system involve agriculture, economy,
geography, industry, geology, management, etc. Grey model based on Grey system theory
can be used for comprehensive predictions in these various fields [56]. In different GPMs,
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the Grey (1, 1) Model (GM) is especially used for sequences with strong exponential
regularity [27]. Therefore, the GM is similar to the ECM among the aforementioned
empirical formula method. Based on this, the GM was adopted in this study for the
settlement forecasting and method comparison research, due to its different data processing
methods compared to the ECM.

In addition, for completely eliminating the inherent simulant error and avoiding the
jumping errors from the differential equation to differential equation in traditional Grey
modeling, the Grey Verhulst Model (GVM) was adopted in this study. The GVM is a newly
combined utilization of Grey and Verhulst models, of which the Verhulst model was first
introduced by the German biologist Pierre Franois Verhulst. Previous case analysis showed
that the simulation and forecasting accuracy in traditional modeling has been significantly
improved by GVM [57].

2.4.1. Grey (1, 1) Model (GM)

For the Grey (1, 1) Model (GM), after the interpolation [47], it is assumed that the
settlement increment sequence in the equal time interval is the original sequence (S(0)), as
shown in Equation (5) [56]:

S(0) = {S(0)(1), S(0)(2), . . . , S(0)(n)} (5)

Then, the first-order accumulated generating operation sequence (1-AGO sequence,
S(1)) can be generated from S(0) following Equation (6):

S(1) = {S(1)(1), S(1)(2), . . . , S(1)(n)}

S(1)(t) =
t

∑
i=1

S(0)(i), t = 1, 2, . . . , n
(6)

The mean-generating sequence (Z(1)) of S(1) can be calculated by Equation (7):{
Z(1) = {Z(1)(2), Z(1)(3), . . . , Z(1)(n)}

Z(1)(t) = 0.5S(1)(t) + 0.5S(1)(t− 1), t = 2, 3, . . . , n
(7)

From Equations (6) and (7), the differential equation of GM can be described as in
Equation (8):

S(0)(t) + aZ(1)(t) = b (8)

where—a is the development coefficient; b is the grey action quantity.
After solving the GM function of Equation (8), the time response (Ŝ(1)(k)) of GM, here

refers to the predicted settlement, can be expressed by Equation (9) as follows:

Ŝ(1)(t) = (S(0)(1)− b
a
)e−at +

b
a

, t = 1, 2, ..., n (9)

2.4.2. Grey Verhulst Model (GVM)

The difference from GM is that the GVM has a different and more complex differential
equation as expressed in Equation (10) [28]:

S(0)(t) + aZ(1)(t) = b(Z(1)(t))2 (10)

where—a and b hold the same meaning as in Equation (8).
After solving the GVM function of Equation (10), the time response (Ŝ(1)(k)) of GVM,

here also referring to the predicted settlement, can be expressed by Equation (11) [57]
as follows:

Ŝ(1)(t) =
aS(0)(1)

bS(0)(1) + [a− bS(0)(1)]ea(t−1)
, t = 1, 2, . . . , n (11)
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2.5. Back Propagation of Artificial Neural Network (BPANN)

Ever since nonliear functions that work recursively (i.e., artificial neural networks)
were introduced to the world of machine learning, its applications have been booming.
In this context, the proper training of a neural network is the most important aspect of
making a reliable model. Back propagation is the neural network training process of
feeding error rates back through a neural network to make it more accurate. Although
effectiveness of Back Propagation of Artificial Neural Network (BPANN) is visible in most
real-world deep learning applications [31], it is never examined in the case of the settlement
forecasting of the PVD-assisted staged riprap filling foundation in deep marine soft soils.
Therefore, in this study, two kinds of BPANN were selected for forecasts of the short-term,
medium-term, long-term, and final settlements at different locations of the soft soil ground.

2.5.1. BPANN with Levenberg–Marquardt Algorithm (BPLM)

BPANN generally has a multi-layer structure, the simplest of which is a three-layer
perceptron network [33], as shown in Figure 5.

Figure 5. Three-layer perceptron network of BPANN.

The mathematical model of the three-layer perceptron of BPANN is described in
Equation (12) for a hidden layer, while Equation (13) describes the output layer with the
symbols annotated in Figure 5. In Equations (12) and (13), f (x) is a unipolar or bipolar
Sigmoid function, which is a nonlinear transfer function as shown in Equation (14) [33].

Sj =
n
∑

i=1
wijai − θj

bj = f (sj)

(12)


lt =

p
∑

j=1
vjtbj − γt

ct = f (lt)

(13)

f (x) =
1

1 + e−x (Unipolarity); f (x) =
1− e−x

1 + e−x (Bipolarity) (14)
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Furthermore, in this study, the BPANN was produced using MATLAB (Ver. 9.8,
MathWorks, USA), and the most commonly used LM algorithm [34,35] was adopted for
solving generic curve-fitting problems.

2.5.2. BPANN with Gradient Descent of Momentum and Adaptive Learning Rate (BPGD)

In order to avoid the shortcomings associated with the BPLM [33], an improved
BPANN with gradient descent of momentum and adaptive learning rate (BPGD) [36] was
used in this study for the settlement forecasting and method comparison research. Instead
of LM algorithm, the additional momentum method in Equation (15) and the self-adaptive
learning rate method in Equation (16) are adopted in BPGD, respectively.{

wij(k + 1) = (1−mc)ηejai + mcwij(k)

θj(k + 1) = (1−mc)ηej + mcθj(k)
(15)

where k is the training epoch; mc is the momentum coefficient, and mc ∈ (0, 1); η is the
learning rate; other symbols are annotated in Figure 5. Using Equation (15), it can effectively
avoid wij = 0, and thus makes the network jump off from a local minimum of the error.

η(k + 1) =


1.05η(k), E(k + 1) < E(k)

0.7η(k), E(k + 1) > 1.04E(k)

η(k), E(k) ≤ E(k + 1) ≤ 1.04E(k)

(16)

where E is the square error function, which represents the mean-squared error between ac-
tual outputs and target outputs of the network; other symbols are the same to Equation (15).

3. Results
3.1. Curve Fitting and Training Results

Based on load-settlement-time monitored data at Points A, B, and C illustrated in
Figure 4, after 550 days of staged loading, the marine soil profile’s full loading was achieved
and remained constant for the rest period. Therefore, the 550-day settlement and time were
selected as the initial settlement (S0 = 108.57 cm for Point A; 140.48 cm for Point B; and
223.80 cm for Point C) and initial time (t0 = 550 d for Points A, B, and C). After achieving
the constant load, field monitoring was carried out for 195 days. Taking the monitored
data between day 550 and day 665 for curve fittings (EFMs, GCMs, and GPMs) or trainings
(BPANNs), the monitored data between day 665 and day 745 were used for forecasts and
validations, as indicated in Figure 4. Furthermore, for GCMs, GPMs, and BPANNs, the
cubic Spline method with a 5-day regular time interval during the constant load period
was applied to interpolate the recorded data for Points A, B, and C.

For BPANNs, meanwhile, due to the lack of explicit mathematical expression, an algo-
rithm program using MATLAB was adopted. In BPANNs, every four adjacent consecutive
settlements with equal time interval (∆t = 5 d) were taken as an input sample sequence
(a1, a2, a3, and a4), and the immediately adjacent fifth settlement was considered as the tar-
get sample (y1), as shown in Figure 5. In this study, the number of input layer units for each
set of training samples is n = 4, the number of output layer units is q = 1, and the formula
for determining the number of hidden layer units p can be calculated by Equation (17) [58]:

p =
√

n + q + x (17)

where p, n, and q are annotated in Figure 5. And parameter x ∈ (1, 10) [58], thus p ∈ (3, 12),
and the optimal value of p can be judged by the BPANN training error.

Taking Point B as an example, when p = 8, the neural network and weight matrices
(W) of BPLM and BPGD are presented in Figure 6.
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Figure 6. BPANN at Point B: (a) neural network of BPLM and BPGD; (b) weight matrices of BPLM;
(c) weight matrices of BPGD.

The curve fitting and training results based on the settlement-time period between
day 550 and 665 at Points A, B, and C are illustrated in Figures 7, 8 and 9, respectively.
It can be seen that all the fitting and training results of the eight methods were in good
agreement with the monitored data. Therefore, we can use these fitting and training results
for subsequent settlement forecasting.
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Figure 7. Monitored data and settlement fitting and forecasting results of Point A.
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Figure 9. Monitored data and settlement fitting and forecasting results of Point C.

3.2. Comparison of Settlement Forecast Results

Through curve fittings by HM, ECM, PGCM, GGCM, GM, and GVM, the settle-
ment forecasting formulas were obtained as expressed in Equations (18)–(23), respec-
tively. In Equations (18) and (19), t is the real time with the unit of day. However, in
Equations (20)–(23), t refers to the serial number of equidistant time series, t = 1, 2, . . . , n.
Then, forecasts of the settlement-time period between day 665 and 745 at Points A, B, and C
were performed. The eight settlement forecasting curves and in situ monitored data of the
typical cross-section at Points A, B, and C are presented in Figures 7, 8 and 9, respectively.

HM :



St = 108.57 +
t− 550

15.76 + 0.044× (t− 550)
(PointA)

St = 140.48 +
t− 550

8.49 + 0.010× (t− 550)
(PointB)

St = 223.80 +
t− 550

1.96 + 0.013× (t− 550)
(PointC)

(18)
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ECM :


St = 108.57 + 12.45× (1− e−

t−550
197.03 ) (PointA)

St = 140.48 + 39.12× (1− e−
t−550
320.49 ) (PointB)

St = 223.80 + 46.87× (1− e−
t−550
95.13 ) (PointC)

(19)

PGCM :



St =
117.84

1 + 0.092e−0.042t (PointA)

St =
207.94

1 + 0.49e−0.013t (PointB)

St =
266.39

1 + 0.21e−0.070t (PointC)

(20)

GGCM :


St = 118.03e−0.090e−0.039t

(PointA)

St = 213.54e−0.42e−0.0098t
(PointB)

St = 267.50e−0.19e−0.063t
(PointC)

(21)

GM :


Ŝ(1)(t) = −11.91e−0.021t + 120.48 (PointA)

Ŝ(1)(t) = −245.88e−0.0022t + 386.36 (PointB)

Ŝ(1)(t) = −47.14e−0.053t + 270.94 (PointC)

(22)

GVM :



Ŝ(1)(t) =
2.71

0.023 + 0.0022e−0.025×(t−1)
(PointA)

Ŝ(1)(t) =
1.35

0.0058 + 0.0038e−0.0096×(t−1)
(PointB)

Ŝ(1)(t) =
14.77

0.056 + 0.010e−0.066×(t−1)
(PointC)

(23)

From Figure 7, it was found that all the forecasting settlement values were smaller than
the monitored data except the BPGD. This demonstrates that the other seven forecasting
results were unsafe for soft soil foundation at the edge of the berm (Point A). This might be
due to the fact that the settlement at Point A was not only controlled by the staged loading
of the berm, but also largely affected by the later staged loading of the embankment. This
phenomenon can also be observed from the monitored curves at Point A in Figure 4.

For the settlement forecasting at the center of the berm (Point B), the results of
five methods were relatively close to the monitored data, including PGCM, GGCM, GM,
GVM, and BPGD, as illustrated in Figure 8. But for HM, ECM, and BPLM, the forecasting
settlement values were unsafe for soft soil foundation here, since they were smaller than
the monitored values.

The settlement forecasting at the center of the embankment (Point C) had a completely
different result to Point A. It was found from Figure 9 that all the forecasting settlement
values were larger than the monitored data except the BPLM. From the perspective of the
forecasting method itself, this may be due to the fact that the BPLM has the shortcoming
associated with falling into local minimum. From an engineering point of view, this might
be due to the fact that the settlement at Point C was only controlled by the staged loading
at the center of the embankment. It can be observed from the monitored curves of Point C
in Figure 4 that the settlements were highly consistent with the staged loading variation
pattens. Therefore, under the influence of this single factor, the other forecasting settlement
values were generally greater than the monitored data at the center of the embankment.

The above results suggested that, settlement forecasting always overestimated the
settlement at the center of the embankment and underestimated the settlement at the
edge of the berm. However, between these two locations at the center of the berm, more
settlement forecasts were appropriate mainly due to the combination of various factors
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on its settlement, such as the load increasing at the center of the embankment and the
constrained deformations in the horizontal direction.

3.3. Error Analysis

For quantitatively studying the accuracy and reliability of various settlement forecast
methods to control the staged riprap filling rate and evaluate the consolidation effectiveness
of deep marine soft soil foundations, the relative errors (e = (measured value − predicted
value)/measured value, %) of various forecast methods were calculated as presented in
Figure 10. Furthermore, the maximum values of positive and negative relative errors and
the mean values of positive and negative relative errors are listed in Table 2.
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Figure 10. Comparison of relative errors of different forecast methods: (a) error analysis of Point A,
(b) error analysis of Point B, (c) error analysis of Point C.

Based on the two principles of forecasting accuracy and engineering safety, scilicet,
(i) the smaller the relative error, the higher the prediction accuracy, and (ii) when the
relative error is negative, the higher the safety of the forecasting than a positive relative
error. Thus, forecast methods can be evaluated by relative errors following Figure 10.
Generally speaking, when 0 ≥ e > −1%, both the forecasting accuracy and engineering
safety are appropriate and reliable. Therefore, for settlement forecast at the edge of the berm
(Point A), only BPGD was available. Additionally, PGCM, GGCM, GM, GVM, and BPGD
were available for settlement forecast at the center of the berm (Point B). In addition, for
settlement forecast at the center of the embankment (Point C), PGCM, GGCM, GVM, and
BPGD were available. Among these eight forecast methods, only BPGD was appropriate
and reliable for all Points A, B, and C.

Table 2. Relative error analysis of different forecast methods.

Forecast Method Point

Relative Error, e (%)

Maximum Value Mean Value

Positive Negative Positive Negative

HM
A 1.701 −0.338 0.544 −0.160
B 0.903 −0.474 0.514 −0.185
C 0.208 −1.932 0.100 −0.606
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Table 2. Cont.

Forecast Method Point

Relative Error, e (%)

Maximum Value Mean Value

Positive Negative Positive Negative

ECM
A 1.857 −0.338 0.580 −0.164
B 1.430 −0.535 0.687 −0.241
C 0.180 −1.046 0.072 −0.368

PGCM
A 2.263 −0.201 0.692 −0.143
B 0.476 −0.340 0.209 −0.112
C 0.184 −0.439 0.060 −0.189

GGCM
A 2.243 −0.180 0.691 −0.138
B 0.541 −0.333 0.240 −0.102
C 0.204 −0.589 0.066 −0.243

GM
A 1.516 −0.507 0.570 −0.257
B 0.142 −0.713 0.099 −0.326
C 0 −1.135 0 −0.606

GVM
A 1.675 −0.253 0.606 −0.107
B 0.478 −0.282 0.222 −0.110
C 0.194 −0.554 0.089 −0.256

BPLM
A 0.871 −0.212 0.248 −0.075
B 0.518 −0.368 0.241 −0.155
C 0.829 −0.169 0.390 −0.070

BPGD
A 0.455 −0.524 0.154 −0.154
B 0.406 −0.636 0.140 −0.250
C 0.129 −0.278 0.081 −0.099

3.4. Evaluation Metrics Analysis in Regression

To further evaluate the accuracy of these forecasting models, the sum of squares due
to error (SSE), mean squared error (MSE), root mean squared error (RMSE), mean absolute
error (MAE), and coefficient of determination or R-squared (R2) were used to evaluate the
performance of each model in regression analysis. The evaluation metrics analysis of eight
forecast methods at Points A, B, and C are presented in Table 3.

Table 3. Evaluation metrics analysis of different forecast methods. (SSE—Sum of squares due to
error; MSE—Mean squared error; RMSE—Root mean squared error; MAE—Mean absolute error;
R2—R-squared).

Forecast Method Point SSE MSE RMSE MAE R2

HM
A 31.453 0.437 0.661 0.443 0.943
B 24.069 0.602 0.776 0.616 0.984
C 79.462 3.179 1.783 1.084 0.975

ECM
A 37.887 0.526 0.725 0.477 0.932
B 47.840 1.196 1.094 0.841 0.967
C 26.433 1.057 1.028 0.665 0.992

PGCM
A 36.502 0.913 0.955 0.612 0.886
B 3.942 0.099 0.314 0.251 0.997
C 12.066 0.302 0.549 0.393 0.998

GGCM
A 35.972 0.899 0.948 0.609 0.888
B 5.139 0.129 0.358 0.282 0.997
C 19.461 0.487 0.698 0.486 0.996
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Table 3. Cont.

Forecast Method Point SSE MSE RMSE MAE R2

GM
A 16.054 0.401 0.634 0.462 0.950
B 11.523 0.288 0.537 0.462 0.992
C 109.871 2.747 1.657 1.503 0.978

GVM
A 19.706 0.493 0.702 0.468 0.939
B 4.040 0.101 0.318 0.248 0.997
C 17.501 0.438 0.662 0.488 0.997

BPLM
A 4.757 0.132 0.364 0.242 0.979
B 5.902 0.164 0.405 0.331 0.995
C 26.326 0.731 0.855 0.569 0.990

BPGD
A 1.813 0.050 0.224 0.175 0.992
B 4.707 0.131 0.362 0.303 0.996
C 2.701 0.075 0.274 0.238 0.999

The smaller the value of SSE, the better the model. Table 3 shows that, the BPGD
was the best forecast model with the smallest SSE and the highest R2 among these eight
methods. However, for settlement forecasting, even the BPLM had a smaller SSE and a
higher R2, but the BPLM was not safe for its smaller forecasting value than the measured
value. Therefore, both evaluation metrics analysis and error analysis need to be considered
when selecting settlement forecasting models.

Furthermore, the above conclusions were only based on the comparison with the
monitored data from 665 to 745 days. According to the previous studies [59–61], the period
of settlement forecast can be divided into the short-term (less than about 550 days), medium-
term (less than about 750 days) and long-term (more than about 750 days). Therefore,
the above conclusions were suitable and reliable for the short-term and medium-term
settlement forecasting, but for long-term and final settlement (time approaching infinity)
forecasting, further research and verification should be carried out.

3.5. Final Settlement Forecast

When time approached infinity, the final settlement can be calculated following
Equations (18)–(23) for EFMs, GCMs, and GPMs, respectively. Since BPANNs are based on
the input set to obtain the target set, they are unable to find limits at time infinity by using
mathematical expressions like other methods. However, according to the design service
life of the embankment (20 years), its final settlement value at that time can be forecasted
by BPANNs. Thus, all the forecasted final settlements (S∞) are presented in Figure 11.

Due to the lack of monitored data of the final settlement, the applicability of forecast
methods can be inferred only based on the current normal operation of the Lingni Seawall
embankment. Therefore, HM was inappropriate for Points A, B, and C for the too-large
forecasting values. For the same reason, GM for Point B was also inappropriate for forecast-
ing. Additionally, BPLM was inappropriate for Points A, B, and C, because the forecasted
final settlements were close to or less than the 745-day monitored data, which will lead
to the lack of safety of engineering project. For this reason, PGCM and GGCM were not
reliable for Point A.
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Figure 11. Comparison of final settlement forecasts: (a) forecasts at Point A, (b) forecasts at Point B,
(c) forecasts at Point C, (d) forecasted final settlement values.

4. Discussion

From the above settlement fitting or training results as shown in Figures 7–9, we can
find that all the fitting and training results of the eight methods were in good agreement
with the monitored data. However, for different time periods in the settlement process and
different locations of marine soft soil foundation under embankment construction for this
case study, the appropriate and reliable settlement forecast methods were different. The
applicability of forecast methods for PVD-assisted staged riprap filling technique can be
summarized in Table 4 for short-term and medium-term settlement forecasting, and for
long-term and final settlement forecasting, respectively.

Table 4. Applicability of different settlement forecast methods. (SMF—short-term and medium-term
settlement forecast; LFF—long-term and final settlement forecast; ◦—appropriate;×—inappropriate.)

Forecast Method
Edge of Berm Center of Berm Center of Embankment

SMF LFF SMF LFF SMF LFF

HM × × × × × ×
ECM × ◦ × ◦ × ◦

PGCM × × ◦ ◦ ◦ ◦
GGCM × × ◦ ◦ ◦ ◦

GM × ◦ ◦ × × ◦
GVM × ◦ ◦ ◦ ◦ ◦
BPLM × × × × × ×
BPGD ◦ ◦ ◦ ◦ ◦ ◦

For short-term and medium-term settlement forecasts, at the edge of the berm (Point A),
only BPGD was available. This might be due to the fact that the settlement at Point A was
not only controlled by the staged loading of the berm, but also obviously affected by the
subsequent staged loading of the embankment. Therefore, the forecast methods based
on a certain curve regulation, for example, EFMs, GCMs, and GPMs, found it difficult to
accurately judge the development trend of settlement at this kind of position. However,
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the BPGD can feed error rates back through a neural network to make the forecasting
more accurate than other methods, and it can solve some shortcomings associated with the
BPLM, such as falling into local minimum and the error of artificially choosing the learning
rate before training. Moreover, PGCM, GGCM, GM, GVM, and BPGD were available for
settlement forecasting at the center of the berm (Point B). In addition, for forecasting at
the center of the embankment (Point C), PGCM, GGCM, GVM, and BPGD were available.
That is to say, the HM, ECM, and BPLM were not suitable for short-term and medium-term
settlement forecasts at all.

For long-term and final settlement forecasts, at the edge of the berm (Point A), ECM,
GM, GVM, and BPGD were available. It can be found that the long-term and final settle-
ments at the edge of the berm had a strong exponential regularity. Furthermore, ECM,
PGCM, GGCM, GVM, and BPGD were available for Point B at the center of the berm. In
addition, at the center of the embankment (Point C), ECM, PGCM, GGCM, GM, GVM, and
BPGD were available. It can be observed that, ECM, GVM, and BPGD were appropriate for
long-term and final settlement forecasting at all different locations. This is due to the fact
that, the ECM and GVM have good exponential characteristics with a saturation region,
which can describe the long-term and final settlements of PVD-assisted staged riprap filling
foundation in deep marine soft soils well. At the same time, the BPGD was also suitable
for long-term and final settlement forecasts at different locations due to its methodological
advantages as mentioned above.

By comparing the eight different settlement forecast methods considering the creep of
marine soft soils in this case study, the results demonstrated that the applicable conditions
of different forecast methods were different, which was mainly due to the different loadings,
interaction of foundation soils, and the effect of ground treatment on different foundation
positions. Therefore, the settlements at different positions conform to different forms and
pattens of variations, and the available forecast methods should be selected according to
the specific position and time period. Although these settlement forecast methods have
sufficient accuracy, there are still deficiencies in the physical and engineering meanings
on forecasting formula and parameters by comparing with analytical calculation and
numerical simulation. This will also be a further development direction for the settlement
forecast methods in future.

5. Conclusions

From the short-term and medium-term, and the long-term and final settlement results
that were forecasted by HM, ECM, PGCM, GGCM, GM, GVM, BPLM, and BPGD methods
at different locations (such as at the edge of the berm, and at the center of the berm and
embankment) of marine soft soil ground under PVD-assisted staged riprap filling technique,
the following conclusions for this case study were obtained.

(1) For different time periods during the settlement process and different locations of
marine soft soil foundation, the appropriate and reliable forecast methods were
different. Only BPGD was appropriate for settlement forecasting at different time
periods and at different locations. This may be due to the fact that the BPANN
can feed error rates back through a neural network to make the forecasting more
accurate than other methods. Furthermore, the BPGD can solve some shortcomings
associated with the BPLM, such as falling into local minimum and the error of
artificially choosing the learning rate before training.

(2) For short-term and medium-term settlement forecasts, the forecast methods can be
evaluated by relative errors and evaluation metrics analysis in regression, scilicet
when 0 ≥ e > −1%, both the forecasting accuracy and engineering safety are ap-
propriate and reliable. Therefore, for settlement forecasting at the edge of the berm
(Point A), only BPGD was available. Moreover, PGCM, GGCM, GM, GVM, and
BPGD were available for settlement forecasting at the center of the berm (Point B).
In addition, for forecasting at the center of the embankment (Point C), PGCM, GGCM,
GVM, and BPGD were available.
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(3) For long-term and final settlement forecasts, at the edge of the berm (Point A),
ECM, GM, GVM, and BPGD were available. ECM, PGCM, GGCM, GVM, and
BPGD were available for Point B at the center of the berm. Furthermore, at the
center of the embankment (Point C), ECM, PGCM, GGCM, GM, GVM, and BPGD
were available. In addition to the BPGD, ECM and GVM were also appropriate for
long-term and final settlement forecasts at different locations, because they have an
exponential shape with a saturation region, which can well describe the long-term
and final settlements.

(4) Since this study was a case study of Lingni Seawall, its applicability needs to be
further verified based on more engineering cases in order to form a complete method-
ology and provide a reference for the selection of forecast models for different ground
soils under various hydrogeological conditions. For deep soft soil ground with high
water content, high compressibility, and high organic content, the forecast method
can be selected by referring to the above results, because these soils have creep
characteristics and non-negligible secondary consolidation settlement. However, for
silty and sandy soil grounds with low water content and low compressibility, the
HM may be not suitable, because the predicted values of HM are too large even for
soft clay grounds. On the contrary, for silty and sandy soil grounds, BPLM and GVM
may be more suitable due to their smaller predicted values for soft clay grounds.

In addition, although BPGD is the most accurate and feasible model for marine soft
soil ground, the process of forecast modeling is complex. Therefore, when it is not necessary
to establish a unified forecasting model of full-time and full-project monitoring points to
describe the settlement process, a simpler forecast method can be selected for each time
period and at each monitoring point based on the above results. Furthermore, it is necessary
to find a new forecast method or nonlinear logic algorithm with fewer parameters and
stronger applicability for this kind of engineering project.

Nevertheless, the goal of case histories is not only to obtain a splendid best fitting,
but also to inverse and calibrate the geotechnical parameters, such as compression co-
efficient and compression index, especially the secondary compressibility coefficient for
compressible marine sediments. More accurate forecasted values could provide a new
opportunity for more creditable parameter inversion and calibration. Additionally, it is of
great significance to study the mathematical meaning of each parameter in each forecasting
model, and more importantly, its physical meaning and the analytical relationship be-
tween model parameters and soil geotechnical parameters, which will provide an in-depth
understanding of the forecasting algorithm and settlement mechanism.
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Abbreviations
The following abbreviations are used in this manuscript:

EFM Empirical Formula Method
3PM Three-Point Method
AM Asaoka Method
HNM Hoshino Nori Method
HM Hyperbolic Method
ECM Exponential Curve Method
GCM Growth Curve Modeling
WGCM Weibull Growth Curve Modeling
PGCM Pearl Growth Curve Modeling
GGCM Gompertz Growth Curve Modeling
GPM Grey Prediction Model
GM Grey (1, 1) Model
GVM Grey Verhulst Model
ANN Artificial Neural Network
BP Back Propagation
BPANN Back Propagation of Artificial Neural Network
LM Levenberg–Marquardt
BPLM BPANN with Levenberg–Marquardt Algorithm
BPGD BPANN with Gradient Descent of Momentum and Adaptive Learning Rate
PVD Prefabricated Vertical Drain
SSE Sum of squares due to error
MSE Mean squared error
RMSE Root mean squared error
MAE Mean absolute error
SMF Short-term and medium-term settlement forecast
LFF Long-term and final settlement forecast

Appendix A

Table A1. The monitored time-settlement data-set at Points A, B, and C. (t—Time; St—Settlement).

Point A Point B Point C

t (d) St (cm) t (d) St (cm) t (d) St (cm)

550 108.57 550 140.48 550 223.80
556 108.87 551 140.91 555 225.90
561 108.99 555 141.28 560 228.10
564 109.14 561 141.65 565 230.20
569 109.37 565 142.02 570 232.30
576 109.84 571 142.52 575 234.30
581 110.15 575 143.02 580 236.20
586 110.48 580 143.51 585 238.10
590 110.61 585 143.76 590 239.90
596 111.33 591 144.75 595 241.70
600 111.53 596 145.25 600 243.40
604 111.92 604 146.11 605 244.72
611 112.05 609 146.85 607 245.20
618 112.49 616 147.60 610 245.96
624 112.62 621 147.97 614 247.00
629 112.79 626 148.96 621 248.70
635 112.84 632 149.70 625 249.53
641 113.04 638 150.32 629 250.30
645 113.20 643 150.69 637 251.90
650 113.32 649 150.70 645 253.50
653 113.59 652 151.19 650 254.30
656 113.69 658 151.93 655 255.00
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Table A1. Cont.

Point A Point B Point C

t (d) St (cm) t (d) St (cm) t (d) St (cm)

659 113.72 661 152.06 660 255.67
665 114.04 665 152.65 665 256.30
673 114.47 668 153.05 670 256.87
678 114.83 674 153.54 675 257.40
685 115.19 678 154.41 680 257.93
691 115.67 683 154.90 685 258.40
697 115.96 687 155.40 690 258.77
705 116.04 692 156.14 695 259.08
709 116.37 695 156.14 697 259.20
713 116.68 699 156.76 700 259.39
717 116.68 704 157.25 705 259.73
723 117.11 709 157.50 709 260.00
726 117.26 715 158.00 715 260.40
730 117.39 720 158.50 720 260.70
733 117.54 726 158.75 725 260.97
736 118.05 731 159.37 730 261.21
738 118.05 736 159.49 732 261.30
740 118.36 742 159.99 740 261.66
745 118.52 745 160.61 745 261.90
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