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Simple Summary: Understanding how traits evolve across different life stages is crucial for species
with complex life cycles. We investigated how tadpole morphology relates to adult shape in Neoaus-
trarana frogs, finding that larval and adult shapes show low correlation. Our study, encompassing
83 species across four families, highlights the importance of considering ontogenetic stages in evolu-
tionary research. We observed distinct patterns among families, with larval morphospace exhibiting
higher phylogenetic structure than adult morphospace. Our results support the Adaptive Decoupling
Hypothesis as a mechanism driving phenotypic diversity, shedding light on the early evolution of
Neoaustrarana frogs and emphasizing the need for further research in this area.

Abstract: Phenotypic traits can evolve independently at different stages of ontogeny, optimizing
adaptation to distinct ecological contexts and increasing morphological diversity in species with
complex life cycles. Given the relative independence resulting from the profound changes induced
by metamorphosis, niche occupation and resource utilization in tadpoles may prompt evolutionary
responses that do not necessarily affect the adults. Consequently, diversity patterns observed in
the larval shape may not necessarily correspond to those found in the adult shape for the same
species, a premise that can be tested through the Adaptive Decoupling Hypothesis (ADH). Herein,
we investigate the ADH for larval and adult shape differentiation in Neoaustrarana frogs. Neoaus-
trarana frogs, particularly within the Cycloramphidae family, exhibit remarkable diversity in tadpole
morphology, making them an ideal model for studying adaptive decoupling. By analyzing 83 repre-
sentative species across four families (Alsodidae, Batrachylidae, Cycloramphidae, and Hylodidae),
we generate a morphological dataset for both larval and adult forms. We found a low correlation
between larval and adult shapes, species with a highly distinct larval shape having relatively similar
shape when adults. Larval morphological disparity is not a good predictor for adult morphological
disparity within the group, with distinct patterns observed among families. Differences between
families are notable in other aspects as well, such as the role of allometric components influencing
shape and morphospace occupancy. The larval shape has higher phylogenetic structure than the
adult. Evolutionary convergence emerges as a mechanism of diversification for both larval and adult
shapes in the early evolution of neoaustraranans, with shape disparity of tadpoles reaching stable
levels since the Oligocene. The widest occupation in morphospace involves families associated with
dynamically changing environments over geological time. Our findings support the ADH driving
phenotypic diversity in Neoaustrarana, underscoring the importance of considering ontogenetic
stages in evolutionary studies.

Keywords: adaptive decoupling hypothesis; evolutionary convergence; shape disparity; complex life
cycles; tadpoles; Alsodidae; Batrachylidae; Cycloramphidae; Hylodidae
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1. Introduction

The interpretation of shape as a phenotypic trait subject to variation throughout
ontogeny is one of the central issues in developmental biology [1–3]. Many species of
vertebrates differ conspicuously from each other in shape but exhibit considerable morpho-
logical similarity throughout embryonic development, an observation known for centuries,
e.g., [4,5]. This phenotypic differentiation becomes particularly evident for species with
complex life cycles [6,7], such as anuran amphibians. In most anurans, ontogeny is di-
vided into two discrete phases, with distinct ecological characteristics and well-defined
body plans, separated by a process of metamorphosis. Ecologically, the shift from a pre-
dominantly aquatic to primarily terrestrial niche entails essential differences in resource
utilization (feeding, microhabitat). This may represent a turning point in phenotypic
diversification patterns before and after metamorphosis [8,9] and may be interpreted in
the conceptual framework of the hypothesis of adaptive decoupling (ADH). The ADH
proposes the independent evolution of phenotypic traits expressed at different stages of the
life history, many of which lack equivalents in other ontogenetic phases [10]. Its implication
would be an optimization of adaptation in both ecological contexts [8,9]. While expected
in animals with complex life cycles, the discontinuity between pre- and postmetamorphic
traits should be verified for each trait of interest, as it is not obligatory, e.g., [10–14]. In some
cases, the association between traits across ontogenetic phases may confer adaptive value
per se; in others, the genetic factors acting in all phases may be interdependent [15–17].

Given that a central prediction arising from ADH is the expectation of greater mor-
phological and ecological diversification in response to dissociation [18], groups with high
ecomorphological diversity may be particularly suitable for adaptive decoupling. In this
sense, the anuran family Cycloramphidae stands out as a remarkable group, compris-
ing species whose tadpoles greatly differ from pond-type tadpoles characteristic of other
groups. The family currently comprises 37 species organized into 2 genera, Thoropa and Cy-
cloramphus [19], primarily distributed in the Brazilian Atlantic Forest. These frogs are typical
inhabitants of forested areas, with species associated with leaf litter, rocky outcrops, or swift
streams [20–24]. Adult specimens breed in aquatic or terrestrial environments [20,22,25],
five of them having semifossorial habits (gr. C. bolitoglossus) [20,22,26,27]. In turn, tadpoles
of most species are semiterrestrial, dwellers of wet rocks and rivulets, and characterized by
a distinct, streamlined body shape, e.g., [22–26]. Ten species exhibit endotrophic nidicolous
development, whereby a free-living, non-feeding larval stage occurs coupled with some
anatomical modifications [28].

Recent phylogenetic analyses consistently recover Cycloramphidae along with another
group from the Atlantic Forest (Hylodidae) and two Patagonian families (Alsodidae and
Batrachylidae), in a well-supported clade called Neoaustrarana [29–33]. Despite tadpole
morphology in these other families being somewhat closer to the typical larval form of other
anurans, ecological niche usage denotes an interesting diversity, allowing for a comparative
approach within a broader diversification context. Within these lineages, species occur in
lotic (e.g., species of Hylodidae) [34–36], lotic–lentic, and lentic environments (e.g., species
of Alsodidae and most Batrachylidae) [37–41], with some species exhibiting terrestrial
oviposition (Batrachyla spp.) [37,40,42] and endotrophic nidicolous development (Eupsophus
spp.) [40,43,44]. An example of this diversity is shown in Figure 1.

In this work, we follow the pioneer approach by [45], who compared larval and adult
shape disparity in Australian frogs and discussed patterns of convergent and divergent
evolution associated to morphological diversification along ontogeny. Departing from
Cycloramphidae and its salient tadpole ecomorphological diversity, we explore larval
and postmetamorphic shape diversification in the broader context of Neoaustrarana. We
inquire about the influence of phylogenetic and functional diversity on shape variation
and reconstruct morphological evolution along evolutionary time. Finally, we discuss our
results in the context of the adaptive decoupling hypothesis.
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Figure 1. Larval and adult diversity in Neoaustrarana. Cycloramphidae: semifossorial adult of Cy-
cloramphus heyeri and semiterrestrial tadpoles of Thoropa taophora (photos by F.F. Curcio and D. 
Baldo); Hylodidae: lotic benthic tadpole of Megaelosia goeldii and torrential adult of Phantasmarana 
tamuia (photos by F. Tubarão and L. Malagoli); Batrachylidae: terrestrial male of Batrachyla antar-
tandica guarding eggs and pond-type tadpoles in a tree hole, and semiaquatic adult of Hylorina syl-
vatica (photos by F. Rabanal and D. Baldo); Alsodidae: adult specimen of Alsodes australis and male 
of Eupsophus altor guarding endotrophic tadpoles in a terrestrial nest (photos by D. Baldo and F. 
Rabanal). 

  

Figure 1. Larval and adult diversity in Neoaustrarana. Cycloramphidae: semifossorial adult of
Cycloramphus heyeri and semiterrestrial tadpoles of Thoropa taophora (photos by F.F. Curcio and D.
Baldo); Hylodidae: lotic benthic tadpole of Megaelosia goeldii and torrential adult of Phantasmarana
tamuia (photos by F. Tubarão and L. Malagoli); Batrachylidae: terrestrial male of Batrachyla antartandica
guarding eggs and pond-type tadpoles in a tree hole, and semiaquatic adult of Hylorina sylvatica
(photos by F. Rabanal and D. Baldo); Alsodidae: adult specimen of Alsodes australis and male of
Eupsophus altor guarding endotrophic tadpoles in a terrestrial nest (photos by D. Baldo and F. Rabanal).
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2. Materials and Methods
2.1. Sample and Data Acquisition

To analyze the relationship between larval and adult morphologies, we restricted our
sample to species for which data on both developmental stages are available. Our study fo-
cuses on 83 out of 127 species described in four neoaustraranan families [30]: 22/30 known
species of Alsodidae, 8/12 species of Batrachylidae, 20/37 species of Cycloramphidae, and
33/48 species of Hylodidae. We compiled a dataset with external morphology description
per species, with information taken from photographs on vouchered biological material,
and illustrations and data available in the literature (Supplementary Table S1). For larval
morphology, we followed a two-dimensional geometric morphometric approach. On a set
of 112 photographs/drawings of tadpoles (n = 1 or 2 per species; developmental stages
26–41 [46]), a set of 32 landmarks was defined based on [47] (Supplementary Figure S1).
Landmarks were digitized by the same person, and configurations were digitally unbent
to correct tail curvature due to fixation artifacts [48]. TpsDig 2.17 and TpsUtil 1.58 were
used [48,49], and mean shape values per species were generated with the geomorph R
package [50]. For adult morphology, we took linear measurements from dorsal and lateral
images of mostly male specimens (4 females and 11 individuals with no sex information;
Supplementary Table S1). Ten measurements were selected following [51] (Supplementary
Figure S1) and registered by the same person using ImageJ [52]. For species where it was
not possible to obtain biological material or illustrations, we used measurements available
in original descriptions, taxonomic revisions, or general literature. We used the missMDA r
package [53] to impute missing values based on principal component analysis (PCA). To
explore preliminarily ecomorphological diversity, we assigned species to larval and adult
functional groups, following [54] and species accounts (Supplementary Table S1).

2.2. Statistical Analysis

All the following procedures and analyses were performed in the R statistical environ-
ment v.4.3.2 [55]. For the larval dataset, we derived a shape coordinate matrix through a
Generalized Procrustes Analysis (GPA) on mean shape data. To control for the effect of lar-
val developmental stage in shape variation, we performed a Procrustes ANOVA with genus,
family, ecomorphological guild, and developmental stage as factors. Gosner developmental
stages were collapsed into three categories as follows: limb bud (Stages 26–30), autopodium
development (Stages 31–37), and tarsal tubercle differentiation (Stages 38–41) [46], and R2

and p-values were considered to assess factor relative importance [50]. Other variables
known to have a significant effect on tadpole shape, especially at an intraspecific level (e.g.,
competition, predation) [56,57], were not considered. For the adult dataset, we transformed
measurements (excepting snout–vent length) through the log-shape ratios approach (LSR),
a natural logarithm transformation of data corrected by geometric mean [58]. Both GPA
and LSR approaches are analogous regarding the correction for size while retaining the
allometric shape variation [45]. First, to explore shape variation along ontogeny, we gener-
ated larval and adult morphospaces by performing a Principal Component Analysis (PCA)
on shape matrices (larval Procrustes coordinates and adult size-corrected measurements)
through the R package stats [55]. To investigate allometry by family, we employed mul-
tivariate regressions of shape on size (larval total length and adult snout–vent length as
natural logarithm-transformed values) on the whole dataset and per family. Allometric
trends were illustrated in geomorph, by summarizing shape as the first principal compo-
nent of a matrix of predicted shapes as well as the distribution of raw regression scores
(projections of data points onto an axis in the direction of the regression vector) [50,59]. The
statistical significance of regressions was evaluated by permutations (9999 iterations).

To consider the role of evolutionary history in morphological diversification across
neoaustraranan larval and adult morphospaces, we employed the dated topology recently
proposed by [31]. Most of the species comprising our sample are represented in this phy-
logenetic hypothesis (74 out of the 83 species we sampled). Utilizing the PC1 scores per
species, we used the geomorph R package to compute the phylogenetic signal of shape for
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both datasets using Blomberg’s K. These K values tend to be higher than 1 when closely
related species exhibit more similar shapes than expected, while K values less than 1 in-
dicate lower similarity among closely related species. We projected the phylogeny into
morphospaces, and we used the convevol R package [60] to perform Stayton’s C1–C4
measures of convergent evolution, as indicated by branch projections into the same re-
gion of the phylomorphospace [61]. We assessed the alignment of species positioning on
morphospaces by using PC1 scores. Stayton’s C1–C4 measures assess the reduction in
distance between taxa over time, indicating increasing morphological similarity (C1), the
magnitude of morphological change between convergent taxa (C2), and a normalization of
this magnitude relative to the evolutionary time of the whole phylogenetic tree (C3) or a
specific clade (C4). Together, these measures provide a framework to infer the correlation
between phenotypes according to phylogenetic relationships and functional groups. By
considering both the magnitude of changes and the evolutionary context, they offer distinct
insights into larval and adult morphological convergence. We evaluated the significance
of convergences through permutations (1000 iterations) under the reference phylogenetic
hypothesis. To address uncertainty in tree topology and divergence time estimates, we
used 100 suboptimal trees to repeat the calculation of Stayton’s C1–C4 measures, showing
results as boxplots.

To visualize the scale and directionality of larval and adult shape evolution over time,
we estimated and plotted ancestral body shape as a traitgram, using phytools [62]. We
estimated ancestral shapes by the reconstruction of PC1 scores under maximum likelihood
as a continuous character. From the ancestral estimation of morphospace position, we can
infer how the morphospace occupation of a given taxa varies along clade diversification.
We employed ancestral estimation along phylogenetic branches to examine morphologi-
cal disparity over time in Neoaustrarana, following the approach suggested by [63]. We
defined time bins based on intervals of geological ages along Neoaustrarana node depth,
interpolating PC1 scores on the time-scaled tree branches, as in a gradual model [64]. To
interpolate data, we used the observed PC1 scores at terminals and the ultra-fast maxi-
mum likelihood ancestral state reconstruction for the nodes obtained with the Rphylopars
package [65]. Then, we calculated the sum of variances using branch-interpolated values
at the midpoint of each time bin to access the morphological disparity through time. The
process is analogous to the morphological disparity inferred in geomorph, which is based
on Procrustes variance [50].

Considering that adaptive decoupling would result in a break between variation in
larval and adult morphological patterns, it is reasonable to hypothesize that this propo-
sition can be assessed by examining the degree of correlation in shape between the two
developmental stages. We evaluated the strength of correlation between the two datasets
through a Mantel test, using the vegan package [53]. We computed Euclidean dissimilarities
between species on tadpole and adult shape matrices and assessed statistical significance
of Spearman’s correlation through permutations (9999 iterations). Additionally, we in-
vestigated whether shape variation in tadpoles is correlated to adult shape variation. We
assessed morphological disparity on tadpole and adult shape matrices and followed [66] to
account for uncertainty using a permutation approach. We used the geomorph package
to calculate the morphological disparity of subsets of half the total sample, iterating this
process along 1000 times. As the general pattern for Neoaustrarana may not adequately
describe family-specific trends, we repeated the procedure by family. We calculated the
Spearman’s correlation between larval and adult morphological disparities for all cases.

3. Results
3.1. Shape and Size

Larval and adult morphospaces are shown in Figure 2. The first two principal com-
ponents explain 87.7% of larval shape variation (Figure 2a). Variation in PC1 is mostly
associated with body and tail height increase, with cycloramphid tadpoles clearly diverging
from the rest. Distribution along PC2 is explained mainly by body/tail ratio, with some
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relevant divergences at the genus level (Supplementary Figure S2). Among the Alsodidae,
Eupsophus species exhibit longer tails than Alsodes; the same trend is observed in Hylodes
as compared to other hylodids. Cycloramphus larvae display a highly variable body/tail
ratio, whereas this trait tends to be more consistent among Thoropa tadpoles. Procrustes
ANOVA highlights the significant effects of family (R2 = 0.22), genus (R2 = 0.45), and eco-
morphological guild (R2 = 0.19), on larval shape variation; the effect of developmental stage
resulted non-significant (R2 = 0.008; p > 0.6), thus we dismissed this for further interpreta-
tion (Supplementary Table S2). In adult frogs, the first two principal components explain
64.4% of shape variation (Figure 2b). Variation in PC1 is mostly explained by eye–nostril
and internarial distances, with hylodid species tending to show separate nostrils closer to
the eyes in comparison with other groups. Increasing scores on PC2 associate mainly with
larger interorbital distances and short feet (Supplementary Figure S3). At the genus level,
Thoropa frogs tend to have larger feet and shorter interorbital distance than Cycloramphus,
as seen in Crossodactylus regarding other hylodids (Supplementary Figure S2).

Animals 2024, 14, x FOR PEER REVIEW 6 of 19 
 

3. Results 
3.1. Shape and Size 

Larval and adult morphospaces are shown in Figure 2. The first two principal com-
ponents explain 87.7% of larval shape variation (Figure 2a). Variation in PC1 is mostly 
associated with body and tail height increase, with cycloramphid tadpoles clearly diverg-
ing from the rest. Distribution along PC2 is explained mainly by body/tail ratio, with some 
relevant divergences at the genus level (Supplementary Figure S2). Among the Alsodidae, 
Eupsophus species exhibit longer tails than Alsodes; the same trend is observed in Hylodes 
as compared to other hylodids. Cycloramphus larvae display a highly variable body/tail 
ratio, whereas this trait tends to be more consistent among Thoropa tadpoles. Procrustes 
ANOVA highlights the significant effects of family (R2 = 0.22), genus (R2 = 0.45), and eco-
morphological guild (R2 = 0.19), on larval shape variation; the effect of developmental 
stage resulted non-significant (R2 = 0.008; p > 0.6), thus we dismissed this for further inter-
pretation (Supplementary Table S2). In adult frogs, the first two principal components ex-
plain 64.4% of shape variation (Figure 2b). Variation in PC1 is mostly explained by eye–
nostril and internarial distances, with hylodid species tending to show separate nostrils 
closer to the eyes in comparison with other groups. Increasing scores on PC2 associate 
mainly with larger interorbital distances and short feet (Supplementary Figure S3). At the 
genus level, Thoropa frogs tend to have larger feet and shorter interorbital distance than 
Cycloramphus, as seen in Crossodactylus regarding other hylodids (Supplementary Figure 
S2). 

 
Figure 2. Larval (a) and adult (b) morphospaces for Neoaustrarana. Results of principal component 
analyses are shown, with species ordination on the two first principal components (PC). Defor-
mation grids on larval morphospace illustrate shape change along axes, whereas arrows in the adult 
biplot are linear variables with higher correlations to axes. END: eye–nostril distance; IND: inter-
narial distance; IOD: interorbital distance; FL: foot length. 

Size variation relates to shape variation in tadpoles stronger than in adults (20.4% 
versus 7.2%; p < 0.001 for both regressions; Table 1). Although a large part of the differ-
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interaction in the tadpole dataset indicates different allometric patterns at this stage (3.8%, 
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Figure 2. Larval (a) and adult (b) morphospaces for Neoaustrarana. Results of principal component
analyses are shown, with species ordination on the two first principal components (PC). Deformation
grids on larval morphospace illustrate shape change along axes, whereas arrows in the adult biplot
are linear variables with higher correlations to axes. END: eye–nostril distance; IND: internarial
distance; IOD: interorbital distance; FL: foot length.

Size variation relates to shape variation in tadpoles stronger than in adults (20.4%
versus 7.2%; p < 0.001 for both regressions; Table 1). Although a large part of the differences
among families appears to be independent from size (57.8% and 19.8% in tadpoles and
adults, respectively; p < 0.001 for both regressions; Table 1), a significant size–family
interaction in the tadpole dataset indicates different allometric patterns at this stage (3.8%,
p < 0.001). A significant effect of size on shape change is recovered in tadpoles of all
families excepting Batrachylidae (Supplementary Table S3). Allometric trends highlight
how larval allometric patterns in cycloramphids diverge from those of other families,
whereas in the adult dataset, overlapping distributions obscure differentiation (Figure 3
and Supplementary Figure S4). The high shape–size variation rate in larval cycloramphids
implies a rapid change to flattened tadpoles as size increases (12.3% of shape change
explained by size increase; p = 0.04). Hylodid tadpoles reach the largest sizes, and a
comparatively small but still significant effect of size on shape change is recovered (6.7%;
p = 0.03). In adults, allometry is recovered significantly in Batrachylidae and Hylodidae
(Supplementary Table S3), with different shape/size variation patterns apparently mostly
related to interorbital distance and foot length (Figure 3 and Supplementary Figure S4).
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Table 1. Shape and size relationship in larval and adult Neoaustrarana. Procrustes ANOVA of shape
on size (larval total length and adult snout–vent length as natural logarithm-transformed values)
by family.

df SS MS Rsq F Z p-Value

Tadpoles: shape~ln(TL 1) × family
ln(TL) 1 0.33499 0.33499 0.20377 849.852 43.726 <0.001
family 3 0.95021 0.31674 0.57798 803.536 74.096 <0.001
ln(TL):family 3 0.06318 0.02106 0.03843 53.427 46.174 <0.001
Residuals 75 0.29563 0.00394 0.17982
Total 82 164.401
Adults: shape~ln(SVL 2) × family
ln(SVL) 1 1.6673 1.66729 0.07172 7.9340 3.6049 <0.001
family 3 4.6146 1.53821 0.19849 7.3197 5.1940 <0.001
ln(SVL):family 3 1.2055 0.40182 0.05185 1.9121 1.6838 0.051
Residuals 75 15.7610 0.21015 0.67794
Total 82 23.2484

1 TL: total length; 2 SVL: snout–vent length; df: degrees of freedom; SS: sum of squares; MS: mean squares; Rsq:
R-squared; F: test statistics; Z: effect size.
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Figure 3. Allometric patterns in tadpoles (a) and adults (b) of Neoaustrarana. Shape is represented as
the first principal component of a matrix of predicted shapes obtained from multivariate regression
of shape on size. Deformation schemes depict shape changes along the axes, tending to higher
body/tails in large larvae, and to flattened shapes with increasing PC1 score. In adults, allometric
patterns can be interpreted from the biplot at the upper right, where the smallest (empty circles) and
largest (solid circles) species are shown, and morphological changes are hinted by their ordination
regarding relevant linear measurements. END: eye–nostril distance; IND: internarial distance; IOD:
interorbital distance; FL: foot length.

3.2. Morphological Evolution

Phylogenetic structure of shape variation is strong in neoaustraranan tadpoles
(K = 4.26; p = 0.001). Phylomorphospace shows a distinct distribution of cycloramphids,
and within this family closely related species are also morphologically similar (Figure 4a).
Endotrophic nidicolous tadpoles distribute along the region of morphospace intermediate
to tadpoles of other families. Stream-dweller tadpoles of Alsodidae and Hylodidae vary
widely in shape, and endotrophic tadpoles of alsodid Eupsophus appear scattered among
mostly lotic hylodids. In cycloramphids and hylodids, a significant part of shape similarity
is due to morphological convergence (C1 values > 40%; Table 2). Taking into account the
evolutionary time of cycloramphid and hylodid lineages, C3 values suggest that about a
quarter of the morphological change in tadpoles can be attributed to convergence through-
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out evolutionary time. Although convergence is identifiable, C2 values indicate that the
magnitude of change was relatively low. Values regarding ecomorphological groups show
similar trends, excepting endotrophic tadpoles where no significant morphological con-
vergence is revealed. All these findings remain consistent whether Stayton’s measures of
convergent evolution are applied, regardless of addressing uncertainties (Supplementary
Figure S5) in tree topology and divergence time estimates or not.
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Instead, shape variation is not phylogenetically structured in adult neoaustraranans
(K = 0.44; p = 0.001). Only in Hylodidae, convergence appears to have influenced signifi-
cantly on adult morphological evolution (Table 2 and Figure 4b). Approximately 40% of
shape variation converged in morphospace, as suggested by C1. In turn, the C3 value indi-
cates that shape convergence also played a pivotal role throughout the evolutionary time.
Furthermore, the C2 value suggests a shape change of approximately 20% in magnitude
from ancestors to extant forms in Hylodidae after evolutionary convergence. Regarding
ecomorphological groups, only the torrential group exhibits a significant part of shape
convergence (C1 ca. 40% and overall values of C2 and C3 slightly higher than in other
clades; Table 2).

Traitgram unveils the occupation of two disparate regions in the larval phylomor-
phospace, both arising from evolutionary convergence processes occurring from the Middle
Eocene through the Oligocene (40–25 mya, approximately; Figure 5a). The diversification
of shape in Neoaustrarana during the Miocene leads to an expansion in morphological
variation within the clade, notably pronounced in Cycloramphidae compared to the other
families. This increase in shape diversity along the Miocene is reinforced by a peak in
morphological disparity early in this period, which has remained relatively constant so
far. Conversely, the traitgram for adult stages suggests significant internal morphological
diversification within each family from their ancestors (Figure 5b). This outcome is particu-
larly evident in Hylodidae, where phylogenetically close species underwent evolutionary
convergence processes towards specific regions of the phylomorphospace, between the late
Oligocene and middle Miocene (25–13 mya, approximately). The morphological disparity
among adult neoaustraranans appears to continue increasing over time, reaching greater
levels than larval forms, with intensification since the late Miocene.
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Figure 5. Evolutionary trends in shape of Neoaustrarana through time. Traitgram and morphological
disparity (assessed from the sum of variances in ancestral estimation of PC1) of (a) larval and (b) adult
shapes. Note the branch clustering as an indicator of shape similarity in the traitgrams, disregarding
taxonomic structure.

3.3. Adaptive Decoupling Hypothesis

The Mantel test suggests a low correlation between shape variation in larval and adult
forms (Mantel statistic r = 0.16; significance: 0.003). A kernel density map (Figure 6a)
illustrates the simulated scenario where most neoaustraranans exhibiting low dissimilarity
as tadpoles tend to correlate to low dissimilarity as adults as well, whereas those species
with high larval dissimilarity do not necessarily lead to a significant increase in dissimilarity
during the adult stage. The fact that these two species groups are highly segregated
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indicates that there is no overall pattern between shape similarity in larval and adult forms.
Also, morphological disparity in tadpoles is not correlated to the adult morphological
disparity in general terms (r = −0.01; Figure 6b), but analyses per family reveal different
patterns. High larval disparity tends to correlate with low adult disparity in Alsodidae
(r = −0.4) and Cycloramphidae (r = −0.15), whereas increasing larval disparity leads to
an expected increase in adult shape diversity in Batrachylidae (r = 0.75) and Hylodidae
(r = 0.42).
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Figure 6. Morphological decoupling between larval and adult shapes in Neoaustrarana. (a) Kernel
density map illustrating the correlation between tadpole and adult shape dissimilarity. Note that
the low dissimilarity in the adult phase is not directly associated to some specific level of larval
shape dissimilarity, indicating that adult shapes tend to be similar either when species with similar
or different tadpoles are being considered. Correlation between morphological disparity of tadpole
versus adult shapes, for the (b) entire dataset and (c) per family.
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Table 2. Stayton’s C1–C4 measures of convergent evolution for larval and adult shapes in Neoaus-
trarana.

C1 C2 C3 C4

Value p Value p Value p Value p

Larval phylomorphospace
Family

Alsodidae 0.276 0.30 0.007 0.99 0.159 0.28 0.005 0.79
Batrachylidae 0.253 0.24 0.005 0.97 0.149 0.24 0.010 0.73
Cycloramphidae 0.422 <0.01 0.046 <0.01 0.235 <0.01 0.018 0.36
Hylodidae 0.487 <0.01 0.026 0.74 0.275 <0.01 0.008 0.57

Ecomorphological guild
Lentic 0.500 <0.01 0.046 0.18 0.233 0.02 0.002 0.86
Lotic 0.582 <0.01 0.052 0.09 0.294 <0.01 0.005 0.52
Endotrophic 0.312 0.32 0.052 0.145 0.200 0.11 0.013 0.53
Semiterrestrial 0.685 <0.01 0.075 <0.01 0.381 <0.01 0.031 0.53

Adult phylomorphospace
Family

Alsodidae 0.296 0.15 0.050 0.50 0.162 0.20 0.021 0.27
Batrachylidae 0.216 0.49 0.045 0.33 0.144 0.31 0.009 0.82
Cycloramphidae 0.292 0.19 0.083 0.45 0.153 0.53 0.004 0.96
Hylodidae 0.380 <0.01 0.166 <0.01 0.194 <0.01 0.013 0.38

Ecomorphological guild
Semi-aquatic 0.420 0.12 0.158 0.18 0.211 0.14 0.001 0.85
Torrential 0.357 0.01 0.168 <0.01 0.189 0.02 0.015 0.24
Saxicolous 0.303 0.25 0.126 0.12 0.164 0.30 0.004 0.84
Terrestrial 0.319 0.25 0.080 0.83 0.151 0.68 0.002 0.96

Bold values denote statistical significance at the p < 0.05 level.

4. Discussion

In this study, we sought to explore the evolution of shape in Neoaustrarana anurans
across their two developmental phases, as well as their interdependence. Overall, our
results indicate that larval and adult shapes differ in both morphospace occupation and
morphological disparity and are influenced differently by size. Larval and adult shapes also
have distinct relationships with phylogeny, reflecting disparate evolutionary trends and
histories. In the paragraphs below, we discuss patterns of morphological evolution prior
and after metamorphosis at Neoaustrarana level and compare with studies that applied
similar approaches on other taxonomic groups. Since in our case the lack of correlation
between pre- and postmetamorphic ontogeny at a macroevolutionary level seems to be
related with different patterns among families, we also discuss some aspects of intrafamilial
diversification.

Previous studies explored larval morphospace at different taxonomic levels, finding
low phylogenetic structure and a prevalence of convergence patterns related to microhabi-
tat and behavior. At least four studies, from the intrageneric to suprafamilial scale, reveal a
morphological continuum between lentic and lotic species among the main dimensions of
shape variation [45,67–70]. Morphological transformations along these axes often involve
external features related to hydrodynamic aspects of living in stagnant vs. flowing water,
such as body height, tail length and height, and oral apparatus position. Conversely, larval
morphospace is largely structured by phylogeny in Neotropical neoaustraranans. As ex-
pected, cycloramphid tadpoles clearly diverge from the rest, with distinct features such
as the deeply depressed body and the long tail with low fins. A set of synapomorphies
from musculoskeletal system has been proposed additionally to define the family [71].
This divergence apparently took place during the Miocene, and subsequent diversification
within the family maintained in part similar morphospace occupancy regarding the ances-
tor. Although a strong ecomorphological component (see [72]) can be interpreted in the
evolution of the clade, the role of common ancestry and phylogenetic inertia is evident
in that even endotrophic tadpoles share the extremely attenuated shape of semiterres-
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trial tadpoles seemingly plesiomorphic for the family ([25]; DAS unpubl. data). In fact,
reduction in typically larval features, like that reported in several endotrophic lineages,
e.g., [43,44,73–75], concerns individual characters (e.g., spiracle and oral disc morphology
and keratinization) that do not affect the overall streamlined body shape, e.g., [28,76]. As
hinted by the high rate of shape/size variation, significant static allometry appears to
be related to ecomorphological diversity in these tadpoles, with a trend of endotrophic
tadpoles being smaller and slightly less flattened than semiterrestrial larvae.

In the large cluster formed of the remaining neoaustraranans, Alsodidae and Hy-
lodidae share wide, mostly overlapping distributions in larval morphospace, whereas
tadpoles of Batrachylidae show comparatively less shape variation. Hylodids share some
similar patterns with Cycloramphidae, in terms of relative occupation of morphospace
along evolutionary time. However, shape diversification in this family does not deviate
significantly from the pond-type tadpole bauplan. Tadpoles in these three families inhabit
different types of water bodies, from ponds and lakes (e.g., Atelognathus) [38] to fast-torrent
streams (e.g., Phantasmarana) [77], but they mostly exhibit benthic behavior and avoid
strong currents, being commonly found in slow backwaters, on the bottom of water bodies,
or among rocks, e.g., [34,78–81]. Variations in body and tail height and length appear to be
intrageneric changes not strictly related to development in lentic vs. lotic environments. In
this context, the distribution of endotrophic nidicolous Eupsophus among certain stream-
dwelling tadpoles, showing some resemblance in body/tail ratio and fin height as also
recovered by [68] in Australian larvae, is at least intriguing. Regarding allometric patterns,
size increase appears to have a weak influence on shape variation. This is particularly
interesting for hylodids, whose giant tadpoles (e.g., Phantasmarana and Megaelosia species)
appear to maintain similar shapes to those of related tadpoles less than half their length.

Unlike in larval stages, phylogeny alone did not play an important role in the evolu-
tion of the adult shape of neoaustraranans. Similarly, functional groups, at least as defined
by habitat and microhabitat occupation, in general did not contribute significantly to shape
variation. Terrestrial, saxicolous, and aquatic frogs share similar patterns of shape diversity.
The congruence in significant morphological convergence both for Hylodidae and the
torrential functional group highlights the ecomorphological component involved in the
evolution of this family (although a minority of alsodids were coded as torrential, most
species in this group are in fact hylodids), along with a possible lack of resolution to define
and categorize these frogs following ecological criterions. Despite being strongly associated
with streams in the Brazilian Atlantic Forest, hylodids exhibit diversity in their utilization of
lotic environments [36]. The definition of “lotic” encompasses highly diverse environments
in the Atlantic Forest mountains, including streams of different orders and with great varia-
tion in slope. Hence, the distribution of Hylodidae spans from waterfalls [82] (Nascimento
et al., 2001) to slow-flowing first-order streams [81,83], encompassing semi-deciduous
areas and rocky fields [82,84,85]. The loss of resolution in defining functional groups due
to the complexity of the lotic environment also affects other stream-dwelling groups in
Neoaustrarana, such as alsodids [39] and cycloramphids [20,24,86]. Morphologically, adult
hylodids vary in relation to snout shape in our sample. Many species exhibit separated
nostrils close to the eyes, coupled with a well-defined loreal region and a sharp canthus
rostralis; these traits are also commonly cited in the taxonomy of the family, e.g., [34,35,87].
Other torrential frogs from unrelated clades typically exhibit these features, e.g., [88–90].

As outlined above, profound differences between morphological evolution in larval
and adult stages of neoaustraranan frogs point towards the acceptance of the adaptive
decoupling hypothesis in the group. An increasing number of studies on this topic have
been conducted focusing on anurans, and results stress that differences appear among taxo-
nomic levels and groups, and among characters considered. For example, it is suggested
that there is a correlation between larval body size and adult snout–vent length, such that
the allometric change in one phase is coupled with the alteration in size of the other [13], at
least for some families [91]. At the same time, the rates of phenotypic evolution appear to
be decoupled between the two developmental stages, such that an acceleration in the trend
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of larval size change does not imply a similar process during the adult phase [13]. The
rates of phenotypic evolution may also be decoupled regarding the emergence of discrete
morphological characters, a process that is evolutionarily much faster in the larval than
in the adult phase [92]. As in Neoaustrarana, size-independent shape features in tadpoles
and adults are found to be differently influenced by phylogenetic and ecomorphological
diversity in previous studies at the intrageneric and macroevolutionary scales [45,69].

The evolutionary history of shape changes in adult Neoaustrarana frogs also contrasts
with the premetamorphic pattern. The whole clade underwent significant and constant
morphological diversification since the Oligocene, and, especially in Hylodidae, recent
changes expanded the occupation of adult morphospace during the late Miocene. It is
possible to hypothesize that the evolution of shape may have occurred in response to
the diversification occupying very distinct environments. Interestingly, Cycloramphidae
and Hylodidae, with the most pronounced morphological disparity, greater exploration
in morphospace, and subject to processes of evolutionary convergence, are distributed
in association with the mountains of the Brazilian Atlantic Forest. This area underwent
deep geomorphological changes over the past 40 million years, including significant oro-
genic process and compartmentalization of the Serra do Mar and Mantiqueira mountain
ranges from the early Oligocene to Miocene [93–97], the introgression of the Paranaense
Sea [98], and interglacial events during the late Miocene [99,100]. Conversely, although
important changes in temperature and vegetation took place in Patagonia during the
Oligocene/Miocene transition [101–103], the main changes in relief of the region took place
even before, along the Eocene, e.g., [104,105]. Patagonian climate and landscape remained
more stable during the Miocene, likely resulting in a more homogeneous environment
over the temporal range, which encompasses the emergence of alsodids and batrachylids.
The onset of morphological diversification during the ontogeny of Cycloramphidae and
Hylodidae, recovered to have occurred earlier than in Patagonian families, could be related
to environmental pressures in a highly dynamic landscape.

5. Conclusions

Our study on the evolution of shape in Neoaustrarana anurans across larval and adult
stages reveals profound differences in morphospace occupation, morphological dispar-
ities, allometric patterns, and phylogenetic influences, supporting adaptive decoupling
hypothesis. Larval shapes are largely structured by phylogeny, with cycloramphid tadpoles
diverging distinctly from other families, while adult shapes show less phylogenetic struc-
ture. The exploration of torrential habitats among adult members of the group appears to be
strongly associated with shape evolution, despite the challenge of creating categories that
reflect the use of lotic environments. The evolutionary history of shape changes suggests a
response to the diversification of Neoaustrarana in diverse environments, with pronounced
morphological diversification observed in families associated with the dynamic landscape
of the Brazilian Atlantic Forest. Overall, our study contributes to a better understand-
ing of how complex interactions between developmental stages, ecological niches, and
evolutionary history shape the morphological diversity of anuran amphibians.
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for the present study; Table S2. Procrustes ANOVA of larval shape variation to explore the effect
of genus, family, ecomorphological guild, and developmental stage as factors; Table S3. Statistics
and sample size from the test for allometry for each family, under the null hypothesis of isometry;
Figure S1. Landmark configuration and linear measures defined to represent shape in tadpoles and
adults of Neoaustrarana; Figure S2. Larval and adult morphospaces for Neoaustrarana discriminated
by family. Figure S3. Linear measurements registered in adult frogs and their correlations with
principal components 1 and 2 of PC analysis; Figure S4. Allometric patterns in tadpoles and adults of
Neoaustrarana; Figure S5. Uncertainty of shape convergence in neoaustraranan tadpoles and adults.
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