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Simple Summary: Simple Summary: Pig tracking provides strong support for refined management
in pig farms and can assist in realizing customized, automated, and intellectualized management.
However, there are many complex factors in actual production that result in pigs not being tracked
consistently over time. To address this issue, we proposed a long-term video tracking method for
group-housed pigs based on improved StrongSORT. The experimental results proved that our study
demonstrates high practicality, catering to the needs of practical production. It improved the efficiency
of farming personnel and lays the foundation for the automated monitoring of pigs. Additionally,
it is worth mentioning that we have also released a dataset specifically designed for long-term pig
tracking in this paper.

Abstract: Pig tracking provides strong support for refined management in pig farms. However,
long and continuous multi-pig tracking is still extremely challenging due to occlusion, distortion,
and motion blurring in real farming scenarios. This study proposes a long-term video tracking
method for group-housed pigs based on improved StrongSORT, which can significantly improve
the performance of pig tracking in production scenarios. In addition, this research constructs a 24 h
pig tracking video dataset, providing a basis for exploring the effectiveness of long-term tracking
algorithms. For object detection, a lightweight pig detection network, YOLO v7-tiny_Pig, improved
based on YOLO v7-tiny, is proposed to reduce model parameters and improve detection speed.
To address the target association problem, the trajectory management method of StrongSORT is
optimized according to the characteristics of the pig tracking task to reduce the tracking identity (ID)
switching and improve the stability of the algorithm. The experimental results show that YOLO
v7-tiny_Pig ensures detection applicability while reducing parameters by 36.7% compared to YOLO
v7-tiny and achieving an average video detection speed of 435 frames per second. In terms of pig
tracking, Higher-Order Tracking Accuracy (HOTA), Multi-Object Tracking Accuracy (MOTP), and
Identification F1 (IDF1) scores reach 83.16%, 97.6%, and 91.42%, respectively. Compared with the
original StrongSORT algorithm, HOTA and IDF1 are improved by 6.19% and 10.89%, respectively,
and Identity Switch (IDSW) is reduced by 69%. Our algorithm can achieve the continuous tracking
of pigs in real scenarios for up to 24 h. This method provides technical support for non-contact pig
automatic monitoring.

Keywords: pig; object detection; deep learning; multi-object tracking

1. Introduction

Pig tracking is of significant importance in pig farm management. Through the
individual localization and tracking of pigs, it is possible to collect data on pig movements,
analyze pig behavior, and monitor various pig-related information, to find the abnormal
pigs in a timely manner [1,2]. At the same time, the automatic tracking and monitoring of
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pigs can avoid labor-intensive and error-prone manual management, thereby improving
management efficiency [3-5].

Current research for pig tracking mainly includes contact methods and non-contact
methods. The contact methods realize tracking using sensor devices such as ear tags worn
by pigs. Eisermann et al. [6] used an UHF-RFID system to individually identify pigs and
combined a single point load cell (SPLC) to assess the individual manipulative behaviour
of group-housed pigs. Knoll et al. [7] mounted UWB tags on pig ear tags and worked with
UWB tags in each pen to achieve the accurate positioning of individual pigs. Lee et al. [8]
developed a monitoring system to estimate the location and movement of each pig using
Bluetooth low-energy (BLE) tags and wireless broadband leaky coaxial cable (WBLCX)
antennas. However, the sensors used in these methods are costly, easily damaged, and
detached. In addition, the pigs tend to have stress reactions during sensor installation,
which in turn affects their welfare.

In contrast, using non-contact tracking methods based on video imagery can help
avoid these issues. The current research on image-based pig tracking algorithms is mainly
divided into manual feature-based tracking methods and deep learning-based tracking
methods. For manual feature-based tracking methods, Xiao et al. [9] identified pigs based
on color information, removed the noise through the connected region of the binary image,
and proposed a set of association rules with constraints (DT-ACR) for pig tracking. Sun and
Li [10] designed a multi-pig tracking algorithm based on joint probability data association
and particle filtering. Although such methods can track pigs, they need to define features
manually, which have poor generalization, and the tracking performance is easily degraded
in real-world scenarios due to challenges such as insufficient light and pigs sticking to
and obscuring each other [11]. These limitations make it difficult to meet the needs of the
actual scene.

Deep learning-based methods have the advantage of automatically extracting and
learning features, which allows models to exhibit strong robustness even under various
challenging conditions such as varying lighting and occlusion [12]. Li et al. [13] proposed a
correlation matrix combining the embedding cosine distance and GloU distance to address
tracking failures caused by occlusion or temporary target loss. Tu et al. [14] presented a
multi-object tracking method that simultaneously outputs classification, bounding box, and
appearance information to complete the behavioral tracking of group-housed pigs. The
above methods are based on the Joint Detection and Embedding (JDE) paradigm. Although
they have good real-time tracking performance, their tracking accuracy is generally not as
good as the Tracking-by-Detection (TBD) method.

The principle of the TBD method is to treat object detection and object tracking as
two separate steps, and employ a correlation matching algorithm to associate the detected
object candidates with existing tracked targets [15]. Van der Zande et al. [16] used Yolo v3
to detect pigs and then tracked them by the SORT algorithm. Zhang et al. [17] combined the
CenterNet detection algorithm with an improved DeepSORT algorithm to track weaned
piglets. Gong et al. [18] proposed an improved IOU-tracker combined with YOLOvb5s for
real-time pig tracking. Shirke et al. [19] introduced a multi-camera pig tracking system that
initially employed YOLOV4 for pig detection, followed by using homography estimation to
locate the same pig in different camera regions, and finally tracked pigs using the DeepSORT
algorithm. These methods are prone to switching pig identities due to prolonged occlusions,
making it challenging to achieve long-term continuous tracking.

To address the above issues, we propose a multi-pig long-term tracking algorithm
based on improved StrongSORT, which aims to achieve the long-term and continuous
tracking of individual pigs in real-world scenarios. Furthermore, this study explored the
significance of pig tracking in the field of pig farming to satisfy actual production demands.
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2. Materials and Methods
2.1. Video Acquisition

Both self-collected videos and the public videos [20] were used for our research.
The self-collected videos were captured from two pig farms in Luogang and Xinxing,
Guangdong, China.

The pen selected from Luogang Pig Farm has 4 pigs, and the pen size is4 m x 5 m.
Landrace gilts were selected as experimental subjects, and they were continuously mon-
itored 24 h a day. The video was taken from July 2016 to August 2016. The pen selected
from Xinxing Pig Farm has 7 pigs, and the pen size is 2 m x 4 m. The experimental videos
were captured between July 2020 and August 2020. The public videos include pens with 7
to 16 pigs each, including a total of 15 video clips during the daytime and nighttime, each
with a length of 30 min. The information of each video set is shown in Table 1.

Table 1. Information on each video collection.

Video Collection Experimental Pig Farm Number of Pigs Light Conditions Pig Pen Size
Self-collected videos Luogang Pig Farm 4 Daytime and nighttime 4mx5m
Self-collected videos Xinxing Pig Farm 7 Daytime 2mx4m

Public videos Not mentioned 7-16 Daytime and nighttime Not mentioned

The video data were captured from the top view and covered the entire pen, as shown
in Figure 1. There were no pigs disappearing within the camera’s field of view. In order to
facilitate the manual identification of different pigs in subsequent experiments, the pigs in
Luogang Pig Farm were marked on their backs with “A”, “B”, “C”, and “D”, as shown in
Figure 1a. Similarly, the pigs in Xinxing Pig Farm were marked on their backs with labels
“17,%27,"3",“4”,"5",“6"”, and “7”, as shown in Figure 1b.

(@) (b) ©

Figure 1. View of each pig farm: (a) Luogang Pig Farm, (b) Xinxing Pig Farm, (c) the public videos.

2.2. Data Preprocessing and Dataset Construction

This study constructed datasets for pig detection and multi-pig tracking. The former
was used to train the pig detection model, while the latter was employed to evaluate
multi-pig tracking algorithms.

2.2.1. Data Preprocessing

Due to the camera’s angle of view, the acquired videos contained corridors or other
pens where unrelated pigs may be detected during the pig detection process. It can seriously
affect the experimental results. To overcome this, a mask operation was performed on
videos with these issues (Luogang Pig Farm videos and public videos). The specific
operation is illustrated in Figure 2, where the green box area is the main monitoring area
and the red box area signifies areas that can potentially affect the experimental results. After
preprocessing, the red box area is covered by a black mask while the green area is retained.
Figure 2a shows the mask for Luogang Pig Farm, which mainly covers pigs moving in
the corridor and pigs in other pens. And Figure 2b shows the mask for the public videos,
primarily covering pigs in neighboring pens.
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Figure 2. Comparison of the effect before and after preprocessing: (a) Luogang Pig Farm, (b) public
videos.

2.2.2. Pig Detection Datasets

Our public video dataset was taken from reference [20], which can be downloaded
at http:/ /psrg.unl.edu/Projects/Details /12- Animal-Tracking (accessed on 10 December
2022). To create the pig detection dataset, we extracted image frames from the captured
videos. For each pig farm, we selected 1800 images with high clarity and low similarity
and included four different environments: daytime crowded, daytime sparse, nighttime
crowded, and nighttime sparse. These images were manually annotated using Labellmg
software(v1.8.6). Finally, the annotated images were randomly divided into a training set
and testing set following a ratio of 8:2, as detailed in Table 2.

Table 2. The pig detection datasets.

Dataset Experimental Pig Farm Number of Pictures Total
Training Luogang Pig Farm 1440
Training Xinxing Pig Farm 1440 4320
Training The public videos 1440
Testing Luogang Pig Farm 360
Testing Xinxing Pig Farm 360 1080
Testing The public videos 360

2.2.3. Pig Tracking Datasets

For pig tracking, we selected 10 video clips of group-housed pigs, as detailed in
Table 3. The selected videos included different lighting conditions during the day and
night, covering three different pig farm scenarios, with low and high frame rates. The
density of pigs within the pens varied as well. These videos ranged in length from 2 min
to 24 h, and notably, the 24 h pig tracking video was the longest in the literature currently
available in the field. The selected videos were annotated frame by frame using DarkLabel
software(v 2.4), creating a bounding box for each pig and ensuring the same identification
number (ID) was assigned to the same pig across adjacent frames.
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Table 3. The pig tracking datasets.
Video No. Duration Frame Rate Light Conditions Density Level Experimental Pig Farm
1 2 min 5 daytime dense The public videos
2 10 min 5 nighttime dense The public videos
3 30 min 5 daytime dense The public videos
4 2 min 10 daytime dense Xinxing Pig Farm
5 10 min 10 daytime dense Xinxing Pig Farm
6 1h 10 daytime dense Xinxing Pig Farm
7 2 min 25 daytime sparse Luogang Pig Farm
8 10 min 25 nighttime sparse Luogang Pig Farm
9 1h 25 nighttime sparse Luogang Pig Farm
10 1 day (24 h) 25 daytime and nighttime sparse Luogang Pig Farm

2.3. Multi-Pig Long-Term Tracking Methods
2.3.1. Framework of Multi-Pig Long-Term Tracking Method

In practical pig farm management, there is a need for highly accurate and stable pig
tracking algorithms. The TBD paradigm can meet this demand as it is capable of providing
highly accurate tracking results. Our study used the TBD paradigm.

The multi-pig tracking algorithm proposed in this paper was divided into two mod-
ules: pig detection and multi-pig tracking. Its framework is shown in Figure 3. Firstly, the
video sequence was input into the pig detector YOLO v7-tiny_Pig to detect and obtain pig
location. Then, the detection result was fed into the optimized StrongSORT [21] multi-object
tracker for feature extraction to obtain the pig appearance feature. Simultaneously, NSA
Adaptive Kalman filtering was employed to predict and update pig trajectories. Finally,
the Hungarian algorithm was utilized to globally match the pig appearance feature, pig
location, and pig trajectories, thus accomplishing multi-pig tracking.

| Detector | | Tracker

StrongSORT-Pig Tracker

Feature extraction
(Appearance)

Location
information
(Motion)

YOLO v7-tiny Pig
Detector

wyuos[e
ueneSungy

NSA Adaptive
Kalman
filtering(Trajectory)

Time

Figure 3. The framework of multi-pig tracking algorithm.

2.3.2. Lightweight Pig Detector YOLO v7-Tiny_Pig

Since our tracking algorithm was based on the TBD paradigm, the performance of
the pig detector directly impacts the effectiveness of tracking. Currently, the YOLO series
detectors have shown excellent performance. Therefore, we used the most popular YOLO
v7 [22] series network for pig detection. It is a one-stage object detection algorithm and
offers three basic models designed for different scenarios: YOLO v7-tiny is suitable for
edge GPUs, YOLO v7 is designed for regular GPUs, and YOLO v7-W6 is intended for cloud
GPUs. The accuracy of these three basic models increases successively, while the number
of parameters increases.

On the one hand, due to the fact that the object detection in this study only involves
one category, which is simple, there was no need for complex network models. On the other
hand, for further analysis of the pig tracking results, a faster processing speed was required.
Therefore, the YOLO v7-W6 model was excluded. To further select an appropriate pig
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detection model, we used the aforementioned pig detection dataset to train and test the
other two models YOLO v7 and YOLO v7-tiny, respectively. After experimental comparison,
the lighter YOLO v7-tiny model was chosen as the base model, with the network structure
shown in Figure 4a.

 Backbone

Figure 4. YOLO v7-tiny network architecture. (a) YOLO v7-tiny model structure, (b) C5 Network
structure, (¢) CBC Network structure.

The YOLO v7-tiny network consists of four parts, including the Input, Backbone,
Neck, and Output. The purpose of the Input stage is to feed the data into the Backbone
after performing data augmentation. The Backbone consists of convolutional layers and
the C5 structure, which feeds the extracted features into the Neck for feature fusion. The
network structure of C5 is illustrated in Figure 4b. The Neck consists of the CBC structure
(Figure 4c), C5, and convolutional layers, and it performs downsampling to reduce feature
dimensionality. The Output includes three feature maps of different scales predicting targets
of different sizes, and finally feature fusion is performed to output the detection results.

Since the cameras in our experiment were installed directly above the center of the pig
pens, and the proportion of pigs in any location within the pen relative to the entire image
did not vary significantly, a single scale YOLOHead can complete the task of detecting
pigs [23]. Therefore, we made modifications to YOLO v7-tiny by removing the shallow and
deep feature maps, retaining only the mid-level feature maps to obtain the pig detection
network YOLO v7-tiny_Pig. The improved network structure reduced the number of
parameters and accelerated the detection speed. The network structure is illustrated in
Figure 5.

%_Neck

Figure 5. The network structure of YOLO v7-tiny_Pig.

2.3.3. Multi-Pig Tracker StrongSORT-Pig

The multi-pig tracker StrongSORT-Pig proposed in this study is an improved version
of the StrongSORT algorithm, tailored to the specific characteristics of the real scenario.
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The StrongSORT algorithm is an improvement on the DeepSORT [24] algorithm, which
is further developed based on the SORT [25] algorithm. The SORT algorithm uses only
motion information for multi-object tracking, which can lead to ID switches when targets
are occluded. The DeepSORT algorithm introduces a re-identification model, combines
motion and appearance information, and employs a cascade matching strategy, thereby
improving matching accuracy. The StrongSORT algorithm optimizes the motion branch and
the appearance branch of the DeepSORT algorithm separately, and introduces advanced
methods and strategies.

Since the pig pens in our experiment were enclosed spaces with restricted access
and the number of pigs did not change over time, this study improved the StrongSORT
algorithm and optimized the trajectory management strategy. These improvements aimed
to reduce the number of ID switches, allowing pigs to be retracked even after prolonged
occlusion, thus extending the tracking time. Figure 6 shows the algorithmic process of
StrongSORT-Pig.

Next frame

""""""""""""""""""""""""""""""""""""""""""" Global | Tjeetory T
matching

Feature
cextraction

Exterior
— Information
Feature Library

I sl ool Bl H G5 '/'/i

NSA Adaptive [, v,y h,x,y, vy, h'l
Kalman ==

filtering

ECC camera e .
motion === [y Yy, h,X,y,Y, h]|— gate

compensation

Figure 6. Flow chart of multi-pig tracking process.

The StrongSORT-Pig ensures that the same pig maintains the same ID throughout the
time sequence by globally matching the pig detection results with predicted trajectories.
The matching result is jointly determined by both the motion branch and the appearance
branch, represented by the blue and yellow arrows in Figure 6, respectively.

1. The motion branch

Due to the random and irregular movement behaviors of pigs, it can easily lead to
image blurring and thus affect the detection and tracking performance. To address this
issue, the motion branch in this study was divided into two stages. In the first stage, we
adopted the Enhanced Correlation Coefficient (ECC) model to compensate the blurred
images caused by pig movements. In the second stage, the NSA Kalman filtering algorithm
was applied to predict and smooth the motion trajectories of each pig through dynamically
adjusting the noise covariance based on detection confidence scores. It consisted of two
phases: the prediction phase and the update phase. In the prediction phase, the current pig
trajectory state was predicted based on the pig trajectory state in the previous frame and
the noise matrix in the current frame. In the update phase, the trajectory state was updated
using the results from the prediction stage, along with the noise of the pig detection and the
pig detection results in the current frame. The confidence of pig detection results affected
the accuracy of state updates. It is worth noting that Kalman filtering was only used to
predict the pig’s trajectory before the matching operation. The entire process made full
use of the pig motion state from the previous frame and the current pig detection results.
By dynamically and adaptively adjusting the weights of the detection results, the impact
of various noises on the tracking results was effectively reduced, thereby making the pig
tracking results more accurate.
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2. The appearance branch

The appearance features of pigs, such as body color and body shape, are relatively
stable. However, in a video stream, the appearance of the same pig in different frames
may change slightly due to factors like lighting changes. Additionally, due to the small
differences between individual pigs, it is necessary to establish a sensitive pig appearance
feature extractor to capture highly discriminate features, thereby improving the perfor-
mance of the tracker. On the other hand, the Exponential Moving Average (EMA) feature
update strategy can update the trajectory appearance of the corresponding pigs based on
the detailed features obtained by the feature extractor, which helps to smoothly adapt the
appearance changes and improve the accuracy and robustness of tracking. Therefore, the
appearance branch contained the pig appearance feature extractor and the feature update
strategy based on the EMA. Equation (1) represents the appearance state e! of the i-th
trajectory updated based on the EMA strategy in the t-th frame:

el = aeffl +(1—a)f! (1)
where ef*l is the appearance state of the ith trajectory in the (t — 1)th frame, f is the
appearance feature matched to the ith trajectory (i.e., the current trajectory) in the tth frame
(i.e., the current frame), and « is the weight parameter.

The feature update strategy was able to efficiently update the appearance state of the
trajectory by combining the appearance features detected in the current frame while pre-
serving the appearance information of the previous video frames. It can reduce the impact
of detection noise and rapid changes in the tracked targets on appearance information
and capture changes in appearance features between video frames, thereby improving the
performance of the tracking system.

3. The global matching process

During the global matching stage, different weights were assigned to appearance
and motion information to calculate the pairwise association costs between all pigs and
trajectories, thereby solving the assignment problem between targets and trajectories.

For the appearance information, the minimum cosine distance d, was used as the
matching cost, and it was computed between the current detection r; and the appearance
of all trajectories, following the rule defined in Equation (2).

dy :min{l—rjreffl‘i € R} 2)
where 7} is the appearance state of the jth detection, effl is the appearance state of the ith
trajectory in the (t — 1)th frame, and R is the number of all trajectories.

For the motion information, the Mahalanobis distance 4 between the center point of
the pig detection bounding box and the center point of the pig track bounding box was used
as a gate to filter out unlikely matches. Then, the cosine distance d,; of motion information

was used as the matching cost for further matching. The final cost matrix was the weighted
sum of appearance and motion costs, which was calculated as shown in Equation (3).

C=Adu+(1—A)An 3)

where A, represents the appearance cost matrix, which is the set of d,. Similarly, A,
represents the motion cost matrix, which is the set of d;,;, and A is the weight factor.

When pigs are obstructed by other objects or other pigs, the original trajectories and
the detection results cannot be matched. This leads to the generation of more trajectories,
causing a continuous increase in pig identity IDs. The actual maximum ID value is far
greater than the actual number of pigs in the pigpen, resulting in tracking failures. To
address this issue, this study optimizes the trajectory deletion and generation process,
taking into account the particular scenario of pigsties.
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Since the number of pigs in the pen does not suddenly decrease, the maximum

matching lifetime is not set for unmatched tracks in our research. Unmatched trajectories
will never be deleted to reduce ID switching caused by long-term occlusion. Similarly,
as the number of pigs in the pigpen does not suddenly increase, we introduce additional
constraints on the generation of new trajectories. The total number of pigs in the pigpen is
set as a threshold for the maximum value of ID increase. New trajectories can be generated
only when the number of trajectories is less than the threshold, which can limit the endless
increase in ID.

By combining the above two optimizations, on the one hand, trajectory deletion is

prohibited, and on the other hand, ID growth is restricted. This approach is applied to
multi-pig tracking. The specific matching process is shown in Figure 7.

———————— B
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|

!
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1 ! g
e e el a
&
=
=)
a
Unmatched Hungarian Unmatched
detections algorithm detections
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New Tracks KF Update New Tracks
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Figure 7. Global matching flowchart.
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(b)
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The matching of the motion branch is performed by calculating the Mahalanobis
distance between the center point of the pig detection bounding box and the center
points of all pig trajectory bounding boxes. If the distance is less than the threshold, the
combined matching of motion information and appearance information is performed.
If the distance between the pig detection box and all the trajectories is greater than the
threshold, the detection box is in the unmatched state, and it is further judged whether
it meets the conditions for generating new trajectories. The number of available tracks
is less than the total number of pigs.

An integrated matching of motion and appearance information is performed, a com-
bined cost matrix is constructed for both, and then the Hungarian algorithm is used
for global matching. If the match is successful, the process continues to the next step.
If there is no suitable match, the detection box is in the unmatched state, and further
judgment is made to determine whether it meets the conditions for new trajectory gen-
eration. If it meets the conditions, a new track is generated; otherwise, the threshold
is increased, and the matching process is repeated.

For successfully matched detection boxes and trajectories, the motion and appearance
models of the corresponding trajectories are updated. For unmatched detection boxes,
new trajectories are initialized.
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(d) The next frame of the image is proceeded to and the above process is repeated.
4. Correction algorithm of multi-pig tracking performance

Due to adhesion and occlusion between pigs, some pigs may not be detected at certain
times. It can cause pig trajectories to be lost and their location to not be recorded during the
missing period. However, when such pigs are detected again, their trajectories reappear.
Associating the trajectories before and after missing and filling in the missing detections are
crucial for the tracking results. Therefore, two correction algorithms, the appearance-free
link model (AFLink) and Gaussian-smoothed interpolation (GSI), which are based on
motion information and are independent of appearance information, are incorporated in
the tracking procedure.

AFLink utilizes spatiotemporal information to predict the correlation between two
trajectories as a way to solve the problem of correlating the trajectories before and after
missing. As shown in Figure 8, it takes two trajectories T; and T; as inputs and is calculated
by Equation (4).

T- = {fi, Xio Yiches )

where xi and y, represent the position coordinates of the nearest N = 30 frames of f, and if
N is less than 30, it is padded with zeros. The temporal module extracts feature information
along the temporal dimension. Then, the fusion module integrates feature information from
different dimensions and compresses the information of two trajectories into feature vectors,
respectively. Finally, these feature vectors are concatenated to predict the confidence score of
the association by a Multilayer Perceptron (MLP), to determine whether the two trajectories
belong to the same track. In the association process, spatiotemporal constraints are used to
filter out unreasonable trajectory pairs. Then, the global association is decomposed into a
linear assignment task using the predicted confidence scores for associations.

Max pooling

squeezes 1
usion Module @ - -

Max pooling l
— - classifier

squeezes

Figure 8. AFLink module.

GSI employs Gaussian process regression to simulate nonlinear motion and fits un-
detected trajectory updates using Gaussian-smoothed interpolation, given the tracking
trajectories before and after the lack of detection, assuming that the actual motion follows
a Gaussian process, based on the properties of Gaussian processes, fitting its Gaussian
process distribution based on the given observed trajectories, and using this information to
predict and fill in the missing trajectories at the time of detection loss.

The application of AFLink and GSI can significantly improve the robustness of pig
tracking algorithms in complex environments. It substantially reduces the loss of pig tracking
targets caused by occlusions and unstable detections, resulting in higher tracking accuracy.
The stability and continuity of the pig tracking algorithm have also been enhanced.

3. Results and Analysis
3.1. Experimental Platform and Parameter Settings

The experiments were conducted on the Windows 10 platform, equipped with a
2.50 GHz 12th-Gen Intel(R) Core (TM) i5-12400F processor, 16 GB of memory, and a 1 TB
hard drive. The GPU used was an NVIDIA GeForce RTX 3060. The programming language
used was Python 3.8, and the deep learning framework used was PyTorch 1.11.0.
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3.2. Evaluation and Analysis of Pig Detection
3.2.1. Pig Detection Evaluation Metrics

In the pig detection stage, the performance of the pig detection model was evaluated
using five metrics: Precision (P), Recall (R), F1 Score, FPS, and mAP. The mathematical
expression of these metrics is given by Equations (5)-(9).

pP= 7TPT+PFP x 100% ()
R= TPiiPFN x 100% ©)
F1= Pz%{ % 100% @)
FPS = % ®)
mAP = /01P(R)dR 9)

where TP (True Positives) refers to the number of pigs correctly detected; FN (False
Negatives) represents the number of pigs that were not detected; FP (False Positives) is
the number of pigs incorrectly detected; frameNum is the total number of frames; and
elapsedTime represents the total processing time. This study used single target detection,
so calculating m AP means calculating the area under the P-R curve.

3.2.2. Comparison Experiments of Different Models

During the training procedure, we employed the pre-trained YOLO v7-tiny model.
The input image size was set to 1280 pixels x 1280 pixels, with a batch size of 8, a learning
rate of 0.01, momentum of 0.937, and 150 epochs. Adam optimizer was used to iteratively
optimize network parameters.

In order to select a more suitable pig detection model, this study used the same pig
detection dataset to conduct experiments in YOLO v7, YOLO v7-tiny, and the YOLO
v7-tiny_Pig network, respectively. The experimental results are shown in Table 4.

Table 4. Performance comparison of different pig detection models. P: Precision; R: Recall; F1: F1
Score; FPS: frames per second; mAP: Mean Average Precision.

Models P (%) R (%) F1 (%) FPS (fs1) mAP (%)  Parameter
YOLO v7 99.7 97.9 98.8 127 99.0 3.7 x 107
YOLO v7-tiny 99.5 98.4 98.9 370 98.6 6 x 100
YOLO v7-tiny_Pig 99.3 98.3 98.8 435 98.4 3.8 x 10°

From Table 4, it can be observed that although the accuracy of YOLO v7-tiny_Pig is
slightly lower than those of YOLO v7 and YOLO v7-tiny, it still exceeds 99%, which can
meet the requirements of pig tracking. Meanwhile, it has a higher FPS, which processes
images 3.4 times faster than YOLO v7, and the number of model parameters is about 10%
of YOLO v7. Compared to YOLO v7-tiny, YOLO v7-tiny_Pig processes 65 more frames per
second and reduces the number of model parameters by 36.7%. To meet the requirements
of real-world production, the pig tracking algorithm needs to have a shorter processing
time and can be deployed on edge devices, which requires higher detection speed and
smaller model size. Therefore, YOLO v7-tiny_Pig is more suitable for pig detection in
this study.
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3.2.3. Analysis of Pig Detection Using YOLO v7-Tiny_Pig

In this section, the performance of the proposed pig detection method is further
validated through manual observation.

The detection results of pigs in four different environments using YOLO v7-tiny_Pig
are shown in Figure 9. Figure 9a,c show the detection results for the sparse pig scenarios
during the day and night. The model is able to accurately detect the pig positions, even in
Figure 9c where the pigs have a similar appearance to the floor color at night. Figure 9b
shows the detection results for the dense pig scenario during the daytime, where pigs are
heavily occluded, making it difficult for human observers to distinguish them. However,
the model is still able to accurately and quickly detect the pigs. In Figure 9d, it displays
the detection results for the dense pig scenario at night. Not only can the pigs in the light
part be detected accurately, but the pigs in dark areas are also not missed by the model.
Overall, YOLO v7-tiny_Pig demonstrates the ability to accurately detect pigs in different
environments, laying a foundation for subsequent multi-pig tracking in natural scenarios.

pig 0.93

' '7:1":piq’?-94 / L ‘._—-l

pig orig 0.94
1. e 04

pig 0.98

”ﬁ?" Py

pig 0.95

Figure 9. Example of pig detection results based on YOLO v7-tiny_Pig. (a) Sparse during the day,
(b) dense during the day, (c) sparse at night, (d) dense at night.

3.3. Evaluation and Analysis of Multi-Pig Tracking Results
3.3.1. Multi-Pig Tracking Evaluation Metrics

HOTA [26], MOTA [27], IDF1 [28], MOTP, and IDSW were chosen to evaluate the
multi-pig tracking model.

HOTA considers the accuracy of target matching, tracking, and localization simulta-
neously, which can evaluate the performance of the tracker more comprehensively and
accurately. Particularly in cases of target overlap and occlusion, it is more consistent with
the human visual assessment of tracking performance. Its mathematical expression is given
by Equation (10).

Lie(rry A()
ITP[ + |[EN]| + |FP|

HOTA = (10)
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’TPA(J)’

A (11)

0= ‘TPA(J)‘ + ’FNA(J)‘ + ’FPAU)‘

where A ) is the association accuracy, defined by Equation (11). TPA ) is the accuracy of cor-
rect correlation, FNA ) represents the accuracy of targets that are related but not successfully
matched, and FPA ) represents the accuracy of completely unrelated false detections.

The mathematical expression of MOTA is given by Equation (12), where IDSW rep-
resents the number of times the target label ID switched during tracking in frame f; gt
represents the number of targets observed in frame .

Y.(FN + FP + IDSW)
L8t
where IDF1 represents the proportion of detected targets that acquire the correct IDs. It

is used to measure the overall performance of target identification and tracking, and its
mathematical expression is given by Equation (13).

MOTA =1 —

(12)

2IDTP
IDFL = 2IDTP + IDFP + IDFN (13

where IDTP represents the total number of pigs tracked correctly with unchanged IDs,
IDFP represents the total number of pigs tracked incorrectly with unchanged IDs, and
IDFN represents the total number of pigs tracked missing with unchanged IDs.

MOTP is used to measure the accuracy of the tracker in terms of target position
estimation and its mathematical expression is given by Equation (14), where d; ; represents
the distance between the pig detection box and the hypothetical pig bounding box in frame
t; ¢t represents the total number of matches between pig and hypothesis positions in frame
t, and i represents the current detection target.

Yidis

t Ct

MOTP = (14)

3.3.2. Comparison of Effects before and after Improvement in the Algorithm

To better demonstrate the performance of the improved tracking algorithm in this
study, nine videos (Video1-Video9) from the pig tracking dataset were used to compare
the performance of the original StrongSORT, the optimized StrongSORT-Pig tailored for
pig farming characteristics, and StrongSORT-Pig_Plus with the inclusion of correction
algorithms. The model performance test results are shown in Table 5.

Table 5. Performance comparison of different multi-pig tracking models. HOTA: Higher-Order
Tracking Accuracy; MOTA: Multiple Object Tracking Accuracy; IDF1: Identification F1; MOTP:
Multiple Object Tracking Precision; IDSW: Identity Switch.

Algorithms Video No. HOTA (%) MOTA (%)  IDF1 (%) MOTP (%) IDSW (Times) (fl.:slisl)
1 722 91.7 79.0 88.6 25 26.3
2 68.4 96.2 722 86.0 41 246
3 492 98.9 26 93.7 47 25
4 89.7 98.9 97.9 91.3 3 25.8
5 85.8 98.0 9258 90.4 14 25.2

StrongSORT 6 67.5 98.7 62.7 9228 23 23.6
7 89.4 99.6 87.6 943 1 29.6
8 90.8 99.1 99.5 91.2 0 28.7
9 79.7 99.1 90.5 89.4 17 27.8

Average/Total 76.97 97.8 80.53 90.86 171 26.01
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Table 5. Cont.
Algorithms Video No. HOTA (%) MOTA (%)  IDF1 (%) MOTP (%) IDSW (Times) (fI'TSP_Sl)

1 77.8 90.5 89.7 88.7 14 28.6

2 733 95.3 845 86.0 43 273

3 62.9 98.7 64.2 93.8 2 26.8

4 90.8 98.9 99.4 91.3 2 27.2

_ 5 89.1 98.0 99.0 90.4 8 26.9

StrongSORT-Pig 6 83.2 98.7 91.2 9228 12 265

7 95.1 99.6 99.8 943 0 2.6

8 91.0 99.6 99.8 91.2 0 324

9 80.9 99.2 9223 89.4 2 30.9

Average/ Total 82.68 97.6 91.1 90.88 103 28.8

1 78.9 91.7 90.2 88.6 8 232

2 73.9 9.5 85.2 85.8 18 20.8

3 62.8 98.9 64.3 93.4 20 18.9

4 90.8 99.2 99.6 91.0 0 227

, 5 89.9 98.2 99.1 90.4 0 21.8

StrongSORT-Pig_Plus 6 83.1 99.0 914 92.4 7 19.2

7 95.2 100.0 100.0 94.1 0 25.2

8 915 99.9 99.9 913 0 24.9

9 823 99.3 93.1 89.3 0 25

Average/Total 83.16 98.1 91.42 90.7 53 22.13

Compared with the original StrongSORT, the StrongSORT-Pig algorithm had shown
varying degrees of improvement in most metrics, especially its average value of IDF1
that reached 91.1%, which was improved by 10.57%. The IDSW had reduced by 68 times,
which was a 39.78% reduction compared with the original algorithm. In addition, HOTA
was improved by an average of 5.71%, indicating the overall superior performance of our
method. By incorporating the correction module, the performance of our method was
further improved. HOTA was improved by 6.19% compared with the original algorithm.
IDF1 was improved by 10.89%, and IDSW was reduced by 118 times, which is a decrease of
69%. This indicated that the correction module significantly enhanced the stability of pig
tracking through the predictive interpolation of missing frames.

There was no significant improvement in the MOTA and MOTP metrics, and in some
cases, there was a slight decrease, but they still reached 97.6% (MOTA) and 90.88% (MOTP),
respectively. This ensured that the algorithm can correctly detect and track the majority
of targets with relatively few false positives and false negatives. It can also estimate the
position of the target accurately.

In addition, among the three algorithms, StrongSORT-pig had the highest FP’S, while
StrongSORT-Pig_Plus had the lowest FPS, which does not meet the speed needs of realistic
scenarios. This is because the correction algorithm used in the StrongSORT-Pig_Plus model
is more time-consuming, resulting in a lower FPS. Therefore, taking both accuracy and FPS
into account, we used the StrongSORT-Pig algorithm in the subsequent experiments.

The tracking results of StrongSORT-pig are shown in Figure 10. The 77th, 110th, and
190th frames from Videol were selected for comparison before and after optimization. In
Figure 10a, both pig 7 and pig 15 can be detected in the 77th frame, but they cannot be
detected in the 110th frame. They reappeared in the 190th frame, but their IDs had changed.
Pig 7 was now identified as pig 18, and pig 15 was identified as pig 17, exceeding the total
number of pigs, which was 16. In Figure 10b, both pig 7 and pigl5 can also be detected
in the 77th frame, and they cannot be detected in the 110th frame. However, when they
reappeared in the 190th frame, their IDs remained unchanged. The results show that the
proposed method had good tracking performance compared to the original model.
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Frame 77

Frame 110

Frame 190

Time (a)StrongSORT 7 (b) StrongSORT-Pig
Figure 10. The tracking results of the proposed model compared to the original model.

3.3.3. Evaluation on Pig Tracking Duration

In order to validate the tracker’s ability for continuous long-term tracking, this study
conducted tracking tests on Videol0 using both the StrongSORT and StrongSORT-Pig
algorithms. The results are shown in Table 6.

Table 6. Performance comparison of long-term tracking results of different algorithms. HOTA:
Higher-Order Tracking Accuracy; MOTA: Multiple Object Tracking Accuracy; IDF1: Identification F1;
MOTP: Multiple Object Tracking Precision; IDSW: Identity Switch.

Algorithms ~ HOTA (%) MOTA (%) IDF1(%) MOTP (%) DOSW  FPS
(Times) (fs 1

StrongSORT 56.3 97.4 476 98.9 33 256

StrongSORT-Pig 97.5 97.6 98.9 99 0 28.1

For the 24 h long video tracking, it can be seen from Table 6 that the improved
algorithm increases the HOTA by 41.2% and the IDF1 by 51.3%, and the MOTA and the
MOTP are slightly improved. The IDSW is 0, indicating that there are no ID switches
throughout the tracking process. Since no ID switching occurred during the whole process,
it can be promised that the tracking result of the algorithm can serve as the basis for further
analysis of the individual pigs.

3.3.4. Comparison of Different Multi-Object Tracking Algorithms

To evaluate the performance of the proposed method in multi-pig tracking, we con-
ducted tests on the multi-pig tracking dataset and compared with four state-of-the-art
models in the field of multi-object tracking. The results are shown in Table 7.

According to Table 7, our proposed model StrongSORT-Pig demonstrates the best
performance in terms of HOTA, IDF1, and IDSW metrics. Our proposed method increases
the likelihood of successful matching. It achieves this by imposing restrictions on new
trajectory generation and unmatched trajectory deletion. This ensures that the model
does not endlessly add new trajectories and can only match among existing trajectories.
Although our method does not achieve the best performance in terms of MOTA and MOTP
metrics, it is only slightly lower than the highest scores. It is worth noting that C_BIOU also
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demonstrates good performance across various metrics, thanks to its utilization of buffer
technology during the matching process. We can also consider incorporating this technique
into the StrongSORT algorithm to further improve the effectiveness of multi-pig tracking.

Table 7. Tracking results of different algorithms for multi-pig tracking. HOTA: Higher-Order Tracking
Accuracy; MOTA: Multiple Object Tracking Accuracy; IDF1: Identification F1; MOTP: Multiple Object
Tracking Precision; IDSW: Identity Switch.

IDSW FPS

Algorithms HOTA (%) MOTA (%) IDF1 (%) MOTP (%) . 1
(Times) (fs™1)

BotSORT 75.83 94.8 82.94 91.3 155 23.73
DeepSORT 71.68 88.63 78.63 90.62 252 28.68
ByteTrack 73.3 91.82 84.82 89.2 128 32.21
C_BIOU 75.26 95.38 85.6 92.12 138 33.85
StrongSORT 76.97 97.8 80.53 90.86 171 26.01
StrongSORT-Pig 82.68 97.6 91.1 90.88 103 28.8

To further validate the effectiveness of the proposed method in this study, we selected
Video6 for visualization of the tracking results using BotSORT, DeepSORT, ByteTrack,
C_BIOU, StrongSORT, and StrongSORT-Pig. The tracking results are shown in Figure 11.
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Figure 11. Cont.
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Figure 11. Comparative example of tracking results for different tracking algorithms.

We selected the tracking results in the 2555th frame and the 21,625th frame. From
Figure 11, it can be observed that none of the six algorithms exhibited any instances of
missed tracking. However, only our proposed algorithm achieved successful tracking,
correctly matching all pigs. When tracking using the DeepSORT algorithm, all pigs failed
to be tracked. With BotSORT and ByteTrack, only one pig was tracked successfully, and
using the C_BIOU and StrongSORT algorithms, two pigs could be tracked successfully. In
addition, as shown in Figure 11c, d, pigs numbered “5” and “6” exchanged IDs between the
2555th and 21,625th frames. This occurred because during a certain period of time, these
two pigs were in close proximity, and both C_IOU and ByteTrack algorithms relied solely
on motion models for matching without considering re-identification features to compute
appearance similarity. In summary, compared to other multi-object tracking methods, our
algorithm shows superior tracking performance in complex scenarios for pig tracking tasks,
enabling the stable tracking of pigs.

3.4. Generalization

To validate the generalization of our research model, we conducted testing using
unseen data from the training set. The test video had a duration of 30 min and was
recorded in May 2022. The recording took place indoors with lighting provided by artificial
sources. The occlusion in the video was not severe, and the camera was positioned at a
45-degree angle. It is important to note that the camera’s field of view did not cover the
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entire pig pen, which resulted in instances where pigs would momentarily disappear and
then reappear in the frame.

3.4.1. Generalization for Pig Detection

To validate the generalization ability of the pig detection model, we utilized ffmpeg to
extract keyframes from the test videos. In order to maintain consistency with the original
test set, a total of 360 images were selected for this testing. The model achieved Recall and
mAP scores of 95.3% and 96.6%, respectively. The actual test results are shown in Figure 12.

pig 0.68

Figure 12. Generalization experiment results for pig detection. (a) Dense pig scene, (b) Sparse
Ppig scene.

From the provided figures, it can be observed that in Figure 12a, the occlusion is more
severe compared to Figure 12b, and the detected confidence is lower. However, both images
do not exhibit any cases of missed detections. Additionally, in comparison to the results
in Section 3.2.2, Recall and mAP decreased by 3% and 1.8%, respectively. This could be
attributed to the differences in the shooting angles between the training set and the test
data used in this particular experiment.

In conclusion, based on the above analysis, the pig detection algorithm in this research
demonstrates good generalization ability, as it successfully detects pigs even in the presence
of occlusion and varying shooting angles between the training and test datasets.

3.4.2. Generalization for Multi-Pig Tracking

We conducted testing on unseen videos from the training set using the StrongSORT-pig
algorithm, and the results are shown in Figure 13. In the 34,625th frame, all pigs were
successfully tracked. However, in the 35,775th frame, the pig with ID 3 disappeared. In the
36,925th frame, the previously disappeared pig reappeared but was not detected by the
algorithm. Finally, in the 37,025th frame, the pig with ID 3 reappeared completely and was
successfully detected, maintaining its original ID, resulting in successful tracking.

Frame 34625 Frame 35775

Frame 37025 | Frame 36925

Figure 13. Generalization experiment results for multi-pig tracking.
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Compared to the results in Table 5, all performance metrics had decreased. HOTA,
MOTA, IDF1, and MOTP had decreased by 2.8%, 3.9%, 2.9%, and 4.2%, respectively,
reaching 79.8%, 93.7%, 88.2%, and 86.6%. The decrease in MOTDP, which reflected the
accuracy of the detection’s spatial position, is related to the pig detection model. The
decrease in MOTA and IDF1 was due to the presence of a blind spot in the test video, where
pigs disappear and cannot be detected, leading to changes in their IDs. The combined effect
of these three metrics resulted in a decrease in HOTA.

Although the results obtained from testing in unseen scenarios were not as good
as those from the seen scenarios, the StrongSORT-pig algorithm demonstrated its abil-
ity to effectively track pigs, even when they temporarily disappear and reappear in the
video sequence.

4. Discussion
4.1. Discussion on Factors Affecting Pig Tracking Performance

In the multi-pig tracking task, there are many factors affecting the tracking effect, such
as pig density, pig movement intensity, and the video frame rate.

It is worth noting that the nine videos, Videol-Video3, Video4-Video6, and Video7-
Video9, were from three different scenes. In the scenes from Video 1 to Video 3, there are a
large number of pigs present, with frequent occlusions, crowded environments, and active
pig movements. In Video 7 to Video 9, the number of pigs is relatively small, and the scenes
are relatively spacious. As for Video 4 to Video 6, these scenes have a moderate number of
pigs, with a less crowded environment, and the level of pig movement is moderate. The
results in Table 5 also indicate that the performance of the algorithm is influenced by the
complexity of the scenes.

Particularly in the case of Video3, both HOTA and IDF1 are lower compared to the
other videos. This is attributed not only to the pigs in this video exhibiting notably intense
activity but also to its low frame rate of only 5 frames per second. The significant variations
between adjacent frames make it challenging to accurately predict tracking trajectories,
resulting in poorer algorithm performance.

In order to reduce the influence of these factors on the tracking performance, we can
combine the detection model with dense optical flow, enhance the optical flow results by
adding a mask to the detection frame, compute the motion of each detected object, and
realize the prediction and matching of the target’s position between the front and back
frames [29]. The introduction of optical flow can effectively alleviate the issue of large
displacements of tracked objects in low-frame-rate videos.

4.2. Discussion on the Application of Long-Term Pig Tracking Algorithm

Although it has been difficult for existing research to achieve the long-term regular
analysis of individual pigs [30], it is valuable for behavioral studies and is beneficial for a
deeper understanding of the health status of pigs [31]. In this study, we realized the all-day
tracking of pigs. Based on this, we can use the results for analyzing the behavioral rhythms
of individual pigs throughout the day, as a basis for detecting pig abnormalities, and early
health warnings.

The pen was divided into four sections based on the positions of different areas in the
video frames, as shown in Figure 14. The area of (490,200)~(720,975) was classified as the
defecation area, (720,200)~(1480,975) was classified as the resting area, (1480,200)~(1580,975)
was classified as the eating area, and the remaining parts of the video frames that were
unrelated to this experiment were considered irrelevant zones. To further validate the
practicality of the tracking algorithm, this study counted the time spent by each pig in
different areas (resting area, eating area, and defecating area) based on the 24 h tracking of
the pigs. The results were compared with the observed results, which manually recorded
the time spent by each pig in each area, and the duration of each area was added up to
calculate the total time spent.
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Figure 14. Area division of pig pens.

The data were preprocessed according to the following procedure: (a) Grouping the
tracking results by pig ID (1, 2, 3, 4). (b) Calculating the center-point positions of the
bounding boxes for each pig. (c) Filling in missing data. The pig detector is not fully able to
detect pigs in all scenarios, and there are very few frames in which a particular pig cannot
be detected during the tracking process, so filling in the missing frames ensures that there
are detection data for every frame of every pig to facilitate subsequent grouping based on
time. (d) Aggregating the data for each pig every 1 s.

After preprocessing the tracking results, the area where the pig is located every second
can be determined by the position of the center point of the pig bounding box. The specific
steps were as follows: (a) Determine frame by frame the area where the center point of the
pig detection frame is located. (b) Identify the area with the highest proportion within that
second (25 frames) to determine the pig’s location for that second. (c) Summarize the time
each pig stays in each area.

It should be noted that due to the distance between the center point of the detection
box and the pig’s head, it may not accurately reflect the pig’s actual position when the
pig is eating. Therefore, adjustments to the eating area will be needed. In the case of pigs
eating, the length of the pig’s body was measured, and the average distance from the center
point of the detection box to the head was 230 pixels. So, the left boundary of the eating
area was extended outward to a position of 1350 pixels as the criterion for determining that
the pig is in the feeding area.

From Table 8, it can be seen that all pigs spent the most time in the resting area
throughout the entire day, which is consistent with their natural behavior. In addition,
there are differences in the amount of time each pig spent in different areas, which might
be related to individual differences. The more intuitive comparison of the statistical results
of the two methods is shown in Figure 15. The four bar charts represent the comparison of
the time each of the four pigs spent in different areas. It is evident from the charts that our
statistical results differ very little from the manually observed results.
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Table 8. Duration of stay statistics in each area.

Defecating Area  Resting Area Eating Area

Methods Pig Identity Time (s) Time (s) Time (s)
1 9039 67,530 9791
Manual observation 2 32 73,850 12,478
method 3 14,407 55,649 16,304
4 4150 75,939 6271
1 9138 67,213 10,009
. . 2 32 74,190 12,138
Video tracking method 3 14,665 55,136 16,559
4 4033 75,787 6540
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Figure 15. Comparison of length of stay. (a) pigl, (b) pig2, (c)pig3, (d) pig4.

Table 9 shows the error between the video tracking method and the manual observa-
tion method for each pig in each area. The table indicates that there are slight differences
between the two methods, with an overall error of 1.55%, which falls within an acceptable
range. For all pigs, pig 4 has the largest statistical error, but it is only 2.44%. For each
area, the statistical error is highest in the eating area, at 2.70%, while the other two areas
are within 2%, demonstrating good consistency. Overall, this set of data show that both
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methods have very small errors, validating the accuracy and reliability of the results. This
also indicates that pig tracking has certain application value in the field of pig farming.

Table 9. Error analysis of the multi-pig tracking method.

Pig Identity Error in Defecating Area (%)  Error in Resting Area Time (%)  Error in Eating Area Time (%) Average Error (%)
1 1.10 0.47 222 1.26
2 0 0.46 2.72 1.06
3 1.79 0.92 1.56 1.42
4 2.82 0.20 4.29 2.44
Average 1.43 0.51 2.70 1.55

In terms of pig tracking algorithm applications, Huang et al. [32] combined YOLO
v5 with DeepSORT to achieve efficient pig counting through tracking, but they have not
incorporated behavior analysis of the pigs. Additionally, Tu et al. [33] combined behavior
recognition with pig tracking, using a pig detection model to extract pig behaviors and a
pig tracking algorithm to determine pig identities, enabling static behavior tracking of the
pigs. Zhang et al. [34] combined pig tracking with the Slowfast action recognition network,
achieving the tracking of complex pig behaviors. However, due to overlapping and
occlusion among the pigs, it is challenging to achieve long-term tracking. By improving the
StrongSORT algorithm, our study enables accurate tracking for 24 h, laying the foundation
for long-term pig tracking applications.

5. Conclusions

This paper proposed a multi-pig tracking algorithm StrongSORT-Pig and explored its
application in pig farming. The core technical contributions are as follows:

1.  We proposed a lightweight pig detection model, YOLO v7-tiny_Pig, which reduced
the number of parameters by 36.7% and improved the recognition speed by 17.6%
while ensuring detection accuracy.

2. The StrongSORT multi-object tracking algorithm was optimized to suit the charac-
teristics of pig tracking tasks. After testing on datasets from different scenarios, the
optimized pig tracking algorithm achieved HOTA and IDF1 scores of 83.16% and
91.42%, respectively, which improved by 6.19% and 10.89%. The IDSW was reduced
by 69%, significantly enhancing the algorithm’s stability and enabling the long-term
tracking of pigs.

3. This study enabled the continuous video tracking of pigs throughout the day. Our
automated tracking method calculated pigs’ stay times in different areas of the pigsty
and achieved an overall error rate of 1.55% compared to manual counting, demon-
strating a high degree of correlation. The conclusions drawn from the automated
tracking results also aligned with pig behavior patterns.

In summary, the multi-pig tracking method proposed in this study demonstrates high
practicality, catering to the needs of practical production. It improves the efficiency of
farming personnel and lays the foundation for the automated monitoring of pigs.
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