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Abstract: Enteroviruses are among the most common viruses pathogenic to humans. They are
associated with various forms of disease, ranging from mild respiratory illness to severe neurological
diseases. In recent years, an increasing number of isolated cases of children developing meningitis or
encephalitis as a result of enterovirus infection have been reported, as well as discrete enterovirus
D68 outbreaks in North America in 2014 and 2016. We developed an assay to rapidly genotype
enteroviruses by sequencing a region within the VP1 gene using nanopore Flongles. We retrospec-
tively analyzed enterovirus-/rhinovirus-positive clinical samples from the Zurich, Switzerland area
mainly collected during two seasons in 2019/2020 and 2021/2022. Respiratory, cerebrospinal fluid,
and stool samples were analyzed. Whole-genome sequencing was performed on samples with
ambiguous genotyping results and enterovirus D68-positive samples. Out of 255 isolates, a total
of 95 different genotypes were found. A difference in the prevalence of enterovirus and rhinovirus
infections was observed for both sample type and age group. In particular, children aged 0–4 years
showed a higher frequency of enterovirus infections. Comparing the respiratory seasons, a higher
prevalence was found, especially for enterovirus A and rhinovirus A after the SARS-CoV-2 pandemic.
The enterovirus genotyping workflow provides a rapid diagnostic tool for individual analysis and
continuous enterovirus surveillance.

Keywords: human pathogens; enterovirus; next-generation sequencing (NGS); novel diagnostic
methods; outbreaks; surveillance

1. Introduction

Enteroviruses, along with rhinoviruses, influenza viruses, and coronaviruses, are
among the most common respiratory pathogens [1,2]. The genus Enterovirus belongs to the
order Picornavirales and the family Picornaviridae [3]. Enteroviruses are single-stranded, pos-
itively oriented RNA viruses ((+)-ss-RNA). They are distributed worldwide, with children
being at higher risk for infection than adults for all species [4,5]. In Europe, Enterovirus B is
the most prevalent species, followed by Enterovirus A, while Enterovirus C and D are less
frequently detected. The types most often found are echovirus 30 and coxsackievirus A6,
both of which belong to the species Enterovirus B [6,7]. In the last two decades, several large
outbreaks of different enterovirus species have been reported. These include outbreaks
of enterovirus D68 in North America, associated with acute flaccid myelitis (AFM) and
encephalitis in 2014 and 2016 [8,9]. Similarly, Europe has seen an increase in severe cases
of AFM since 2016 coinciding with enterovirus D68 positivity [10–14], while Asia and
the Pacific have experienced major outbreaks of enterovirus A71 causing hand, foot, and
mouth disease [6,7,10]. Due to the higher number of severe cases, the interest in enterovirus
surveillance and epidemiological studies has increased dramatically [6,12,15–23].
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The present study was designed to establish a fast and cost-effective amplicon geno-
typing workflow using nanopore sequencing and perform retrospective enterovirus geno-
typing before and during the SARS-CoV-2 pandemic.

2. Materials and Methods
2.1. Patient Samples

Residual routine patient samples with previously confirmed enterovirus infection
from the archive of the Institute of Medical Virology, University of Zurich, were used.
Enterovirus infections were qualitatively detected as part of routine diagnostic testing
using the ePlex Respiratory Pathogen Panel (GenMark Diagnostics, Carlsbad, CA, USA), a
Fast-Track Diagnostic Respiratory Pathogens 21 Kit (Fast-Track Diagnostic, Luxembourg),
or BioFire Respiratory or Meningitis Panels (BioMérieux, Craponne, France).

Respiratory samples were randomly selected from two defined seasons with uniform
distribution by month. If multiple samples were selected from the same patient within one
season, only the first sample was included. Additionally, all stool and cerebrospinal fluid
(CSF) samples were included throughout the complete study duration. All samples were
anonymized irreversibly.

2.2. Nucleic Acid Extraction

Nucleic acids were extracted on the NucliSENS eMAG system (BioMérieux) according
to the manufacturer’s instructions. For this procedure, 500 µL of each sample was eluted in
50 µL.

2.3. Enterovirus qPCR

Qualitative RT-qPCR was performed on all samples for pan-enteroviruses [24] and
rhinoviruses (modified from [25]) using a TaqMan RT-PCR Mix and Ag-Path-IDTM One-Step
RT PCR chemistry (Applied Biosystems/Thermo Fisher Scientific, Waltham, MA, USA).

2.4. Enterovirus Amplicon Sequencing

For enterovirus genotyping, a region within the VP1 gene was amplified as described
by Nix et al. [26]. First, 0.5 mM dNTPs and 0.1 µM of each primer AN32, AN33, AN34, and
AN35 were added to 5 µL template in a total reaction volume of 13 µL and incubated at
65 ◦C for 5 min to denature secondary RNA structures. cDNA was generated using the
SuperScript IV Reverse Transcriptase (Invitrogen/Thermo Fisher Scientific) as described by
the manufacturer. Then, three consecutive PCRs were performed as described by Nix et al.
and the WHO enterovirus surveillance guide [26,27] (Figure 1).

The first PCR produced an amplicon of about 800 bp. In a vial of 25 µL total volume, a
reaction mix was prepared that contained 0.05 U/µL AmpliTaq Polymerase and 1× PCR
Buffer (both Applied Biosystems/Thermo Fisher Scientific); 0.2 mM dNTPs; 1 µM of each
forward and reverse primer SO224 and SO222, respectively; and 5 µL cDNA [24]. The
cycling conditions were 95 ◦C for 2 min, 35 cycles of 95 ◦C for 15 s, 42 ◦C for 30 s, 72 ◦C for
45 s, and 72 ◦C for 5 min. The ramp rate between annealing and extension was restricted
to 10%.

The second, semi-nested PCR produced an amplicon of about 400 bp. In a vial of 50 µL
total volume, a reaction mix was prepared containing 0.05 U/µL AmpliTaq Polymerase;
1× PCR Buffer; 0.8 µM of each forward and reverse primer AN89 and AN88, modified
to contain a nanopore adapter at the 5′-ends, respectively; and 1 µL product of the first
PCR [23]. The cycling conditions were 95 ◦C for 2 min, 38 cycles of 95 ◦C for 15 s, 60 ◦C for
30 s, 72 ◦C for 45 s, and 72 ◦C for 5 min.

The third PCR with tailed primers produced an amplicon of about 430 bp. In a vial of
50 µL total volume, a reaction mix was prepared containing 1× LongAmp Hot Start Taq
Master Mix (New England Biolabs, Ipswich, MA, USA); 0.2 µM barcoded primers (BP, i.e.,
BP01 to BP12 from the PCR Barcoding Kit SQK-PBK004, Oxford Nanopore Technologies
(ONT, Oxford, UK); and 24 µL product of the second PCR diluted to 0.4 ng/µL (~0.2 ng/uL
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final concentration). The cycling conditions were 95 ◦C for 3 min, 14 cycles of 95 ◦C for 15 s,
56 ◦C for 15 s, 65 ◦C for 50 s, and 65 ◦C for 6 min.
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enterovirus genotyping (created with biorender.com).

The final amplicon was purified with 80% volume Agencourt AMPure XP beads
(Beckman Coulter, Brea, CA, USA), washed twice with 70% ethanol, and eluted in 10 µL
UltraPure DNase/RNase-free distilled water (Thermo Fisher Scientific).

Up to 12 samples were pooled in 5 µL and prepared to be sequenced on a flow cell
dongle (Flongle, R9.4.1 chemistry, ONT) as described by the manufacturer’s instructions.
Samples were sequenced for at least 4 h on a GridION X5 Mk1 (ONT). Reads were base-
called using guppy (v6.3.9 onwards, https://community.nanoporetech.com accessed on 26
April 2024).

2.5. Bioinformatic Analysis

Reads were analyzed with an in-house developed script using Snakemake (https:
//github.com/medvir/ONT_amplicon/releases/tag/v1.0 accessed on 26 April 2024).
Briefly, reads from multiple FASTQ files per sample were combined, and their barcodes
were trimmed before mapping using minimap2 against user-provided reference sequences
of all enterovirus species (538 sequences, https://github.com/medvir/ONT_amplicon/
tree/main/references accessed on 26 April 2024). Incomplete or low-coverage consensus
sequences were excluded from the final analysis. Genotyping was defined as successful if
it resulted in an unambiguous genotyping call.

biorender.com
https://community.nanoporetech.com
https://github.com/medvir/ONT_amplicon/releases/tag/v1.0
https://github.com/medvir/ONT_amplicon/releases/tag/v1.0
https://github.com/medvir/ONT_amplicon/tree/main/references
https://github.com/medvir/ONT_amplicon/tree/main/references
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2.6. Untargeted Whole-Genome Sequencing

Whole-genome sequencing was performed according to a previously published
metagenomic sequencing workflow [28,29]. Briefly, reverse transcription with random hex-
amers and second strand synthesis was performed prior to the construction of sequencing
libraries using the NexteraXT protocol (Illumina, San Diego, CA, USA) and sequencing on
a MiSeq for 1 × 151 cycles using version 3 chemistry. Bioinformatic analysis was performed
using the pipeline VirMet (https://github.com/medvir/VirMet/releases/tag/v1.1.1 ac-
cessed on 26 April 2024), and for consensus sequence generation, SmaltAlign (https:
//github.com/medvir/SmaltAlign/releases/tag/v1.1.0 accessed on 26 April 2024) was
used. Enterovirus D68 sub-genogroupes were determined using the enterovirus genotyping
tool RIVM [30].

2.7. Estimation of Genotype Diversity

To estimate the genotype diversity, a rarefaction curve with an asymptotic approxima-
tion was created according to Zou et al. [31,32]. By plotting 100 collector curves, the average
distribution curve was derived, and the maximum number of genotypes was estimated
using the Michaelis–Menten equation [33].

3. Results
3.1. Sample Characteristics

Enteroviruses are present throughout the year and can cause infections even in the
summer months; however, infections are seasonal with an increase in tested and positive
samples from October to April. No such increase was observed during the SARS-CoV-2
pandemic in 2020–2021, and from March 2020 to March 2021, in particular, the total number
of samples decreased (Figure 2).
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Figure 2. Number of samples tested for enterovirus at the Institute of Medical Virology, University of
Zurich. Negative samples are indicated in gray, and positive samples are shown in red. The absolute
numbers are stacked. The light gray areas show the two selected outbreak seasons.

Respiratory samples from two seasons, one before the onset of the pandemic (Septem-
ber 2019–March 2020) and another during the SARS-CoV-2 pandemic (July 2021–April 2022),
were selected. Samples were randomly chosen for a retrospective enterovirus genotyping
study (Table S1), and 255 samples were included in the study.

https://github.com/medvir/VirMet/releases/tag/v1.1.1
https://github.com/medvir/SmaltAlign/releases/tag/v1.1.0
https://github.com/medvir/SmaltAlign/releases/tag/v1.1.0
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Patient age distribution ranged from 0 to 89 years. The highest proportion of patients
were children aged 0–4 years (26.7%). There was a gap in the 10–14-year age group, with
no positive samples (Figure 3).
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Figure 3. Age distribution of all patients from the 255 included isolates between July 2019 and
December 2022.

Respiratory samples accounted for the largest proportion (77.3%), followed by stool
samples (14.1%) and CSF samples (6.3%). The median age of patients with respiratory
samples was 52 years, whereas the median age of patients with stool samples was 0 years.

3.2. Targeted Amplicon Sequencing and Genotyping

In total, 255 samples were sequenced, while 36 initially yielded an ambiguous result.
In total, 18 samples were resolved by whole-genome sequencing. Ultimately, 237 isolates
(92.9%) were successfully genotyped. Three samples with a double infection of two different
genotypes were found (Table S1, study numbers 188, 266, and 406). Of those, two samples
were infected with two genotypes from the same species, and one sample contained two
genotypes from two different species.

Figure 4 shows the identified species, categorized into two age groups. In patients
younger than five years, a predominance of enteroviruses A and B was observed, mainly
detected in stool samples (n = 32) and CSF (n = 8), while rhinoviruses were detected to
a lesser extent in this age group. In patients older than four years, rhinoviruses A–C
were predominantly found in respiratory specimens (n = 155), whereas enteroviruses were
detected less frequently in this age group. Notably, three cases of enterovirus D infection
were detected, and no isolates belonging to enteroviruses C were found in either age group.

Overall, enterovirus B isolates were mostly detected in stool samples of children
younger than five years (68.3%), whereas rhinovirus A isolates were most common in
respiratory material from patients older than four years of age (54%).

Without distinguishing between age groups, enterovirus B was predominant in both
stool samples (65.7%) and CSF samples (81.3%). Rhinovirus A was the most common virus
found in respiratory samples (55.4%, Figure 5).
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Figure 4. Number of enterovirus species among patients under and over five years of age by
sample types.

Samples were classified on both species and genotype levels, which revealed a high
variability of genotypes belonging to the species Enterovirus A and B and Rhinovirus A–C
(Table 1). Rhinovirus A showed the highest variation with 41 different genotypes found.
Rhinovirus B was represented with 17 different genotypes and Rhinovirus C with 18. Among
the enteroviruses, the species Enterovirus B was found most frequently with 14 detected
genotypes, Enterovirus A was represented with 4 detected genotypes, and for Enterovirus D,
only genotype D68 was found. In total, 95 different genotypes for all species were detected.

Table 1. All genotypes are listed by year, as stool and CSF samples were also collected outside the
selected respiratory seasons. Genotypes are arranged by species and alphabetically within a species.
The most common genotypes are shown in bold.

Species Genotype * 2019/2020 2021/2022 Total

Enterovirus A CVA4 0 1 1
CVA6 3 10 13
CVA10 1 6 7
EV-A71 2 0 2

Enterovirus B CVA9 0 2 2
CVB1 0 1 1
CVB2 1 2 3
CVB3 1 7 8
CVB4 1 3 4
CVB5 5 3 8

E6 1 2 3
E7 3 0 3
E11 0 1 1
E18 0 2 2
E20 2 0 2
E21 1 0 1
E25 1 1 2
E30 1 0 1
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Table 1. Cont.

Species Genotype * 2019/2020 2021/2022 Total

Enterovirus D EV-D68 1 2 3
Rhinovirus A RV-A1 6 0 6

RV-A2 1 1 2
RV-A8 1 0 1
RV-A9 1 0 1
RV-A11 3 1 4
RV-A12 2 1 3
RV-A15 1 3 4
RV-A20 2 2 4
RV-A21 1 0 1
RV-A22 1 0 1
RV-A24 1 8 9
RV-A25 1 3 4
RV-A28 1 0 1
RV-A29 0 1 1
RV-A30 0 1 1
RV-A31 1 4 5
RV-A32 1 0 1
RV-A33 1 0 1
RV-A34 4 1 5
RV-A36 1 3 4
RV-A39 1 0 1
RV-A46 1 3 4
RV-A47 2 7 9
RV-A49 1 0 1
RV-A53 1 3 4
RV-A55 1 0 1
RV-A56 1 0 1
RV-A57 1 1 2
RV-A58 0 3 3
RV-A59 0 3 3
RV-A60 1 0 1
RV-A61 0 2 2
RV-A65 0 1 1
RV-A66 1 0 1
RV-A67 1 0 1
RV-A71 1 0 1
RV-A78 1 2 3
RV-A80 1 1 2
RV-A82 1 0 1
RV-A85 0 2 2

RV-A100 1 0 1
Rhinovirus B RV-B3 7 1 8

RV-B4 1 0 1
RV-B6 2 0 2
RV-B14 5 0 5
RV-B26 1 0 1
RV-B27 2 2 4
RV-B35 1 0 1
RV-B42 0 1 1
RV-B48 1 0 1
RV-B69 1 2 3
RV-B70 3 0 3
RV-B72 1 1 2
RV-B83 0 2 2
RV-B84 1 0 1
RV-B86 2 0 2
RV-B91 2 0 2

NA 1 0 1
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Table 1. Cont.

Species Genotype * 2019/2020 2021/2022 Total

Rhinovirus C RV-C1 1 4 5
RV-C5 0 1 1
RV-C7 1 0 1

RV-C11 1 2 3
RV-C12 1 0 1
RV-C15 2 0 2
RV-C17 1 0 1
RV-C24 1 0 0
RV-C25 0 1 1
RV-C26 1 0 1
RV-C33 1 0 1
RV-C41 2 0 2
RV-C42 1 1 2
RV-C43 2 0 2
RV-C45 1 1 2
RV-C51 0 1 1
RV-C53 1 0 1
RV-C56 0 1 1

* Abbreviations are used according to [30,34].
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In addition, the analysis of genotypes by sample type (CSF, stool, and respiratory
samples) revealed no distinct prevalence of any genotype across these materials.

3.3. Untargeted Whole-Genome Sequencing

Three types of samples were selected for further investigation using unbiased whole-
genome sequencing instead of the established target-specific amplicon approach. These
included (i) twelve samples with inwardly shifted primer binding sites, (ii) four samples
with high positive results in both qPCR systems and ambiguous genotyping results, and
(iii) three enterovirus D68-positive samples. Whole-genome sequencing was achieved for
all 18 samples (Figure S1), and subsequent genotyping was successful for 18 of them.

One sample with a shifted primer binding site could not be classified at the genotype
level. The whole-genome consensus sequence was aligned with BLAST and showed a 97%
match with a sequence published by Tirosh et al. (MH899592.1) of a previously unclassified
rhinovirus B [35] (Table S1, study number 32).

The whole-genome analysis of the enterovirus D68 samples allowed for subclassifica-
tion into two clade A2 and one clade B3 enterovirus D68.
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One co-infection with norovirus GII was detected in an enterovirus D68-positive CSF
sample. In another sample, a co-infection with bocavirus was found (Table S1, study
numbers 116 and 273, respectively).

3.4. Influence of the SARS-CoV-2 Pandemic on Circulating Enterovirus Species

To answer the question of whether the SARS-CoV-2 pandemic had an impact on
enterovirus distribution in respiratory samples, one season before and another during the
SARS-CoV-2 pandemic were compared. In the respiratory season before the pandemic
(2019/2020), Rhinovirus A accounted for 47.4% of the detected species, followed by a high
proportion of Rhinovirus B (32.0%). Rhinovirus C was detected in 17.5% of the cases (Figure 6,
left donut plot). By comparison, in the season 2021/2022, the proportion of Rhinovirus
A has increased to 64.4%. The second most common species found in this season was
Rhinovirus C (12.6%) (Figure 6, right donut plot). Enterovirus A was the third most common
species (9.2%), which was not detected in the previous season. Overall, the proportion of
Enteroviruses A-D increased from 3.1% in 2019/2020 to 14.9% in 2021/2022. The difference
in the distribution of enterovirus species between the two seasons was significant (Fisher’s
exact test with p-value < 0.0001).
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Figure 6. Distribution of detected enterovirus species in respiratory samples in the two defined
outbreak seasons: the first from September 2019 to the end of March 2020, before the onset of the
SARS-CoV-2 pandemic and the second from July 2021 to the end of April 2022 during the SARS-CoV-2
pandemic. Samples from all parts of the respiratory tract were used.

3.5. Estimation of Genotype Diversity

To estimate the genotype diversity, a rarefaction analysis was performed (Figure 7).
By generating multiple collector curves, i.e., species accumulation curves, the average

distribution or rarefaction curve was calculated. The extrapolation of the curve approached
the estimated number of genotypes [31,32]. Around 156 of the more than 200 known
genotypes were estimated to be circulating in the Zurich area.
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4. Discussion

Enteroviruses are a very diverse and variable genus, characterized by worldwide
distribution. Research on enteroviruses has continued to grow, particularly due to regional
outbreaks over the last 20 years [6,12,15–23]. Virus genotyping is likely to be of increasing
interest in the coming years, particularly because of the increase in viral re-emergence due
to continued population growth, urbanization, and increased global travel [36]. In this
study, we developed a rapid diagnostic tool for enterovirus genotyping based on ONT
sequencing for individual analysis and continuous enterovirus surveillance. Amplicon
sequencing with ONT allows for the analysis of multiple samples per run and provides a
cost-effective way to genotype enteroviruses. Compared to other workflows using Illumina
sequencing, ONT provides an easier library preparation and faster time to result, due to
real-time sequencing.

Its applicability was demonstrated by retrospectively genotyping 255 patient samples
collected from 2019 to 2022 in the Zurich area. Overall, genotyping was successful in 92.9%
of the analyzed cases, demonstrating the robustness of the established method. Even in
14 samples where both qPCR systems failed, the isolate could be genotyped, probably due
to the different primer systems used for sequencing and qPCR.

The main finding was a high diversity of circulating enterovirus genotypes, with a
total of 95 genotypes detected and an estimation of about 156 genotypes in circulation in
the Zurich region. This high enterovirus diversity has already been shown in different
studies [6,10,12]. Those studies refer specifically to samples from young children and are
designed to identify enteroviruses A-D only [6,10,37]. In our study, we not only focused on
enterovirus A-D species but also included rhinoviruses A-C. All in all, and in contrast to
other studies, no predominance of individual genotypes was found.

We did not detect any enterovirus C species despite its reported presence in Europe [6,10].
The fact that enterovirus C infections are often associated with the gastrointestinal tract
and that only 14.1% of the included samples were stool samples may explain why no
enterovirus C was detected in this study.
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Enteroviruses of species A and B were mainly found in stool and CSF samples, whereas
rhinoviruses A–C were mainly found in respiratory material. The results underline that
the frequency of species varies greatly in different patient materials. This observation has
also been made in other studies [6,10]. In particular, rhinoviruses are mainly associated
with respiratory infections and are therefore predominately found in respiratory material.
Notably, respiratory samples were analyzed five times more than CSF and stool samples,
which limits a direct comparison of genotype composition [6,12]. No specific genotype
prevalence was observed in any material.

The prevalence of genotypes before and during the SARS-CoV-2 pandemic was also
of interest. Enterovirus A was only found during the second respiratory season, and at
the same time, rhinovirus A was more predominant. Whether this is a consequence of the
hygienic measures taken during the pandemic is unknown. A recent study has shown
continuing rhinovirus infection with 60% thereof being rhinovirus A, despite hygienic mea-
sures during the pandemic [38]. The reduction in the total number of positive enterovirus
infections in 2020, which was also found by Fisher et al. [15], could have been a consequence
of directing most diagnostic efforts toward SARS-CoV-2 and could have biased genotype
detection toward more pathogenic enteroviruses. For a better understanding of genotype
composition before and during the SARS-CoV-2 pandemic, a higher number of samples
from more seasons would be needed.

In conclusion, this study highlighted the high diversity of genotypes observed both
within and across respiratory seasons but did not reveal any enterovirus genotype(s) of
significant abundance.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/pathogens13050390/s1, Figure S1: Coverage plots of the whole-
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