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Abstract: The blotched snakehead Channa maculata is an important economical freshwater species in
East Asia. However, there has been relatively little research conducted on the correlation between
gender and gut microbes. In this study, 36 of 1000 blotched snakeheads were randomly selected for
growth performance measurement and gut microbiota high-throughput sequencing. Results showed
that microbial diversity, composition, and metabolic functions were altered by gender and growth
performance except the microbial network. In our study, Proteobacteria were the most abundant
phylum, with Fusobacteria showing enrichment in males and Bacteroidetes in females. Notably,
phylum Deinococcus-Thermus was identified as a significant biomarker. The Cetobacterium was
the most abundant genus-level taxon. Furthermore, gut microbes specializing in the production
of gut-healthy substances, such as coenzymes and vitamins, were identified as biomarkers in the
fast-growing group. Our investigation highlighted the impact of gender on the composition and
abundance of gut microbial biomarkers in both males and females, thereby influencing differential
growth performance through the modulation of specific metabolic functions.

Keywords: blotched snakehead; gender; gut microbiota; grow performance

1. Introduction

The blotched snakehead Channa maculata is an important economical freshwater
species in East Asia, which originated from southern China and Vietnam [1]. It is a
type of freshwater fish with high-quality flesh, fewer muscle spines, and rich nutritional
value, of whose protein content of fillets could even reach 18~22%. This makes it a valuable
source of premium fish products that align with today’s consumer demand for high-quality
protein. Meanwhile, this fish has become the most important aquaculture species due to
its fast growth rate, strong hypoxia tolerance, ease of intake of artificial compound feed,
resistance to transportation, and ease of processing [2–4]. Commercial aquaculture systems
are expanding rapidly in response to increased market demand for aquatic products. In
China, the total annual output of blotched snakehead has reached up to 500,000 tons in
2022 according to the statistics of the authorities [5].

As with other fish species, blotched snakehead exhibits clear sexual dimorphism [6].
The growth rate and body size are both of the most explicit indicators among all sexual
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dimorphisms, and males of blotched snakehead grow faster than females [7]. Sex-specific
differences in growth rates and body size could vary among fish species, highlighting the
economic importance of same-sex stock production for aquaculture [8,9]. Field surveys
and aquaculture studies have shown that male blotched snakehead exhibited significantly
larger body size and growth performance compared to females [10]. On top of other factors
such as metabolic levels and hormones, gut microbes are one of the important players in
determining nutritional capacity, and gender has a continuous effect on the formation and
development of the gut microbiota.

Gut microbiota were regarded as the “Second Genome” in animals and played a key
role in regulating growth and development. The growth rate of fish depended on their
gut’s ability to digest and absorb nutrients, and the gut microbiota’s ability to metabolize
and recycle nutrients [11]. Li and colleagues investigated differences in richness and
network structure functions of intestinal microbiota between male and female yellow drums
(Nibea albiflora). At the phylum level, their intestinal microbiota showed similar composition,
while significant differences in the relative abundance of Bacteroidetes, Firmicutes, and
Proteobacteria in their intestinal microbiota caused by gender were present [12]. Gruneck
et al. revealed that gender had a significant effect on the composition of the gut microbiota
during the development of Siamese fighting fish (Betta splendens) [13]. An experiment
conducted by Navarro-Barrónet demonstrated that feeding male and female zebrafish
a high-fat diet results in sex-specific changes in the diversity and composition of their
intestinal microbiota [14]. Li and colleagues identified significant distinctions regarding
intestinal microbiota in wild largemouth bronze gudgeon (Coreius guichenoti) between
the male and female. Prior research has demonstrated that the influence of gender on
the gut microbiota of the pufferfish Takifugu obscurus manifests primarily in the relative
abundance of specific bacterial taxa rather than in the overall community composition. This
implies that distinct bacterial communities, particularly those represented by genera like
Sphingomonas, may have the potential to impact individual growth rates differently across
genders [15]. Therefore, exploring and identifying the gut microbiota in fish individuals
based on their sex and body type were crucial for a comprehensive understanding of
the intestinal microbial community and its potential applications. The dominant phylum
was Proteobacteria, accounting for 97.6%, in males and Tenericutes and Proteobacteria,
accounting for 52.3% and 40.5%, respectively, in females [16]. Thus, the gut microbiota
played a crucial role in nutrition, immunity, and development, shaping a complex micro-
ecosystem within the intestine [15]. Gender has a persistent impact on the formation and
development of gut microbiota, even when considering other factors.

Currently, studies on blotched snakehead have generally focused on growth and
development, disease, muscle quality, breeding, and sex reversal. But, there has been
relatively little research conducted on the correlation between sexual dimorphism and gut
microbes. Given the industrial and economic importance of male blotched snakeheads to
modern freshwater aquaculture, it is imperative that the gut microbiota, which promote
their growth, be investigated. Previous research indicated that genetic development and
breeding studies of blotched snakeheads are a “hot issue” for the enhancement in genetic
traits and for their use as parents for hybrid snakeheads. Apparently, studies on how
gut microbiota impact growth performance in blotched snakehead were still lacking. In
this study, we aimed to (i) explore the differences of intestinal microbial community and
diversity, (ii) identify the potential microbial taxa that promote growth, and (iii) investigate
how gender shapes the discrepancy in the functional composition of gut microbiota.

2. Materials and Methods
2.1. Experimental Fish and Sample Collection

The experimental blotched snakeheads were obtained from a fish farm in Foshan
City, Guangdong Province, China. The blotched snakeheads had an initial body weight
of 5.0 ± 0.5 g and were fed on a commercial diet (dry matter: crude protein—48.1%,
crude lipids—11.3%, ash—12.3%, carbohydrates—20.1%, gross energy—19.3 kJ/g, and
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protein/energy ratio—26.0 mg/kJ; Alpha Feed Co., Ltd., Shenzhen, China) twice daily at
9:00 and 15:00 h [17]. The water temperature was at 25~28 ◦C, pH was 7.0~7.5, and the
dissolved oxygen content in water was kept above 5 mg·L−1. We employed skilled workers
from aquaculture farms to help us with the individual selection, and only adult fish were
allowed to be included in our experiments. At 120 days of the culture, 1000 fishes were ran-
domly collected from the farm for growth characterization (including body weight, length,
and height) and gender identification. By using a previously developed protocol reported
by Han et al. [18], a simple PCR-based genetic sex identification method in the blotched
snakehead (Channa maculata) developed by high-throughput sequencing, we identified
male (XY) and female (XX) individuals and removed supermale individuals (YY). After
ranking the experimental fish on the basis of body weight, the top-ranked nine individuals
and the bottom-ranked nine individuals were selected in both male and female groups. The
fishes with the maximum weight and minimum weight of both genders were considered
as the fast-growth group and low-growth group, respectively. Four groups separated by
gender and weight were established as follows: F-F (female fishes with fast growth, n =
9), F-S (female fishes with slow growth, n = 9), M-F (male fishes with fast growth, n = 9),
and M-S (male fishes with slow growth, n = 9). For the purpose of collecting intestinal
content samples, a total of 36 fish contributing to the four groups were individually eutha-
nized in pH-buffered tricaine methanesulfonate (250 mg/L) (Dr. Ehrenstorfer, Augsburg,
Germany). The entire intestine was surgically excised under sterile conditions and the
contents was collected carefully; we thoroughly mixed the intestinal contents originating
from the same group of 3 individuals and obtained 1 sample, and a total of 12 samples
were quenched by liquid nitrogen immediately and stored at −80 ◦C for further treatment.
All studies were rigorously conducted in alignment with the South China Agricultural
University’s Guide for the Care and Use of Laboratory Animals, and approved by the ethics
committee of Laboratory Animal Center of South China Agricultural University (Approval
Code: 201805021).

2.2. High-Throughput Sequencing

Microbial genomic DNA of the gut microbiota were extracted using commercial kit
MagPure Stool DNA KF Kit B (Guangzhou Magen Biotechnology Co., Ltd., Guangzhou,
China) according to the manufacturers’ instructions. The quality and concentration of
DNA were assessed using a NanoDrop2000 spectrophotometer (Thermo Fisher Scientific,
Waltham, MA, USA).

The 16S rRNA V3-V4 regions were amplified using the primers 341F (5′-CCTACGGGN
GGCWGCAG-3′) and 806R (5′-GGACTACHVGGGTATCTAAT-3′) [19]. The PCR reactions
were conducted using the following program: denaturation at 94 ◦C for 2 min, 30 cycles
of 10 s at 98 ◦C, then 30 s for annealing at 55 ◦C and 30 s for elongation at 68 ◦C, and
final extension at 68 ◦C for 5 min. Purified PCR products were sequenced on an Illumina
Nova6000 platform with the PE250 mode in GeneDenovo Biological Technology Co., Ltd.
(Guangzhou, China).

2.3. Bioinformatic and Statistical Analysis

The raw reads were filtered, assembled, and filtered to obtain clean tags. Then, the
clean tags were clustered into operational taxonomic units (OTUs) of more than 97%
similarity using the UPARSE (version 9.2.64) pipeline [20]. Classification was determined
using the abundant sequences against the GreenGenes database (version 13.8). Alpha
diversity indices including Shannon diversity, ACE richness, Pielou evenness, and Faith
PD were estimated using the R project. Beta diversities assessing similarity between
groups were displayed using non-metric multidimensional scaling (NMDS). OTUs whose
abundance > 0 and total proportion > 0.1% were selected for an indicator analysis using
the labdsv package in R. The linear discriminant analysis effect size (LefSe) was observed
to identify the biomarkers with an LDA threshold value = 2.5. A Venn diagram was used
to display the shared and unique OTUs among the groups. The phylogenetic investigation
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of communities by the reconstruction of unobserved states (PICRUSt) based on the Kyoto
Encyclopedia of Genes and Genomes (KEGG) databases and Functional Annotation of
Prokaryotic Taxa (FAPROTAX) was employed to predict the function [21]. A principal co-
ordinate analysis (PCoA) with a permutation multivariate analysis of variance (Adonis) was
applied to describe beta diversity of predicted functions. Differential predicted functions
between the fast-growth group (F) and the slow-growth group (S) were analyzed by
the negative binomial distribution using DESeq2 and visualized by a volcano plot. The
microbial co-occurrence networks at the OTU level based on Spearman’s correlation were
visualized by Gephi to estimate the microbial correlations and identify specific species
of high connectivity. The Spearman correlation scores were calculated and only robust
(Spearman’s r > 0.7 or r < −0.7) and statistically significant (p < 0.01) correlations were
retained [22]. The network topological indexes such as the node number, edge number, edge
density, degree centralization, betweenness centralization, average clustering coefficient,
complexity, and modularity were calculated to describe network properties.

Data of growth performance and network property indices were presented as the
mean ± standard error (SE). A two-way analysis of variance (ANOVA) with the Fisher
LSD precision test was employed to indicate the differences of microbial diversity caused
by growth and gender. Differences with a p-value < 0.05 were considered statistically
significant.

3. Results
3.1. Growth Performance Analysis

After the 120-day trial, the total length, height, standard length, and weight of blotched
snakeheads showed significant differences among the four groups (Table 1). The two-
way ANOVA indicated that the mixed effects of growth performance and sex were not
significant, while gender showed remarkable impact on weight (main effect, F = 68.97,
p = 0.001), full length (main effect, F = 36.155, p = 0.001), height (main effect, F = 26.333,
p = 0.001), and standard length (main effect, F = 46.231, p = 0.001).

Table 1. The basis growth performance parameters of each group.

Group (Mean ± SE)

F-F (n = 9) F-S (n = 9) M-F (n = 9) M-S (n = 9)

Total length
(cm) 32.33 ± 0.76 a 24.30 ± 0.62 b 34.93 ± 1.01 a 27.40 ± 4.26 b

Height
(cm) 6.43 ± 0.06 a 5.13 ± 0.42 b 6.70 ± 0.44 a 5.37 ± 0.65 b

Standard
length
(cm)

27.90 ± 1.15 a 20.90 ± 0.56 b 30.70 ± 0.75 a 23.53 ± 3.29 b

Weight
(g) 424.07 ± 38.13 a 184.97 ± 25.02 b 540.43 ± 50.34 a 262.50 ± 83.75 b

F-F: Female—fast; F-S: Female—slow; M-F: Male—fast; M-S: Male—slow. Different lowercase letter labels
represent significance between groups. Significant level: p < 0.05.

3.2. Microbial Taxonomic Composition

Proteobacteria (31.67~43.35%) were the dominant phylum among the four groups, fol-
lowed by Fusobacteria (1.10–36.46%), Bacteroidetes (7.93–20.38%), Cyanobacteria (6.32–18.60%),
and Fimicutes (7.44–11.14%). The top five phyla cumulatively exceeded 80% for all groups
(Figure 1A). The top three genera of each group are described below: (F-F group) Plesiomonas,
Cetobacterium, and Acinetobacteria; (F-S group) Plesiomonas, Akkermansia, and Dubosiella; (M-
F group) Plesiomonas, Cetobacterium, and Aeromonas; and (M-S group) Cetobacterium, Ple-
siomonas, and Aeromonas. The abundance of Cetobacterium was greater in males than in females.
Gammaproteobacteria were the major class across four groups, and Fusobacteria were en-
riched in male fish (Figure 1B). Order Xanthomonadaceae was only dominant in the group



Microorganisms 2024, 12, 871 5 of 15

F-F (Figure 1C). Fusobacteriales, Enterobacteriales, and Chloroplasts occupied approximately
half of the abundance of all families (Figure 1D). The proportion of Fusobacteria was greater
in males (15.00–36.46%) than it was in females (1.10–12.22%) while Bacteroidetes was greater
in females (7.64–20.38%) than it was in males (7.93–11.07%). At the genus level, the top ten
taxa accounted for approximately 50% (Figure 1E).

Microorganisms 2024, 12, x FOR PEER REVIEW 5 of 15 
 

 

3.2. Microbial Taxonomic Composition 
Proteobacteria (31.67~43.35%) were the dominant phylum among the four groups, 

followed by Fusobacteria (1.10–36.46%), Bacteroidetes (7.93–20.38%), Cyanobacteria 
(6.32–18.60%), and Fimicutes (7.44–11.14%). The top five phyla cumulatively exceeded 
80% for all groups (Figure 1A). The top three genera of each group are described below: 
(F-F group) Plesiomonas, Cetobacterium, and Acinetobacteria; (F-S group) Plesiomonas, Akker-
mansia, and Dubosiella; (M-F group) Plesiomonas, Cetobacterium, and Aeromonas; and (M-S 
group) Cetobacterium, Plesiomonas, and Aeromonas. The abundance of Cetobacterium was 
greater in males than in females. Gammaproteobacteria were the major class across four 
groups, and Fusobacteria were enriched in male fish (Figure 1B). Order Xanthomona-
daceae was only dominant in the group F-F (Figure 1C). Fusobacteriales, Enterobacteriales, 
and Chloroplasts occupied approximately half of the abundance of all families (Figure 
1D). The proportion of Fusobacteria was greater in males (15.00–36.46%) than it was in 
females (1.10–12.22%) while Bacteroidetes was greater in females (7.64–20.38%) than it 
was in males (7.93–11.07%). At the genus level, the top ten taxa accounted for approxi-
mately 50% (Figure 1E). 

 
Figure 1. Microbial composition in present study. Histogram of relative abundance at phylum level 
(A), class level (B), order (C) and family (D), and genus level (E). 

3.3. Alpha and Beta Diversity of Gut Microbiota 
To assess the effect of gender and performance on gut microbiota alpha diversity, 

Shannon diversity, ACE richness, Pielou evenness, and Faith PD indices were calculated 
(Figure 2A). All four indices indicated that alpha diversity of the fast-growth group (F, 
including F-F and M-F) was higher than it was in the slow-growth group (S, including F-
S and M-S). The Shannon diversity and Pielou evenness indices were higher in males; 
nevertheless, the ACE richness was higher in the females. Moreover, the Shannon diver-
sity, ACE richness, and Pielou evenness were significantly higher in F-F than in F-S (t test, 
p < 0.05). However, overall, the two-way ANOVA suggested that growth performances 
(main effect, F = 1.232, p = 0.299) and gender (main effect, F = 0.141, p = 0.717) in this study 
both did not have a significant impact on the Shannon diversity of gut microbiota. 

Figure 1. Microbial composition in present study. Histogram of relative abundance at phylum
level (A), class level (B), order (C) and family (D), and genus level (E).

3.3. Alpha and Beta Diversity of Gut Microbiota

To assess the effect of gender and performance on gut microbiota alpha diversity,
Shannon diversity, ACE richness, Pielou evenness, and Faith PD indices were calculated
(Figure 2A). All four indices indicated that alpha diversity of the fast-growth group (F,
including F-F and M-F) was higher than it was in the slow-growth group (S, including
F-S and M-S). The Shannon diversity and Pielou evenness indices were higher in males;
nevertheless, the ACE richness was higher in the females. Moreover, the Shannon diversity,
ACE richness, and Pielou evenness were significantly higher in F-F than in F-S (t test,
p < 0.05). However, overall, the two-way ANOVA suggested that growth performances
(main effect, F = 1.232, p = 0.299) and gender (main effect, F = 0.141, p = 0.717) in this study
both did not have a significant impact on the Shannon diversity of gut microbiota.

The Bray–Curtis distance was applied to calculate the beta diversity using NMDS
(Figure 2B). Results showed that separation between the four groups was not significant
enough with a stress value of 0.039. Most of the samples were displayed in the negative half
of the X-axis; moreover, the clusters of F-F and M-S were, respectively, independent despite
the cross by other groups. The results indicated that the similarly global composition was
shared between the four groups.
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Figure 2. Alpha and beta diversity of microbial community in present study. Alpha diversity, richness,
evenness, and phylogenetic diversity are illustrated by boxplot (A). NMDS plot shows the distinctions
of bacterial structure between groups (B). Different lowercase letter labels represent significance
between groups. Significant level: p < 0.05.

3.4. Linking Growth Performance and Gender to Biomarkers

The Venn diagram indicates that there were 345 OTUs shared among all groups (Figure 3A).
F-F and M-F shared 58 specific OTUs while F-S and M-S shared 54 specific OTUs. Specifically,
518, 589, 400, and 323 OTUs were unique to F-F, F-S, M-F, and M-S, respectively. The all-shared
bacterial OTUs were taxonomically assigned into 9 phyla, 16 classes, 30 orders, 46 families,
and 61 genera. Proteobacteria was recognized as the most abundant core phylum between
groups. Family Enterobacteriaceae from class Gammaproteobacteria was the dominant taxa
in the core microbiota. The shared bacterial OTUs between F-F and M-F were classified into
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8 phyla, 13 classes, 22 orders, 33 families, and 32 genera. The dominant taxa in the shared
microbiota between F-F and M-F was family Burkholderiaceae from class Gammaproteobacteria.
A total of 7 phyla, 11 classes, 17 orders, 23 families, and 25 genera were identified in the shared
OTUs between F-S and M-S, whose major taxa were the same as the core microbiota among
all groups.
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Figure 3. Effect of gender and growth performance on gut microbiota. Venn diagram of OTU
distribution (A), indicator analysis of keystone potential indicators (B), LEfSe analysis revealed the
most vital biomarker (C), and the genus-level biomarkers correlated to growth performance (D).
Significant level: **, p < 0.01.

The indicator analysis suggested that OTU96 (phylum Firmicutes, genus Quinella)
and OTU271 (phylum Proteobacteria) with IndVal being more than 0.9 were the most
probable indicators in F-S and M-S, respectively (Figure 3B). Most indicators were identified
in the M-F. Five OTUs with IndVal > 0.7, including OTU154 (phylum Proteobacteria,
genus Acinetobacter), OTU204 (phylum Firmicutes, genus Lactobacillus), OTU233 (phylum
Firmicutes, genus Faecalibacterium), OTU487 (phylum Proteobacteria, genus Escherichia-
Shigella), and OTU620 (phylum Proteobacteria, genus Roseomonas), were considered as the
strongest potential indicators in M-F. The LEfSe analysis was used to further determine the
prominent bacterial taxa driving the distinctions of gut microbiota. Results with a threshold
value = 2.5 displayed that the counts of enriched biomarkers in M-F, F-F, and M-S were
14, 6, and 2 (Figure 3C). Obviously, there were more enriched biomarkerable taxa in the
fast-growth groups and male groups. Biomarkers of M-F were more widely distributed in
phylogenetic evolution. At the genus level, Anaerostipes (LDA score = 2.97), Deinococcus
(LDA score = 2.90), Amaricoccus (LDA score = 2.70), Flavonifractor (LDA score = 2.53),
Roseomonas (LDA score = 2.73), Acidovorax (LDA score = 2.55), Thermosporothrix (LDA
score = 3.10), and Lachnoclostridium_5 (LDA score = 2.51) were the biomarkers identified
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with M-F. The shared biomarker between F-F and M-F was enriched in phylum Deinococcus-
Thermus. At the genus level, Escherichia-Shigella significantly showed positive correlation
to all four indices (p < 0.05, Figure 3D).

3.5. Structure of Potential Metabolic Function and Microbial Network

The FAPROTAX analysis showed the metabolic distinctions between groups. A
heatmap indicated that the respiration of sulfate and sulfur compounds was the main
microbial function in F-F (Figure 4A). However, several kinds of methane and sulfur
metabolisms, including methanogenesis by CO2 reduction with H2, hydrogenotrophic
methanogenesis, methanogenesis, sulfur respiration, sulfite respiration, methanol oxidation,
and methylotrophy, were more greatly enriched in M-F. Methanotrophy, aerobic nitrite
oxidation, and nitrification were the dominant microbial metabolisms with M-S. To further
demonstrate the structural variation of microbial metabolism, the principal co-ordinate
analysis (PCoA) based on Bray–Curtis distance was employed. The two axes accounted for
approximately 60% of the result of PCoA (Figure 4B). Results of Adonis showed that there
was not a significant difference in microbial functions within group F and group S, while
the structure of group F was more contracted and centralized than that of group S.
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In order to gain a thorough understanding of up- and down-regulated metabolism,
a differential expression analysis was performed to identify the keystone orthologies
(threshold: log2(Fold Change) = 3.5, p-value = 0.05) (Figure 4C). Results showed that 9 or-
thologies were significantly up-regulated, including K01852 (lanosterol synthase), K01045
(arylesterase or paraoxonase), K119119 (type VI secretion system lysozyme-related protein),
K11422 (N-trimethyltransferase), K19615 (insecticidal toxin), K12980 (flagellar motor switch
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protein FliG), K11777 (HAD superfamily phosphatase), K12600 (superkiller protein 3),
and K17248 (acetylgalactosaminyltransferase). Only K07256 (taurine dehydrogenase large
subunit) and K15538 (glycoprotein endo-alpha-1,2-mannosidase) were down-regulated.

The microbial network was created with a Spearman correlation analysis with p < 0.05
and correlation > 0.7 (Figure 5). The four stable and significant co-occurrence networks
had positive correlation. Profiles and parameters of the networks indicated no differ-
ences between groups (Table 2). The mean parameters of each network are described
as follows: nodes = 56, edges = 218, edge density = 0.14, degree centralization = 0.14,
betweenness centralization = 0.01, average clustering coefficient = 0.93, complexity = 3.90,
modularity = 0.62.
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Table 2. The topographic parameters of co-occurrence networks.

Group (Mean ± SE)
F p

F-F (n = 3) F-S (n = 3) M-F (n = 3) M-S (n = 3)

Nodes 56.67 ± 0.58 56.00 ± 1.73 56.00 ± 1.00 55.33 ± 2.89 0.281 0.838
Edges 220.67 ± 5.77 211.00 ± 22.52 219.00 ± 7.81 222.67 ± 2.31 0.517 0.682

Edge density 0.14 ± 0.00 0.14 ± 0.01 0.14 ± 0.01 0.15 ± 0.01 1.036 0.427
Degree centralization 0.14 ± 0.01 0.14 ± 0.01 0.14 ± 0.01 0.15 ± 0.00 0.488 0.700

Betweenness
centralization 0.01 ± 0.00 0.01 ± 0.00 0.01 ± 0.00 0.01 ± 0.00 1.484 0.291

Average clustering
coefficient 0.93 ± 0.01 0.92 ± 0.00 0.93 ± 0.00 0.93 ± 0.00 1.169 0.380

Complexity 3.89 ± 0.06 3.76 ± 0.29 3.91 ± 0.15 4.03 ± 0.17 1.018 0.434
Modularity 0.62 ± 0.01 0.62 ± 0.02 0.62 ± 0.01 0.61 ± 0.01 0.690 0.583

F-F: Female—fast; F-S: Female—slow; M-F: Male—fast; M-S: Male—slow.

4. Discussion

Previous studies on blotched snakeheads have focused on its variance of meat quality
and nutritional value caused by gender, whereas there is not enough information on the
intestinal microbiota. Gut microbiota played a vital role to the host, especially the fish,
and understanding the regulation and composition of the gut microbiome in blotched
snakeheads was crucial in comprehending their viability and growth capacity in cultured
environments [23]. This study aimed to determine the change in microbial community
composition, diversity, predicted functions, and co-occurrence networks grouped by gender
and growth performance.

Proteobacteria were the most abundant core phylum between groups and are also
recognized as a common type of bacteria found in natural habitats. This diverse group of
bacteria includes various genera and species, causing distribution in fish to vary depending
on the specific type, which was distributed throughout the aquatic environment. Chang
et al. found that after the infection of Aeromonas hydrophila, the abundance of Fusobacteria
increased [24], despite that it was considered as common taxa found in other studies of
freshwater fishes and environments [25,26]. Various investigations have concluded that
Bacteroidetes can break down complex polymers, leading to easier food digestion and nutri-
ent absorption, especially for components found in vegetarian meals, which was consistent
with the increased crude fiber content added to the diets fed to blotched snakeheads [27].
Moreover, they may also contribute to the host’s growth by assisting in digestion and
nutrient acquisition [28,29]. This suggested that differences in the composition and abun-
dance of the gut flora of males and females may be an important source of differences in
their growth.

At the genus level, Cetobacterium was the most abundant taxa. The commensal micro-
aerotolerant anaerobic bacteria Cetobacterium somerae played a significant ecological role in
the intestinal tracts of freshwater fish [30]. Notably, the metabolites of Cetobacterium were
highly concentrated in vitamin B12, which was believed to enhance the overall health of
fish [31]. The results of the alpha diversity analysis revealed that the microbial communities
in males exhibited higher diversity and evenness, whereas those in females had more
richness. This suggests that females may harbor a greater variety of microorganisms with
unique functions and occupying different ecological niches within their gut.

Microbial networks are intricate structures that denote the interactions between diverse
microorganisms in a community [32]. These interactions can involve various relationships
such as symbiotic, competitive, and coexistent, shaping the ecosystem of the microbial com-
munity. Microbial networks were distinctive, given that microbial communities fluctuate
across environments and ecosystems [33]. Nevertheless, they were also uniform, as some
ecological principles and patterns were commonly observed within microbial networks.
In the present study, although there were marked differences in microbial community
structure, taxonomy composition, and functional distributions among groups, the topo-
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logical networks remained similar. As a result, there was convergence in the microbial
networks of the four sub-groups differentiated by growth and sex. This further implies that
although the microbial community was highly variable among individuals, the symbiotic
and competitive relationships of the microorganisms were quite similar among individuals
of the same species [34].

Some microorganisms played a central role in the microbial community, performing
key functions and producing metabolites that promoted the host’s growth performance. The
Red Queen Hypothesis proposed an objective explanation for species evolution, focusing
on the need for certain species to constantly evolve in order to ensure their survival in the
field of biology [35]. To maintain their niche in the ecosystem, species evolved to adapt to
and counteract the evolution of other species. This view emphasized the importance of
ecological competition and asserts that organisms must evolve to adapt to the evolution
of other species in order to maintain their position in the ecosystem. It is known to us
that females have a lower growth rate compared to males in nature and, as a result, the
ecological niche and the nutritional conditions in the female gut were less favorable for the
microorganisms. Therefore, the taxonomic and evolutionary developmental status of gut
biomarkers at the OTU level was extensive in males. However, it was limited and sparse in
females. This could be an explanation for the higher amount of biomarkers in males and
the lower amount of biomarkers in females.

Family Burkholderiaceae, the dominant taxa shared by F-F and M-F, were regarded
as hazardous microorganisms that contain extreme virulences capable of disrupting im-
mune function [36]. It was amazing that some members of Deinococcus-Thermus, which
was identified as a biomarker in F-F and M-F, exhibited remarkable resistance to harsh
environmental conditions, like oxidative stress and high toxics [37,38]. This evidence
suggested that non-numerically dominant biomarkers confer significant functional advan-
tages in specific conditions and regulate the health of the host’s gut microbiota through
pathways that include metabolites and community sensing. Significant biomarkers at the
genus level could explain the differences between fast growth and slow growth, and could
further be the composition of potential comprehensive prebiotic formulations. Genera
with metabolic functions of short-chain fatty acids (SCFAs) could be a potential microbial
contribution to fast growth. For instance, Roseomonas was capable of producing SCFA,
while certain strains of Anaerostipes have the ability to metabolize dietary inositol into
short-chain fatty acids such as propionate and butyrate [39,40]. Also, the increase in pop-
ulations of Faecalibacterium with a concomitant promotion in butyrate production was
observed [41]. Acinetobacter can be a key microbial genus for improving gut microbiota
dysbiosis in high-sucrose diets (HCDs) by activating intestinal pathogenic bacteria in re-
sponse to inflammation [42]. Therefore, more research is still needed to determine the key
microorganism of blotched snakeheads in growth.

By creating a viable environment for survival, regulating immune responses, and
providing essential nutrients for beneficial microorganisms to thrive while suppressing
harmful microorganisms, the host maintained the balance of microorganisms in the gut [43].
The health of the host depended on this balance of host–microbial interactions. Meanwhile,
gut microbiota had a broad-spectrum influence on the host, encompassing diverse aspects
of digestion, immunity, and the nervous system [34]. They assisted in the digestion and
absorption of nutrients, preservation of the intestinal mucosal barrier, modulation of the
immune response, and synthesis of vitamins and other bioactives, and ultimately impacted
metabolism and body weight [44,45]. In our study, Escherichia-Shigella, which was consid-
ered as a pathogen, showed positive correlation with four indices of growth performances.
We noticed that Escherichia-Shigella was not very abundant in any group, so it may be that
the metabolic functions of other microorganisms weakened its pathogenicity and abun-
dance. In our study, Escherichia-Shigella, which was considered as a pathogen, showed
positive correlation with four indices of growth performances. We noticed that Escherichia-
Shigella was not very abundant in any group, so it may be that the metabolic functions of
other microorganisms weakened its pathogenicity and abundance. Escherichia-Shigella
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was commonly found in gut samples. These species pose a threat to fish health in a physio-
logically unbalanced environment [46], while in the conditions of the current study, their
relative abundance probably did not affect the fish to the point of developing disease. It was
obvious that sulfur-related metabolism and methanogenesis were the dominant microbial
function of M-F and F-F, while methanotrophy and nitrogen-related metabolism occupied
the larger proportion in F-S and M-S. Sulfur cycling is critical in microbial biochemistry
for the synthesis of coenzymes, including coenzyme A and coenzyme M; the utilization of
sulfur compounds such as thiols; and the production of vitamins such as thiokinase and
thione [47]. In cellular metabolism, coenzyme A and coenzyme M perform critical catalytic
and electron transfer functions [48]. By directly or indirectly participating in the sulfur
cycle, microorganisms influence the synthesis of these coenzymes and regulate the energy
metabolism of organisms [49]. It played an integral role in supporting bacterial metabolism
and overall microbial community dynamics. The microbial nitrogen cycle influenced and
regulated the nutrition of individual organisms through the transformation of nitrogen into
a variety of forms in which microorganisms play a critical role. The nitrogen cycle regulated
the form and availability of nitrogen in organisms, directly or indirectly affecting protein
and nucleic acid synthesis [50]. Ultimately, the nitrogen cycle had a significant impact on
the growth and development of organisms. It is worth noting that the differences in micro-
bial function within groups F and S were still not deemed significant; the structures within
group F were more contracted and centralized than those within group S. It was evident
that, besides differences triggered by gender, preferences in gut microbial function can also
contribute to variations in growth performance. In fast-growing populations, gut microbes
primarily produced gut-healthy substances such as coenzymes and vitamins, whereas in
slow-growing populations, metabolizing as well as digesting and absorbing substances
took precedence. It was suggested that the screening of microorganisms that are able to
secrete small molecules, as well as important organic compounds such as coenzymes and
vitamins, from individuals with growth advantages has significant potential for research
and practical applications [51,52].

5. Conclusions

To summarize, we found that microbial diversity, composition, and metabolic func-
tions were influenced by both gender and growth performance, but not the microbial
network. Specifically, male blotched snakeheads exhibited higher Shannon diversity and
Pielou evenness indices, while females showed higher ACE richness. The most abun-
dant phylum was Proteobacteria, with Fusobacteria enriched in males and Bacteroidetes
enriched in females. Cetobacterium was the most abundant genus. Phylum Deinococcus-
Thermus emerged as a significant biomarker. In fast-growing groups, gut microbes were
likely to produce gut-healthy substances, such as coenzymes and vitamins, due to the preva-
lence of sulfur metabolism. Our findings suggested that gender influences the composition
and abundance of gut microbial biomarkers, leading to differential growth performance
by shaping specific metabolic functions. Further research is needed to understand the
underlying causes of these growth differences. Overall, this study offered new insights for
understanding and exploiting the potential of the gut microbiome.
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