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Abstract: Ethyl carbamate (EC) is a natural by-product in the production of fermented food and
alcoholic beverages and is carcinogenic and genotoxic, posing a significant food safety concern. In
this study, Clavispora lusitaniae Cl-p with a strong EC degradation ability was isolated from Daqu
rich in microorganisms by using EC as the sole nitrogen source. When 2.5 g/L of EC was added
to the fermentation medium, the strain decomposed 47.69% of ethyl carbamate after five days of
fermentation. It was unexpectedly found that the strain had the ability to produce aroma and ester,
and the esterification power reached 30.78 mg/(g·100 h). When the strain was added to rice wine
fermentation, compared with the control group, the EC content decreased by 41.82%, and flavor
substances such as ethyl acetate and β-phenylethanol were added. The EC degradation rate of the
immobilized crude enzyme in the finished yellow rice wine reached 31.01%, and the flavor substances
of yellow rice wine were not affected. The strain is expected to be used in the fermented food industry
to reduce EC residue and improve the safety of fermented food.

Keywords: ethyl carbamate; degradation Clavispora lusitaniae; ester production; rice wine

1. Introduction

Ethyl carbamate, also known as urethane, is a natural by-product in the production of
fermented foods [1] and fermented beverages [2]. In 1943, Nettleship et al. discovered the
potential carcinogenicity of EC, which is a food-borne carcinogen that can cause lymphoma,
lung tumors, liver cancer, skin cancer and other diseases. In 2007, the International Agency
for Research on Cancer (IARC) classified EC as Class 2A [3]. Therefore, it is of great
significance to study the content control of ethyl carbamate in fermented beverage wine.

EC is formed from precursors (urea, cyanate radical, carbamoyl phosphate, citrulline
and diethyl pyrocarbonate) through different processes. Once EC is formed, it is very
stable and difficult to eliminate. Biological enzymatic methods (acid urease and urethanase)
have the characteristics of high efficiency, strong specificity and mild action conditions,
which make it a focus in solving the problem of EC in alcoholic beverages. Therefore,
in 1990, Kobashi [4], a Japanese scholar, identified Citrobacter sp. in the mouse intestine.
After the first discovery and confirmation of urethanase that can degrade EC, a large
number of scholars have conducted a lot of research on EC degradation. So far, however,
many strains that degrade EC have been found, including Bacillus licheniformis 1013 and
Bacillus licheniformis 12107 [5,6], Marine micrococcus [7] and Rhodococcus equistrain TB-60 [8],
Rhodotorula sp. [9], Penicillium variabile [10], Klebsiella pneumoniae [11], Lysinibacillus fusiformis
SC02 [12], Exiguobacterium sp. Alg-S5 [13], Meyerozyma caribbica SKa5 [14], Candida para-
psilosis [15], Aspergillus oryzae [16], Agrobacterium tumefaciens d3 [17], and Enterobacter sp.
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R-SYB082 [18]. However, only Rhodococcus equistrain TB-60, Lysinibacillus fusiformis SC02
Acinetobacter calcoaceticus, Candida parapsilosis, Aspergillus oryzae, Agrobacterium tumefaciens
d3 and Enterobacter sp. R-SYB082 obtained the gene sequence of urethanase. However,
even though urethanase can be expressed heterologously, the problems of urethanase, such
as low affinity for EC, acid resistance and ethanol resistance, cannot be applied to degrade
trace EC in alcoholic beverages (rice wine, yellow rice wine, Baijiu, etc.), and the problem
of EC in fermented beverage wine has not been well solved. In view of this problem, in
order to improve the safety and quality of fermented wine (wine, rice wine, yellow rice
wine and Baijiu) in China, in recent years, people began to consider breeding fermentation
strains with low urea and ethyl carbamate to be used in the production and fermentation
process. Among the many above-mentioned strains that degrade ethyl carbamate, except
Rhodococcus equi, Klebsiella pneumoniae, Acinetobacter calcoaceticus and Candida parapsilosis,
most of them are bacteria, and the fermentation ability of bacteria in wine brewing is far
less than mold and yeast, and wine brewing only needs yeast. Therefore, it is necessary to
screen out more beneficial yeast with EC degradation ability and higher application value
in the production of wine, rice wine, yellow rice wine and Baijiu.

Presently, only two strains of yeast, Meyerozyma caribbica SKa5 and Candida parapsilo-
sis, have been identified, with Candida parapsilosis being a conditional pathogen [19] that
may not be entirely safe for actual production processes. Therefore, this study screened
Clavispora lusitaniae Cl-p for its strong EC degrading ability. Some studies have shown that
Clavispora lusitaniae is an ester-producing yeast; Lin [20] used it as a wine starter to ferment
fruit wine, and Jiang [21] combined it with other strains to prepare a microecological prepa-
ration of traditional Chinese medicine for preventing and treating diarrhea in ruminants.
Consequently, the application of Clavispora lusitaniae in the brewing process of fermented
wine can help control EC content, enhance the flavor profile of the wine body and improve
overall safety. We aim to make practical contributions to reducing the EC level in yellow
rice wine, rice wine, Baijiu, wine and other fermented wine, so as to promote the healthy
development of the fermented food industry in China.

2. Materials and Methods
2.1. Materials and Reagents

Microorganisms come from Daqu in a winery in Yibin. Daqu is crushed into powder
and packed in clean fresh-keeping bags. The ethyl carbamate is from Macklin Co., Ltd.,
Shanghai, China and the rice leaven Angel Yeast Co., Ltd., Yichang, China.

2.2. Culture Medium

YPD medium (Sangon Co., Ltd., Shanghai, China); the YPD solid medium needs
25 g/L agar powder (AOBOX Co., Ltd., Beijing, China).

Nitrogen source screening medium (g/L): 2 glucose (AOBOX Co., Ltd., Beijing, China),
5 ethyl carbamate (Macklin Co., Ltd., Shanghai, China), 2 sodium acetate (Chron Chem-
icals Co., Ltd., Chengdu, China), 5 NaCl (Chron Chemicals Co., Ltd., Chengdu, China),
2 KH2PO4 (Chron Chemicals Co., Ltd., Chengdu, China), 0.005 Bromocresol Violet (Chron
Chemicals Co., Ltd., Chengdu, China), pH natural.

Fermentation medium (g/L): 2 glucose (AOBOX Co., Ltd., Beijing, China), 2.5 ethyl
carbamate (Macklin Co., Ltd., Shanghai, China), 2 NaCl (Chron Chemicals Co., Ltd.,
Chengdu, China), 1 peptone (AOBOX Co., Ltd., Beijing, China), 2.5 KH2PO4 (Chron
Chemicals Co., Ltd., Chengdu, China), pH natural.

Wort medium (g/L): 50 malt powder (Solarbio Co., Ltd., Beijing, China), 10 yeast
powder (AOBOX Co., Ltd., Beijing, China), pH natural.

Enzyme producing medium (g/L): 250 bran (Yibin, China), distilled water 0.1, pH
natural.

The above mediums were sterilized at 115 ◦C for 30 min.
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2.3. Screening of Ethyl Carbamate-Degrading Strains

Weigh 10 g Daqu powder and put it in 90 mL sterile normal saline (250 mL triangular
bottle), shake it for 2 h at 30 ◦C and 180 r/min, absorb 1 mL enriched bacterial solution
and add it to 9 mL of normal saline, to obtain different dilution gradients (10−1, 10−2, 10−3,
10−4, 10−5, 10−6, 10−7). Select bacterial liquid with dilutions of 10−4, 10−5, 10−6 and 10−7

and coat it on YPD solid medium for streaking separation (purification for 2–3 times) until
a typical single colony is selected.

Initial screening: The single colonies isolated were selected, inoculated with YPD
liquid medium for activation, then inoculated with 2% (v/v) in nitrogen source screening
medium, oscillated for 2 d at 30 ◦C, 180 r/min, and screened by color reaction (the dark
ones were selected).

Re-screening: The initially screened colonies were inoculated on fermentation medium
(control group: fermentation medium without adding strains), oscillated at 30 ◦C, 180 r/min
for 5 d, and centrifuged at 7000 rpm for 10 min. The sample was pretreated by the improved
method [22] and passed through a 0.22 µm filter membrane. GC-MS [22]: DB-WAX column
(60 m × 0.25 mm × 0.25 µm) and the inlet temperature was 250 ◦C. The initial temperature
was kept at 50 ◦C for 1 min, then increased to 180 ◦C at 8 ◦C/min for 20 min and then kept
at 240 ◦C for 5 min. The solvent delay was 17 min. Carrier gas: high purity He, flow rate
1.5 mL/min and shunt injection 10:1. The sample size was 1 µL. Mass spectrum conditions:
electron energy: 70 eV; transmission line temperature: 250 ◦C; ion source temperature:
230 ◦C; quadrupole temperature: 150 ◦C. Detection methods: select ion detection (SIM),
ethyl carbamate select monitoring ion (m/z): 62.0, 74.0, 89.0, quantitative ion 62.0; and
D5-ethyl carbamate-monitoring ions (m/z): 64, 76, quantitative ions 64.0. The content of EC
in the fermentation medium was detected, and the strains with a strong ability to degrade
EC were screened out.

2.4. Identification of Strains

Morphological identification: The isolated strains were marked on YPD solid medium,
and the colony morphology was observed with the naked eye. Single colonies were selected
for Meilan staining, and their morphological characteristics were observed using an optical
microscope.

Molecular biological identification: the DNA of the strain was extracted by Solarbio’s
fungal genomic DNA extraction kit and amplified by PCR using universal primers ITS1 (5′-
CTTGGTCATTTAGAGAGGAAGTAA-3′) and ITS4 (5′-TCCTCCTCCTCCGGTTGATTATGC-
3′). PCR amplification procedure: pre-denaturing at 94 ◦C for 3 min, denaturing at 94 ◦C for
30 s, and annealing at 55 ◦C for 30 s and 72 ◦C for 1 min. After 30 cycles, it was extended
to 72 ◦C for 10 min and finally stored at 4 ◦C. The PCR products were sequenced, and the
sequencing results were compared and analyzed by blast provided by National Center for
Biotechnology Information (NCBI), and then the phylogenetic tree was constructed by the
Neighbor-Joining method using MEGA7.0 software to judge its species.

2.5. Analysis on the Tolerance and Fermentation Performance of the Strain

After activating the strain in YPD liquid medium, the cell concentration reaches
4.47 × 108 CFU/mL, inoculated with a 5% (v/v) dosage in YPD medium with different
ethanol content (0%, 5%, 7%, 8%, 9%, 10%), different NaCl content (0%, 5%, 10%, 12%, 13%,
14%, 15%) and different pH (3, 4, 5, 6, 7, 8, 9) at 30 ◦C. The biomass of OD600 was measured
by oscillating culture at 180 r/min for 24 h to explore the tolerance of the strain. (YPD
medium with different contents of ethanol, NaCl and pH without added yeast was used as
the blank control).

Referring to the method of Zou Mouyong [23], the activated strain (cell concentration
is the same as Section 2.5) was inoculated into wort medium with an inoculation amount of
2% (v/v) for culture, fermented at 30 ◦C and 150 r/min for 4 d, and then the aroma was
evaluated. Then, the activated strain (cell concentration is the same as Section 2.5) was
inoculated in the enzyme-producing culture medium with an inoculation amount of 5%
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(v/v), incubated at 35 ◦C for 7 d, then exposed to the sun to dry and stored for later use.
The liquefaction enzyme, saccharification enzyme and esterification enzyme were analyzed
by QB/T 4257-2011 [24].

2.6. Application of Cl-p Strain in Rice Wine Fermentation

The method of Gui Jiangping [25] was used to simulate rice wine brewing (the control
group was set respectively: adding 4 g rice leaven to 1 kg glutinous rice; experimental
groups: add 8 mL of the Cl-p strain with the same cell concentration as 2.5 to 1 kg glutinous
rice and rice leaven with the same as that of the control group). After fermentation, the
fermentation mash of the above groups was filtered, and the prepared filtrate (rice wine)
was stored at 4 ◦C. The filtered rice wine was centrifuged at 7000 rpm for 10 min. The urea
content is determined according to the diacetyl oxime method in GB/T18204.2-2014 [26].
The improved Mo et al. [27] method was used to pretreat rice wine samples with a 0.22 µm
filter membrane. The content of ethyl carbamate and its flavor composition in the prepared
rice wine were respectively detected by GC-MS (same method as Section 2.3) [28].

2.7. Application of Cl-p Strain Crude Enzyme in Finished Yellow Rice Wine

Preparation and immobilization of crude enzyme: The 20 mL (cell concentration is the
same as Section 2.5) bacterial suspension (1 g/mL) was crushed by ultrasound to obtain
the crude enzyme, which was then immobilized by the glutaraldehyde/calcium alginate
capsule method [29] and fully mixed with 20 mL sodium alginate solution (40 g/L). Then,
a syringe was used to add calcium chloride (20 g/L) solution at a rate of 4–8 drops/s,
calcified overnight, filtered to obtain immobilized pellets, washed with deionized water,
placed in 0.2% glutaraldehyde solution and shaken for 2 h at 30 ◦C. The control group
included the inactivated 20 mL (cell concentration of the same as Section 2.5) bacterial
suspension (1 g/mL) and the crude enzyme solution obtained by ultrasonic crushing, and
20 mL ultra-pure water was fully mixed with 20 mL sodium alginate solution (40 g/L),
respectively, and the immobilized pellets were prepared by the above operation. The
immobilized crude enzyme solution, immobilized inactivated crude enzyme solution and
immobilized ultra-pure water were obtained by washing the sediment repeatedly with
deionized water.

Refer to the method of Liu Qingtao [30] and make a slight modification: The strain
crude enzyme and immobilized strain crude enzyme were added to yellow rice wine
samples (artificially added to an EC content of 500 µg/L, pH 4.5) with a final concentration
of 5000 U/L and a corresponding amount of immobilized enzyme solution, respectively,
and oscillated at 37 ◦C for 48 h. The change in the EC content in samples and the effect of
the addition of the strain crude enzyme on the flavor substances of yellow rice wine were
detected. (The control group was immobilized pellets prepared by adding the inactivated
strain crude enzyme and ultra-pure water; same detection method as Section 2.6).

3. Results and Discussion
3.1. Isolation and Screening of Ethyl Carbamate-Degrading Strains

The strains for preliminary screening were selected based on the color change in
bromocresol violet from yellow to purple, which is caused by the reaction between amidease
or urethanase and EC resulting in ammonia production [31]. In this experiment, 14 strains
of yeast were isolated and purified from Daqu. Four strains were selected from the initial
screening with darker color changes in the culture medium. These strains, namely Cl-2,
Wc, Cl-p and Yq, are shown in Figure 1A.

The potential target strains obtained from the preliminary screening were inoculated
into the fermentation medium for 5 d, and then the consumption of ethyl carbamate in the
fermentation liquid was detected by GC-MS. As shown in Table 1, the Cl-p strain exhibited
the highest degradation ability, with a degradation rate of 47.69%. The Cl-2 strain showed
the lowest degradation rate at only 8.4%, while the Wc and Yq strains had degradation
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rates of 15.6% and 20.8%, respectively. Because the Cl-p strain has the best degradation
ability of ethyl carbamate, it is taken as the follow-up research object.
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strains; (A) color changes of different strains using medium (EC as nitrogen source); (B) morphological
characteristics of Cl-p colonies observed with naked eye; (C) microscopic observation of characteristics
of Cl-p strains stained by Meilan (16 × 40).

Table 1. Degradation rate of ethyl carbamate by strains.

Strain EC Content (g/L) Degradation Rate (%)

Control 2.50 ± 0.03 -
Cl-2 2.29 ± 0.05 8.4%
Wc 2.11 ± 0.03 15.6%
Cl-p 1.31 ± 0.04 47.69%
Yq 1.98 ± 0.02 20.8%

“-” indicates no degradation rate.

3.2. Identification of Cl-p Strain

The Cl-p strain was inoculated on YPD solid culture medium to examine its appearance
and morphology, as illustrated in Figure 1B; the strain exhibited vigorous growth, forming
a swollen, thick, milky white colony with a distinctly circular edge. The microscopic
observation of the Cl-p strain after staining with methylene blue (Figure 1C) revealed a
blue oval sphere. The DNA of the Cl-p strain was extracted, followed by the amplification
of its ITS sequence, and the species of the Cl-p strain was inferred by Blastn sequence
comparison analysis. The results showed that the ITS sequence of the Cl-p strain had the
highest homology with 98.45% similarity between the Cl-p strain and Clavispora lusitaniae.
We attempted to submit the ITS sequencing results of this strain to NCBI and obtained the
login number PB2733. As shown in Figure 2, the Cl-p strain and Clavispora lusitaniae were
clustered in the same branch and were closely related, so they were identified as Clavispora
lusitaniae. The Cl-p strain was stored in the Strain Preservation Center of Wuhan, China
with the storage number CCTCC M 20232114.
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3.3. Analysis of Tolerance and Fermentation Performance of Cl-p Strain

The tolerance of the Cl-p strain to ethanol, NaCl and pH was investigated; the ex-
perimental data were plotted in the form of “mean ± SD”. It can be seen from Figure 3A
that the Cl-p strain can grow normally within a pH range of 3.0 to 9.0, the optimal growth
concentration is at pH 6.0 and the strain can still grow normally at pH 3.0. As can be seen
from Figure 3B, with the increase in alcohol concentration, the bacterial concentration of
the Cl-p strain showed an overall trend of decline, and the strain could grow normally
under the conditions of 0~7% ethanol concentration, while the strain could still grow when
the ethanol concentration was 9%. As can be seen from Figure 3C, the Cl-p strain can grow
normally when the NaCl content is 0% to 14% but almost stops growing when the NaCl
content is 15%; it shows that the Cl-p strain has a strong stress resistance, can survive in
high acidity, high ethanol concentration and a high permeability environment, and has the
potential to be used in fermented food.
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Next, the fermentation performance of the Cl-p strain was investigated by mak-
ing bran Qu. The experimental data are expressed as “mean ± SD”. As shown in
Table 2, the liquefaction power of the Cl-p strain was 0.45 mg/(g·h), and the saccha-
rification power was 271 mg/(g·h). Compared with the fermentation properties mea-
sured by Yang Yazhen [32] (a liquefaction power of 0.89 mg/(g·h) and saccharification
power of 267 mg/(g·h)), the liquefaction power was lower and the saccharification power
was slightly higher. Zhang Zhigang [33] determined that the liquefaction power of tra-
ditional Daqu was only 0.66 mg/(g·h). The esterification power of the Cl-p strain was
30.78 mg/(g·100 h), which was in line with the 30 mg/(g·100 h) stipulated in Article 244 of
the enterprise standard QB/T5188-2017 Brewing Red Yeast [34]. We expect that the next
experiments with Clavispora lusitaniae will improve the flavor and quality of rice wine [35].
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Table 2. Fermentation performance of Bran Qu made by Cl-p strain.

Fermenting Property Bran Qu

liquefaction power 0.45 ± 0.01 mg/(g·h)
Saccharification power 271 ± 25.51 mg/(g·h)

esterification power 30.78 ± 0.29 mg/(g·100 h)

3.4. The Utilization of the Cl-p Strain in the Fermentation Process of Rice Wine
3.4.1. Contribution of Cl-p Strain to Decrease in EC Content in Rice Wine Fermentation

The effect of adding Clavispora lusitaniae Cl-p on the urea and EC content in simulated
rice wine fermentation is shown in Figure 4. Urea is one of the precursor substances of EC,
and studies have shown that the reaction between urea and ethanol is the main pathway
for producing EC in fermented wine. It was found that the urea content in the experimental
group was 8.54 mg/L (Figure 4A), which was 42.14% lower than the urea content in the
control group (14.67 mg/L). It was found that the generation of EC in the control group was
198.03 µg/L, while the content of EC in the rice wine prepared by the experimental group
was significantly reduced compared to the control group, only 115.22 µg/L (Figure 4B),
with a degradation rate of 41.82%. According to statistics, the EC content in yellow rice
wine produced in China is the highest, about 100–750 µg/L [36], and the EC content in
rice wine is about 13–575 µg/L [37]. Researchers have tested the changes in the urea
and EC content during the fermentation process of yellow rice wine, indicating a certain
positive correlation between urea and EC [38]. In this study, the addition of the Cl-p strain
significantly reduced the content of EC after simulating rice wine fermentation, which
may be due to the decomposition and utilization of some precursor substances like urea
by the strain, resulting in a decrease in EC. It is also possible to decompose urea while
also decomposing the formed EC. Yu [39] inoculated Lactobacillus brevis as an enhanced
strain into the fermented rice wine Qu, which could reduce the EC content by 40%. Jia [40]
produced Baiqu-fermented Redqu yellow rice wine by adding Rhizopus oryzae JQA3; the EC
content decreased by 39.13%, but there was a negative correlation between the urea content
and EC content; Yu [41] co-fermented yellow rice wine by adding Saccharomyces cerevisiae
and Qu, and detected a decrease of 70.06% and 68.73% in urea and EC concentrations,
respectively. The ability of Clavispora lusitaniae Cl-p to degrade EC and urea is higher than
that of Rhizopus oryzae JQA3 and Lactobacillus brevis and lower than that of Saccharomyces
cerevisiae. However, by adding Clavispora lusitaniae Cl-p to simulate rice wine fermentation,
the content of EC in the rice wine fermentation process can be well controlled.
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3.4.2. Effect of Cl-p Strain on Flavor Substances of Rice Wine

The flavor composition and changes in the prepared rice wine (control group and
experimental group) were detected by GC-MS, and the influence of adding Clavispora
lusitaniae Cl-p on the flavor of rice wine was explored. As can be seen from Table 3, a total
of 35 flavor substances were detected, and the main flavor substances included 7 alcohols,
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4 esters, 9 acids, 8 aldehydes, 5 ketones and 1 alkene. A total of 22 species were detected in
the control group and 28 in the experimental group. It included the increase in three higher
alcohols (2-methyl-1-Propanol, 3-methyl-1-Butanol, 2-Phenylethyl Alcohol) and three esters
(Ethyl Acetate, 2-Hydroxyacetic acid ethyl est, Methyl 6-oxoheptanoate). Unexpectedly,
it was found that β-phenylethanol could be produced by adding Clavispora lusitaniae to
simulate fermentation. β-phenylethanol is an aromatic alcohol with the fragrance of roses,
which is not only an important aroma component of Daqu but also an important component
and precursor of liquor flavor. Fan [35] et al. found that Clavispora lusitaniae has a high
yield of phenylethanol and can produce a small amount of ethyl acetate without adding
acetic acid, which has potential application value in the development of sweet liquor. Ming
Hongmei [42] found that Wickerhamomyces anomalus could produce β-phenylethanol and
optimized the fermentation conditions. Wickerhamomyces anomalus is an important aromatic
yeast and has been applied to various fermented foods and fermented beverages [43,44].
Clavispora lusitaniae is also a flavor-producing yeast and is also confirmed in patent CN
111363686 B [20] as a flavor-producing yeast. Clavispora lusitaniae has a good ability to
produce alcohol [45], and it can also produce some esters, aldehydes and other flavor
compounds, which can give liquor, rice wine, wine and other alcoholic beverages unique
characteristics [46]. The fermentation of rice wine with Clavispora lusitaniae Cl-p also
produced ethyl acetate (floral, honey, caramel flavor), phenylacetaldehyde (fruity, wine
flavor) and other important flavor substances. These compounds can affect the quality of
rice wine. Clavispora lusitaniae Cl-p applied to rice wine production can not only reduce the
content of EC in the fermentation process and improve the safety of rice wine but also has
potential application value in improving the quality of rice wine.

Table 3. Contents of flavors substances in rice wine prepared by adding Cl-p strain.

Compounds Control (mg/L) Cl-p (mg/L)

2-methyl-1-Propanol - 0.63 ± 0.02
3-methyl-1-Butanol - 1.95 ± 0.05
2,3-Butanediol 1.78 ± 0.03 2.21 ± 0.03
2-Furanmethanol 1.97 ± 0.05 1.77 ± 0.03
2-Phenylethyl Alcohol - 6.88 ± 0.03
1-Propanol 1.41 ± 0.06 -
Glycerin 10.44 ± 0.10 10.25 ± 0.04
dl-Glyceraldehyde dimer 13.70 ± 0.25 -
Ethyl Acetate - 4.80 ± 0.02
2-Hydroxyacetic acid ethyl est - 0.11 ± 0.01
Methyl 6-oxoheptanoate - 0.45 ± 0.02
Isosorbide Dinitrate 0.56 ± 0.04 0.50 ± 0.01
Cycloserine 0.26 ± 0.04 -
Acetic acid 5.60 ± 0.14 4.20 ± 0.01
Formic acid 1.91 ± 0.05 1.05 ± 0.02
O-(phenylmethyl)-L-Serine 0.37 ± 0.02 -
O-Acetyl-L-serine 0.77 ± 0.04 -
3-hydroxy-Dodecanoic acid 0.24 ± 0.02 0.29 ± 0.01
Muramic acid 5.54 ± 0.19 -
Alanine - 0.06 ± 0.001
î-N-Formyl-L-lysine - 0.22 ± 0.01
5-(hydroxymethyl)-2-Furancarboxaldehyde 2.97 ± 0.08 2.06 ± 0.02
3-(methylthio)-Propanal - 0.16 ± 0.02
Phenylacetaldehyde - 0.53 ± 0.02
5-methyl-2-Furancarboxaldehyde 0.50 ± 0.02 -
Furfural 0.95 ± 0.03 0.33 ± 0.02
hydroxy-Acetaldehyde 1.16 ± 0.01 0.68 ± 0.02
2-methyl-Propanal 0.89 ± 0.02 1.33 ± 0.03
Acetaldehyde - 1.14 ± 0.03
3-hydroxy-2-Butanone - 0.96 ± 0.02
1-hydroxy-2-Propanone 0.63 ± 0.04 0.69 ± 0.01
2-hydroxy-2-Cyclopenten-1-one 1.03 ± 0.02 0.83 ± 0.02
2,3-dihydro-3,5-dihydroxy-6-methyl-4H-Pyran-4-one 1.11 ± 0.02 0.89 ± 0.02
1,3-dihydroxy-2-Propanone - 1.31 ± 0.02
(R*,R*)-(ñ)-2,2′-Bioxirane 1.05 ± 0.02 0.84 ± 0.02

“-” indicates no detected.



Microorganisms 2024, 12, 882 9 of 13

3.5. Application of Cl-p Strain Crude Enzyme in Finished Rice Wine
3.5.1. Degradation of EC in Finished Yellow Rice Wine by Crude Enzyme of Cl-p Strain

Earlier, we investigated the ability of the Cl-p strain to decompose EC in the rice
wine fermentation system and found that it could effectively reduce the content of EC
in the simulated fermentation process. We speculated that the Cl-p strain might contain
urethanase. Therefore, the Cl-p strain crude enzyme and immobilized crude enzyme were
added to the finished yellow rice wine, and the application effect of its enzyme solution
was explored through the degradation effect test of EC in yellow rice wine, which laid the
foundation for the mining of functional genes of EC degradation in the Cl-p strain and also
provided experimental data for the application of urethanase.

The effect of EC decomposition on finished yellow rice wine (pH 4.5, 15% ethanol con-
centration, v/v) treated with the Cl-p strain crude enzyme and immobilized crude enzyme
for 48 h (Control is the control, I is the crude enzyme treatment, II is the immobilized crude
enzyme treatment, III is the inactivated crude enzyme treatment, IV is the immobilized
ultra-pure water treatment) is shown in Figure 5. The EC content of the control group was
557.52 µg/L, and the EC content of the yellow rice wine treated with III and IV was barely
different from that of the control group, while the EC content of the yellow rice wine was re-
duced by 132.83 µg/L and 172.9 µg/L after the crude enzyme and the immobilized enzyme
treatment, respectively, and the degradation rate reached 23.83% and 31.01%, respectively.
Compared with the unimmobilized enzyme, the degradation effect of the immobilized
enzyme is better, which may be due to the concentration of ethanol in yellow rice wine and
the acidic environment limiting the ability of the unimmobilized enzyme to degrade EC,
while the immobilized enzyme can improve the stability and adaptability of the enzyme to
the environment and improve its ability to degrade EC. Zhou [10] added purified enzymes
from Penicillium vaginata to wine and added 0.9 U/mL of enzymes to remove 35% of EC
in wine. Dong [47] immobilized urethanase purified from Acinetobacter calc-acetoacetate
after treating liquor for 12 h. The degradation rates of EC by the immobilized enzyme and
unimmobilized enzyme were 65.5% and 64.8%, respectively. The ability of the immobilized
and unimmobilized enzyme to degrade EC in the Cl-p strain was inferior to that of purified
urethanase. It may be that the enzyme system of the crude enzyme is relatively complex,
and the coordination or inhibition of multiple enzymes leads to a poor degradation effect.
Therefore, the specific mechanism of Cl-p strain-mediated EC degradation needs to be
further studied.
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3.5.2. Influence of Cl-p Strain Crude Enzyme on Flavor Substances of Finished Yellow
Rice Wine

The flavor components of yellow rice wine are a complex consisting of volatile compo-
nents such as alcohols, esters, ketones, phenols, organic acids, polyphenols, amino acids,
sugars and other substances [48]. As an important component of yellow rice wine flavor,
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volatile flavor substances play a decisive role in the typicality of yellow rice wine. Through
the study of volatile flavor substances in yellow rice wine, it was found that ethyl acetate,
isobutanol, ethyl lactate vinegar, acetic acid, isoamyl alcohol and β-phenylethanol are the
main volatile flavor substances in yellow rice wine [49–51], mainly alcohol esters, which
affect the flavor and taste of yellow rice wine.

As shown in Table S1 and Figure 6, 48 flavor substances were detected in yellow rice
wine by gas chromatography–mass spectrometry (GC-MS), including 13 alcohols, 17 esters,
7 acids, 7 aldehydes, 2 ketones and 2 phenols. β-phenylethanol (86.22 ± 1.02 mg/L in the
control group) was the highest flavor substance in the sample, followed by isoamyl alcohol
(73.78 ± 0.30 mg/L in the control group). Compared with the control group, the contents
of octanol, nonyl alcohol, octanediol, isoamyl lactate and propanol in yellow rice wine
treated with I (crude enzyme) increased slightly, while capric acid, 3-octanone, 2-nonone
and 4-vinylphenol disappeared. The contents of propanol, β-phenylethanol, nonyl alcohol
and caprylic acid in yellow rice wine treated with II (immobilized crude enzyme) were
slightly increased, while 3-octanone, 2-nonone and 4-vinylphenol were not detected. The
contents of propanol and nonylaldehyde in yellow rice wine treated with III (inactivated
crude enzyme) were slightly increased, while the contents of nonyl alcohol, 1-octene-3-ol,
caprylic acid, caprylic acid and 4-vinylphenol were not detected, and the contents of other
substances were slightly decreased but within the threshold range [52].
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Figure 6. The heatmap of flavors’ substances in yellow rice wine after treatment with the crude
enzyme and immobilized enzyme and at 37 ◦C for 48 h. The heatmap of the 13 alcohols, 17 esters,
7 organic acids, 7aldehydes, 2 ketones and 2 phenols is shown with separated colors on the left side.
“Control-l, 2, 3” represents the control group. “I-1, 2, 3” indicates the crude enzyme treatment; “II-l, 2,
3” indicates the immobilized crude enzyme treatment; “III-1, 2, 3” indicates the inactivated crude
enzyme treatment.

In general, the total content of flavor substances in yellow rice wine before and after
treatment with immobilized enzyme and unimmobilized enzyme had little effect on the
flavor of yellow rice wine [10]. Dong [47] verified that esterase could degrade ester content
in Baijiu, while the reduction in ester substances in yellow rice wine in this study was
no more than 2 mg/L. Therefore, we concluded that the Cl-p strain may contain either
amidase or esterase.

4. Conclusions

In this study, Clavispora lusitaniae Cl-p with a strong ability to degrade EC was isolated
from Nongxiangxing Daqu using a screening medium with EC as the only nitrogen source,
and the degradation rate of EC (2.5 g/L) in the fermentation medium of this strain could
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reach 47.69%. Clavispora lusitaniae Cl-p has good acid resistance, ethanol resistance and
salt resistance. Clavispora lusitaniae Cl-p, an aroma-producing yeast, was applied to simu-
lated rice wine fermentation. The EC content of the prepared rice wine was measured at
115.22 µg/L, which falls below the standard EC content in distilled wines from the United
States and France (less than 150 ug/L). Moreover, a significant reduction of 41.82% in the EC
content was observed compared to the control group. The change in the flavor substances
in rice wine was detected. Due to the addition of Clavispora lusitaniae Cl-p, important flavor
substances including ethyl acetate, β-phenylethanol, phenylacetaldehyde, isobutanol and
isoamyl alcohol were increased. We hypothesized that Clavispora lusitaniae Cl-p would
secrete urethanase and subsequently investigated the efficacy of its crude enzyme solution
in degrading EC in finished yellow rice wine. The immobilized crude enzyme solution
exhibited a degradation rate of 31.01% for EC without compromising the sensory attributes
of yellow rice wine.

At present, we have conducted preliminary research on the application of EC-degrading
strains in the brewing process and the presence of urethanases in this strain. In subse-
quent research, it is necessary to explore the functional genes of Cl-p strains degrading
urethanases, analyze the EC degradation pathway, clarify the mechanism of Clavispora lusi-
taniae Cl-p degrading EC, promote its application in fermented food and ensure food safety.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/microorganisms12050882/s1, Table S1: Changes of flavor sub-
stances in finished rice wine treated by Cl-p strain crude enzyme, immobilized crude enzyme and at
37 ◦C for 48 h.
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