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Abstract: Bathymetry data is indispensable for a variety of aquatic field studies and benthic resource
inventories. Determining water depth can be accomplished through an echo sounding system or
remote estimation utilizing space-borne and air-borne data across diverse environments, such as
lakes, rivers, seas, or lagoons. Despite being a common option for bathymetry mapping, the use
of satellite imagery faces challenges due to the complex inherent optical properties of water bodies
(e.g., turbid water), satellite spatial resolution limitations, and constraints in the performance of
retrieval models. This study focuses on advancing the remote sensing based method by harnessing
the non-linear learning capabilities of the machine learning (ML) model, employing advanced feature
selection through a meta-heuristic algorithm, and using image extraction techniques (i.e., band ratio,
gray scale morphological operation, and morphological multi-scale decomposition). Herein, we
validate the predictive capabilities of six ML models: Random Forest (RF), Support Vector Machine
(SVM), CatBoost (CB), Extreme Gradient Boost (XGB), Light Gradient Boosting Machine (LGBM),
and KTBoost (KTB) models, both with and without the application of meta-heuristic optimization
(i.e., Dragon Fly, Particle Swarm Optimization, and Grey Wolf Optimization), to accurately ascertain
water depth. This is achieved using a diverse input dataset derived from multi-spectral Landsat
9 imagery captured on a cloud-free day (19 September 2023) in a shallow, turbid lagoon. Our findings
indicate the superior performance of LGBM coupled with Particle Swamp Optimization (R2 = 0.908,
RMSE = 0.31 m), affirming the consistency and reliability of the feature extraction and selection-based
framework, while offering novel insights into the expansion of bathymetric mapping in complex
aquatic environments.

Keywords: bathymetry; machine learning; feature extraction; feature selection; metaheuristic; turbid;
shallow lagoon

1. Introduction

Bathymetry mapping, the measurement and study of underwater depth, is critical for
various applications, such as marine navigation, coastal management, the monitoring of
environmental and aquatic resources, and hydrographic scanning [1,2]. Field water depth
collection and further data processing have recently been carried out using the common
ship-, air-, and space-borne approaches [3]. The former uses single and multi-beam echo
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sounding systems [3,4] to gather accurate and timely water depth datasets. Multi-beam-
based equipment transmits multiple, simultaneous sonar beams to collect depth data
across a wide scope and in different directions, while a single-beam sonar provides the
measured depth at points along the scanning line [5]. Despite the high accuracy of field data
measurement, these approaches are costly in operation and timely in field collection [3,6],
leading to a gap in bathymetry map data in several regions [1,7]. The remote estimation of
biological and physical parameters using satellite images has become essential to a variety
of research domains in recent decades [8]. This approach is cost-effective compared to other
survey techniques, is a well-developed sensing technology, is easy to integrate with artificial
intelligence (AI) models, and is accurate in thematic mapping [9]. More importantly, remote
sensing-based mapping requires only a limited number of field data points to train and
validate the retrieval models, which confers great advantages, such as long-term and wide
geographical observation, very low cost, reliability, and flexibility in retrieval computation.
Hence, the use of remotely based approaches is becoming more popular for bathymetry
mapping with a special focus on air-borne (e.g., UAV image [10], air-borne LiDAR [11])
and space-borne datasets, such as LiDAR data (e.g., IceSat-2 [12] and satellite images
(e.g., Landsat, Sentinel, WorldView [13–16], Pléiades [17], SPOT [18], and Planet [19]). Of
the satellite sensors in operation, Landsat is a common remotely sensed dataset used for
bathymetry mapping with different levels of success and certainty. This satellite has been
operating since 1972 at a spatial resolution of 30 m with an 8-day temporal coverage [20,21],
which has increased the number of available Landsat images worldwide and has made it a
valuable data source for any long-run temporal mapping projects. Landsat 9 inherits the
successful design of Landsat 8 with a significant improvement in radiometric resolution
of the OLI-2 (14 bits compared to the 12 bits of Landsat 8) and in straight light reduction,
which enables a stronger detection of shade numbers and more accurate atmospheric
correction [21]. Despite this, we have observed a very limited number of studies [22] that
leverage the state-of-the-art Landsat 9 for water depth estimation.

Observing with other sensors in the Landsat family, retrieval models for Landsat im-
ages of shallow and clear coastal and oceanic regions have been developed using traditional
linear band ratio approaches [19,23,24], while other studies included band ratios together
with machine learning (ML) models - a modern and advanced approach for non-linear
data learning and over/underfit avoidance [25] using Support Vector Machine (SVM) [26],
Neural Network (NN), Random Forest (RF), Extreme Gradient Boost (XGB), NN, and deep
learning Convolution Neural Network (CNN) [27]. Given the optical properties of clear
coastal sites, the accuracy (R2) was observed to range between 0.85 and 0.95. Fewer studies
were found for bathymetry mapping in turbid water (i.e., rivers and lagoons) using Landsat
imagery. We found an optimal band ratio approach coupled with Landsat 9 [22] and a
fused model of Adaboost and XGB (Adaboost-XGB) integrated into Landsat 8 [28] to derive
the depth map in turbid water, all of which enhanced but varied the model confidence to
R2 = 0.86 and 0.97, respectively. Liang et al. 2024 [28] implemented the fused Adaboost-
XGB in a mixed area of clear and turbid water, while Niroumand-Jadidi et al. 2021 [22]
deployed the retrieval model in different turbidity conditions but with a large variation
in the coefficient of determination (0.44 - 0.86), leaving uncertainty in estimated depth in
shallow and turbid waters. This accuracy variation may be attributed to the limited number
of input features (i.e., only original bands and band ratios) used in the published models,
leaving a gap where popular image feature extraction is not utilized [29], such as gray scale
morphological operation (GSMO) and morphological multi-scale decomposition (MMSD),
to improve the accuracy using multi-dimensional estimation models.

On the other hand, the designed framework for bathymetry retrieval assumed a similar
contribution of the input bands, and a regression approach was deployed with a lower
concentration in feature selection, leading to important variables being overlooked and
the loss in retrieval accuracy improvement. In this domain, different techniques have
been adapted for several optimization problems in different domains (e.g., meta-heuristic
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optimization using a natural behavior-based algorithm) [30–32]; however, we found no
studies that applied these methods to optimize the input features for bathymetry mapping.

Given the gaps identified in the literature, this study aims to develop a general but
advanced remote sensing-based method for bathymetry mapping in shallow and turbid
water. We developed a novel approach using the feature extraction GSMO and MMSD to
create the diverse input variables extracted from Landsat 9 imagery coupled with meta-
heuristic-based feature selection to select the most important features feeding the retrieval
models. We conducted a comparison of the performance of a wide range of ML models,
including Random Forest (RF), Support Vector Machine (SVM), Extreme Gradient Boost
(XGB), CatBoost (CB), Light Gradient Boosting Machine (LGBM), and the new candidate
KTBoost (KTB) for water depth estimation in a turbid lagoon (Sam Chuon-Ha Trung
lagoon, Vietnam) from 53 variables attributed to original bands, band ratios, GSMO, and
MMSD image extraction. The best model was then combined with state-of-the-art meta-
heuristic algorithms (i.e., Dragon Fly (DF), Particle Swamp Optimization (PSO), and Grey
Wolf Optimization (GWO)) to improve the certainty of depth retrieval in the study site.
The objectives of this study were to (i) validate the performance of Landsat 9 imagery;
(ii) compare the estimation capability of different ML models; and (iii) examine the feature
selection ability of meta-heuristic algorithms for the development of an efficient workflow
for water depth estimation, which is comprehensive, reliable, and scalable for bathymetry
mapping globally.

2. Material and Methods

The study workflow includes several processing steps for original image processing,
image transformation and extraction, and image feature selection using meta-heuristic
algorithms to optimize input bands for water depth estimation with ML models (Figure 1).

In the subsequent subsections, we offer detailed insights into satellite image acquisition
and atmospheric correction (Section 2.2), as well as image transformation and extraction
techniques employing gray scale morphological operation (GSMO) and morphological
multi-scale decomposition (MMSD) methods (Section 2.2). Machine learning implementa-
tion with meta-heuristic based feature selection is elaborated in Section 2.3 using standard
evaluation metrics, including the coefficient of determination (R2), root mean square error
(RMSE), mean absolute error (MAE), median absolute error (MedAE), Akaike information
criterion (AIC) and Bayesian information criterion (BIC).

2.1. Study Site

We selected the Sam Chuon-Ha Trung lagoon (Figure 2), located on the central coast
of Thua Thien Hue province, Vietnam, as our study site. The lagoon holds vital ecological
and socio-economic importance, with a high density of aquaculture ponds, fishing traps,
fishing boats and tourism activity [33]. The bathymetry chart, however, is not available as
either a printed bathymetry map or field measurements, making it a high-potential site
for bathymetry study due to a demanding of quick and accurate method for water depth
mapping for navigation, tourism and fisheries management [34]. The hydrology and water
flow are characterized by tidal movements, balancing freshwater input from nearby rivers
(such as the Huong) and streams, with saline intrusion from the Thuan An mouth. This
dynamic interplay of brackish water creates a unique ecosystem supporting diverse flora
and fauna of highly economically important aquatic species [35,36].
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The Sam Chuon-Ha Trung lagoon experiences a seasonal weather pattern impact
of monsoons and tropical storms during the rainy season, which has different levels
of influence on precipitation levels, wind intensity, temperature, and water dynamics,
thereby affecting ecological processes. Meanwhile, meteorological conditions are typical
characterized by calm winds, clear skies and stable water levels during the dry season [37].

Field Survey

We measured the water depth under clear skies, calm winds and gentle waves alongside
the Sam Chuon-Ha Trung lagoon in August 2023 (Figure 2). A single beam Garmin GPSMAP
585 Plus equipment (https://www.garmin.com.my/products/onthewater/gpsmap-585-
plus/, accessed on 3 February 2023) with ClearVü scanning sonar technology was used
to record the water depth, deriving a dataset consisting of longitude, latitude, and water
depth for each given points. This dataset fulfills the requirements for an input dataset
necessary for training and validating remotely sensed models for bathymetry mapping. The
team included two trained staff members to operate the boat and the Garmin equipment,
recorded 1070 points within a depth range of −0.3 m to −5.52 m (Table 1).

https://www.garmin.com.my/products/onthewater/gpsmap-585-plus/
https://www.garmin.com.my/products/onthewater/gpsmap-585-plus/
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Table 1. Measured depth statistics.

Statistics

No. of
Observation Minimum (m) Mean (m) Standard

Deviation (m) Maximum (m)

1070 −5.52 −1.99 1.03 −0.30

It should be noted that, in this study, the term “bathymetry” refers to the mean water
level, which represents the average between high and low tides. According to the tide
measurement station located at the study site, the tide variation is below 0.3 m through
the year [34], a finding corroborated by our tidal calculations (Figure 3) for the month of
the satellite image acquisition. This variation is even smaller than our acceptable error
rate (10%) [38]. Therefore, tidal correction does not significantly contribute to improving
the results.

After obtaining the satellite derived bathymetry data, we proceeded to acquire the
corresponding tide levels at the time of the Landsat 9 image acquisition. This was accom-
plished using the Tide Model Driver Matlab code developed by Greene et al. (2024) [39]
in conjunction with global ocean tide models established by Hart-Davis et al. (2021) [40].
Subsequently, we employed these tide elevations to correct the water depth derived from
the bathymetry data, resulting in a correction value of −0.017 m.
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We also provide here the details of turbidity variation (Table 2), which was measured
using a EXO3 multi-parameter sonde (https://www.ysi.com/exo3, accessed on 12 March
2023) during the field survey of water depth, indicating a turbid water environment of the
study site. Among the 104 turbidity measurements taken, we observed a minimum value
of 5.17 NTU and a maximum turbidity level of approximately 32 NTU. The high turbidity
levels have the potential to reduce light attenuation at greater water depths, necessitating a
novel approach to achieving sufficient accuracy in depth estimation from satellite imagery.

Table 2. Measured turbidity statistics.

Statistics

No. of
Observation

Minimum
(NTU) Mean (NTU) Standard Deviation

(NTU)
Maximum

(NTU)

104 5.17 10.40 3.95 31.69

2.2. Satellite Image Acquisition and Transformation
2.2.1. Image Acquisition

Landsat 9 data was freely downloaded from GLOVIS (https://glovis.usgs.gov/app,
accessed on 15 November 2023) (Table 3) at level 1, which underwent geo-correction and
radiometric correction. Landsat 9 originally had 11 spectral bands, but only 6 spectral
bands, comprising surface reflectance bands of Rrs443, Rrs482, Rrs561, Rrs594, Rrs613, Rrs654,
were used for water depth estimation. This selection was made due to stronger light
attenuation in the water column at longer wavelengths, following atmospheric correction.
Given the challenges of high cloud coverage and sun glint phenomena, we found only the
image on the date 19 September 2023 (Landsat 9), closest to the date of the field survey
implementation. Sun glint was observed in a small area of the southern part of the image
but was removed during the atmospheric correction phase.

https://www.ysi.com/exo3
https://glovis.usgs.gov/app
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Table 3. Landsat image details.

Scene ID Processing Level
Spatial

Resolution
(m)

Date of
Acquisition Used Bands Cloud

Coverage (%) Sun Glint

Landsat 9 LC912504820
23262LGN00

Geo-corrected
and radiometric
correction image

30 19 September
2023

6 (Rrs443–
Rrs654) 0 Yes, small

area

2.2.2. Image Atmospheric Correction

We used the advanced ACOLITE [41] with dark spectrum algorithm [42] to complete
the atmospheric correction, converting pixels from physical unit to surface reflectance (Rrs)
at Rrs443, Rrs482, Rrs561, Rrs594, Rrs613, and Rrs654. The process was executed using the
command line interface in the Python environment with the most considerable parameters
exhibited in Table 4. The source code for ACOLITE is available at https://github.com/
acolite/acolite (accessed on 28 November 2023).

Table 4. ACOLITE parameters used for Landsat 9 atmospheric correction.

Parameter Value

dsf_interface_reflectance True
min_tgas_aot 0.85
min_tgas_rho 0.70

dsf_residual_glint_correction True
adjacency_correction True

dsf_aot_estimate fixed
Output Rrs443, Rrs482, Rrs561, Rrs594, Rrs613, Rrs654

2.2.3. Image Transformation

The sixth (6) original Rrs bands were first transformed using a natural logarithm (Ln)
and subsequently renamed as Ln443, Ln482, Ln561, Ln594, Ln613, Ln654. Following this, three
methods of image transformation and extraction, band ratio, GSMO, and MMSD were
conducted for Ln443, Ln482, Ln561, Ln594, Ln613, Ln654.

Band Ratio

Band ratio was applied to augment the number of input features for water depth
retrieval. We established ratios for different pairs of Ln443, Ln482, Ln561, Ln594, Ln613, and
Ln654, resulting in 29 band ratios in the dataset.

Gray Scale Morphological Operation (GSMO)

Gray scale morphological operations (GSMO) are common approach in image process-
ing, providing powerful techniques for analyzing and information extraction using gray
scale images. Unlike binary morphological operations, which only work with black and
white images, gray scale operations consider varying intensity levels within an image [43].
A diverse options of dilation, erosion, opening, and closing is essential and efficient for
image noise reduction, edge detection, and feature extraction. Dilation expands the bound-
aries of objects, erosion shrinks them, while opening and closing combinations are effective
for smoothing and filling gaps in images. GSMO is widely applied in different research
fields of medical imaging, computer vision, and remote sensing [44,45], and is very efficient
and practical in enhancing image quality and extracting unique information from complex
visual data (i.e., satellite image of water body). In this study, the open-source Orfeo Tool-
box software (https://www.orfeo-toolbox.org/, accessed on 20 December 2023), module

https://github.com/acolite/acolite
https://github.com/acolite/acolite
https://www.orfeo-toolbox.org/
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Gray Scale Morphological Operation was used to generate twelve (12) GSMO transformed
variables leveraging both the dilation and erosion approaches.

Morphological Multi-Scale Decomposition (MMSD)

Morphological multi-scale decomposition (MMSD) is a sophisticated image process-
ing technique, in which image is decomposed into multiple scales or layers based on
morphological operations. This approach is different from the single scale technique and
considers a diverse scale of shades and information dimensions, enabling a more com-
prehensive analysis [46]. Similar to the GSMO approach, MMSD implements dilation,
erosion, opening, and closing morphological operations but at different levels of scale,
which has great potential for feature, edge, and texture extraction across a range of spatial
resolutions. This decomposition facilitates tasks like image segmentation, texture analysis,
and object recognition, where capturing details at multiple scales is crucial. MMSD is
popular in remote sensing image analysis and pattern recognition to extract n–dimensions
of desired information while preserving structural characteristics at different levels of
granularity [47,48].

Similar to the GSMO, we used the open-source Orfeo Toolbox software (https://www.
orfeo-toolbox.org/, accessed on 20 December 2023), module Morphological MultiScale
Decomposition, to create 6 MMSD extracted features. In total, there were a dataset of
53 input features created for this work, involving 6 original bands, 29 band ratios, and
18 GMSO-MMSD bands.

2.3. Machine Learning (ML) Model and Feature Selection Implementation
2.3.1. Selected ML Models
CatBoost

CatBoost (CB) [49] is a powerful ML model, which stands out for boosting struc-
ture improvement and the processing of categorical features. The model employs gra-
dient boosting to build a sequence of decision trees in a given number of iterations. CB
is capable of working seamlessly with text and noncontinuous features by introducing
a novel algorithm to compute target statistics during the construction of the decision
tree, which in turn helps to prevent data leakage, resulting in more accurate and reliable
predictions. In addition, the CB model incorporates advanced features, such as robust
controlling of overfitting, offering parallel and GPU training, and built-in visualization
tools for model interpretation. CB has been deployed in a variety of research works
for bio-physical parameters’ estimation and classification [50,51]. The CB package was
sourced from https://pypi.org/project/catboost/ (accessed on 30 December 2023) with an
application programing interface (API) wrapped in the scikit-learn [52].

Random Forest

Random Forest (RF) [53] is the most popular ML model, applied for diverse classifica-
tion and regression tasks since first introduction in 2001. The algorithm builds multiple
decision trees during training and merges their predictions to improve accuracy and robust-
ness. Given the algorithm structure, denote X as the input feature matrix with n samples
and m features. Each decision tree in the forest is created by recursively partitioning the
feature space. For a given node, a random subset of input features is chosen and Gini
impurity/obtained information is used to split the samples in a round of iteration until
meeting the stopping criteria (i.e., a maximum depth or minimum number of samples per
leaf node). During the RF implementation, category or numerical prediction is produced
for each tree and final prediction is obtained by aggregating the individual predictions (i.e.,
majority vote). RF is well known for simplicity, scalability in model deployment and robust
prediction, making the model a priority in various research domains. The scikit-learn
library supports the API for RF implementation in the Python environment.

https://www.orfeo-toolbox.org/
https://www.orfeo-toolbox.org/
https://pypi.org/project/catboost/
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Support Vector Machine

Support Vector Machine (SVM) [54] is another supervised learning algorithm using a
strategy of searching for optimal hyperplane dividing group clusters with the maximum
margin. Considering a classification dataset (xi, yi), for instance, where xi represents
the feature vectors and yi represents the class labels, SVM aims to find the hyperplane(
wTx + b = 0

)
that maximizes the margin between the closest points (support vectors) of

different classes.
For linearly separable data, the optimization problem can be mathematically built in

the following form for the linear problem:

minw,b =
1
2
||w||2 (1)

and subject to:
yi

(
wTxi + b

)
≥ 1 for i = 1, 2, . . . , n (2)

We used the scikit-learn library to execute the SVM model in this study.

KTBoost

The KTBoost (KTB) algorithm was first released in 2019 [55] and the KTB implemen-
tation code was published in 2021. KTB is different from other members of the boosting
family in combining the advantage of kernel and the strength of tree ensemble meth-
ods. The authors claim a more robust and consistent prediction with the integration of
kernels, denoted as K, into the boosting framework. The KTB code was sourced from
https://pypi.org/project/KTBoost/ (accessed on 30 December 2023) using the scikit-learn
API to build the model for water depth estimation.

Following the learning strategy for the boosting algorithm, weak learners were iter-
atively constructed under the forms of decision trees to minimized a given loss function
L. For an iteration t, the model searches for a minimizer F∗(.) using the empirical risk
function R(F):

F∗(.) =
argmin R(F)

F(.) ∈ Ως
=

argmin
F(.) ∈ Ως∑

n
i=1 L(yi, F(xi)) (3)

in which L(Y, F) is the appropriately chosen loss function, and Ως is the span of a set of
base learners.

During the learning process, a matrix K (i.e., kernels) can be introduced tp discriminate
the differences between training instances, and hence to handle complex patterns in the
dataset. Despite a promising algorithm structure, the application of KTB is modest in
the literature.

Extreme Gradient Boost

Extreme Gradient Boosting (XGB) [56] employs a gradient boosting structure to define
weak learners (i.e., decision trees) in the ensemble, of which the new learner improve
prediction accuracy and reduce the errors from the past (i.e., previous learner). XGB is
different from other traditional gradient boosting methods by providing a regularization
parameter to avoid overfitting in prediction and deploying a second-order Taylor series
approximation to reach the minimum value of a given loss function.

Let {(xi, yi)}n
i=1 denote the training dataset, where xi represents the feature vector

and yi represents the corresponding target label. XGB sequentially adds the new model
F(x) = ∑T

t=1 ft(x), where ft is a weak learner, by minimizing the objective function:

Obj = ∑n
i=1 l(yi, ŷi) + ∑T

t=1 Ω( ft) (4)

where l is the loss function and Ω is the regularization term. XGB shows good versatility
and scalability for various dataset scales and complex computation, yet produces a robust
prediction, hence a wide deployment of the model in the literature. XGB source was

https://pypi.org/project/KTBoost/
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retrieved from https://pypi.org/project/xgboost/ (accessed on 30 December 2023) using
similar API in the scikit-learn library.

Light Gradient Boosting Machine

Light Gradient Boosting Machine (LGBM) is a high-performance gradient boosting
framework developed and released by Microsoft company in 2017 [57]. The name of the
model indicates a boosting based algorithm but has the advantage of in light computation,
and hence improves the convergence speed for complex problems. The LGBM package
was installed from https://pypi.org/project/lightgbm/ (accessed on 30 December 2023)
and shares a similar API for model implementation in the scikit-learn library.

Similar to other boosting algorithms, LGBM optimizes the objective function by adding
decision trees in a forward and greedy manner. For a given iteration, LGBM determines
the best split for the leaves (i.e., num_leaves parameter in the model) to minimize the loss
function by gradient descent methods with regularization terms. In addition, LGBM applies
a histogram-based technique to construct histograms of feature values, which has great
potential in reduction of memory consumption and increase the computation speed. LGBM
is among the most popular models used in both industry and academic research.

2.3.2. Meta-Heuristic Optimization Algorithms
Dragon Fly

The Dragonfly (DF) algorithm [58] is a nature-inspired meta-heuristic algorithm that
mimics the swarming behavior of dragonflies to find a solution for complex optimization
problems. Each of the particles (i.e., dragonflies) presents a potential solution to reach the
optimal solution using swamp behaviors. A motility of the dragonflies is simulated in the
following form:

∆Xt+1 = (sSi + αAi + cCi + f Fi + eEi) + w∆Xt (5)

of which s is the separation weight, Si as the separation of i-th individual, a is the alignment
weight, Ai is the alignment of i-th individual, c determines the cohesion weight, Ci is the
cohesion of i-th individual, f is the food factor, Fi is the food source of i-th individual, e
is the enemy factor, Ei is the position of enemy of i-th individual, w indicates the inertia
weight, and t is the iteration. The DF is characterized by the most important parameters
of swamp population, number of iterations, and the simulated method (e.g., random
or sinusoidal).

Particle Swamp Optimization

Particle Swarm Optimization (PSO) [59] is a meta-heuristic optimization algorithm
inspired by the social behavior of bird flocking or fish schooling. PSO is well known for
various optimization problems in classification, numerical modeling, and machine learning.
In PSO, a population of candidate solutions, called particles, moves through the search
space to find the optimal solution using a given loss function. Each particle is simulated
by a position vector Xi and a velocity vector Vi. The movement of the particle and new
updated position feature a local best-known position Pi and the global best-known position
Pg. Position is updated after each of iteration for the i particle until reaching the stopping
criteria (i.e., a maximum number of iterations or minimum value of the loss function),
which is expressed as the following equation:

Vi(t + 1) = w · Vi(t) + c1 · rand() · (Pi(t)− Xi(t)) + c2 · rand() ·
(

Pg(t)− Xi(t)
)

(6)

where w is the inertia weight, c1 and c2 are acceleration coefficients, and rand() generates a
random number between 0 and 1.

PSO is capable of working with noisy data and has proven reliability, consistency and
scalability for different complex problems.

https://pypi.org/project/xgboost/
https://pypi.org/project/lightgbm/
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Grey Wolf Optimization

Grey Wolf Optimization (GWO) [58] is a meta-heuristic algorithm inspired by the
social hierarchy and hunting behavior of grey wolves in a pack. GWO develops the concept
of alpha, beta, and delta parameters to simulate the elite wolves of the hunting group.
Similar to the DF and PSO, each wolf updates its position after each iteration and this
simulation is developed under the following equation:

→
D = |

→
C .

→
Xp(t)−

→
X(t)| (7)

→
X(t + 1) =

→
Xp(t)−

→
A .

→
D (8)

Here, t determines the current iteration,
→
A and

→
C are formed as coefficient vectors,

→
Xp

is position vector of the prey, and
→
X is position vector of a grey wolf.

GWO is known for fast speed of convergence, consistency and robust optimization for
diverse loss functions, therefore making it a good choice for this study.

2.3.3. ML Model Optimization and Implementation

Here, we outline the steps involved in deploying ML models in the Python environ-
ment for water depth estimation in the study.

Step 1: Setting up the running environment

We used the Python programing environment in conjunction with Anaconda for
library management. Python version 3.11 and Anaconda version 3.0 were employed to
install and configure the ML models and required libraries for this study.

Step 2: Model hyper-parameters optimization

ML models encompass various hyper-parameters that require an optimization to
determine the best combination for model performance. An automatic grid search with
five-fold cross validation was applied using the scikit-learn library to identify the optimal
combination of different hyper-parameters (Table 5). The grid search offers a number of
metrics, among which we selected the minimum square error (MSE) as a metric to halt the
search when the MSE reached its minimum value.

Table 5. ML model hyper-parameters.

Model Hyper-
Parameter Value Model Hyper-

Parameter Value

CB depth 8 SVM kernel rbf
iterations 120 C 10

learning_rate 0.2 Epsilon 0.01
gamma 0.1

XGB booster gbtree LGBM boosting_type dart
gamma 0 learning_rate 0.3

learning_rate 0.21 max_depth −1
max_depth 7 n_estimators 130

min_child_weight 2 num_leaves 17
n_estimators 180

RF max_depth 9 KTB loss huber
max_features 15 base_leaner kernel

min_sample_leaf 1 kernel laplace
min_sample_split 2 Learning_rate 2

n_estimators 30 max_depth 1
min_sample_leaf 1
min_sample_split 2

n_estimators 120
update_step hybrid
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Step 3: ML model implementation

We inputted a dataset of 1070 points with 53 input features into the six ML models
(Table 5) to validate their performance in estimating water depth from Landsat 9 imagery.
The data were randomly divided into 70% for training (approximately 986 points) and 30%
for testing (approximately 423 points) using the train_test_split module in scikit-learn.

Step 4: ML model evaluation: Phase 1

All ML models were evaluated using all 53 input features with standard metrics
described in Section 2.3.4 to compare the model skills in water depth estimation at the
study site. The model demonstrating the highest accuracy for water depth estimation
in Step 4 (phase 1) was selected to undergo feature selection and evaluation in phase 2
(Figure 1).

Step 5: Image feature selection and ML model evaluation (Phase 2)
The most accurate model identified in Step 4 was combined with different meta-

heuristic algorithms, including the DF, the PSO, and the GWO, to select the most influential
features for the water depth retrieval model. We adapted the Zoo f s library (https://github.
com/jaswinder9051998/zoofs, accessed on 30 December 2023) [60] in Python environment
to implement DF, PSO, and GWO. Similar hyper-parameters were inherited for the ML
model from Step 4, whilst the meta-heuristic algorithm’s hyper-parameters (Table 6) were
optimized after several iterations to minimize the RMSE of water depth retrieval. DF
and GWO share similar parameters of number of iterations (n_iterations), population
(population_size), and simulation method, whilst the PSO requires a range number for c1, c2,
and w parameters.

Table 6. DF, PSO, and GWO hyper-parameters used for feature selection.

DF PSO GWO

n_iterations 1000 n_iterations 1000 n_iterations 1000
population_size 30 population_size 100 population_size 100

method sinusoidal c1 1.5 method 1
c2 0.3
w 0.9

A comparison was made using similar metrics in Step 4 to find the best model in Step
5 for water depth estimation in this study.

2.3.4. Model Evaluation

We applied standard metrics to validate the model performance, including the co-
efficient of determination (R2), root mean squared error (RMSE), mean absolute error
(MAE), median absolute error (MedAE), Akaike information criterion (AIC) and Bayesian
information criterion (BIC) (Equations (9)–(14)).

R2(yi, ŷi) = 1 − ∑n
i=1(yi − ŷi)

2

∑n
i=1(yi − yi)

2 (9)

where y = 1
n ∑n

i=1 yi and ∑n
i=1(yi − ŷi)

2 = ∑n
i=1 ∈2

i .

RMSE =

√
1
n ∑n

i=1 (yi − ŷi)
2 (10)

MAE =
1
n∑n

i=1|yi − ŷi| (11)

MedAE = median(|yi − ŷi|) (12)

https://github.com/jaswinder9051998/zoofs
https://github.com/jaswinder9051998/zoofs
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in which n is the number of observations or data points; yi represents the observed values;
ŷi represents the values predicted by the model.

AIC = 2k − 2ln
(

L̂
)

(13)

BIC = k ln(n)− 2ln
(

L̂
)

(14)

in which k is the number of parameters in the model; n is the number of observations in the
dataset; L̂ is the maximum likelihood estimate of the model.

In the next section, we present the results for water depth estimation using different
single ML models (Section 3.1) and the ML model combined with meta-heuristic algorithms
(Section 3.2).

3. Results
3.1. Bathymetry Retrieval from Landsat 9 Using Machine Learning

We explored the model performance using different metrics (Table 7) to validate the
prediction skill in water depth retrieval from Landsat 9 imagery. Accordingly, the LGBM
gained the highest accuracy in depth estimation (R2 = 0.88) with the lowest RMSE of 0.35 m.
Despite a MedAE value similar to those of CB and RF, LGBM yielded lower AIC and BIC
values, indicating a superior prediction capability compared to other ML models. The
newly introduced KTB shared a similar performance to the CB models (R2 = 0.86); however,
it obtained lower values of RMSE (0.38 m), AIC (−511), and BIC (−311). The boosting ML
group (CB, LGBM, XGB, and KTB) produced a higher confidence than the bagging RF and
SVM (R2 = 0.84). We noted a good fit of the SVM to the measured dataset at an RMSE of
0.41 m and a lower MedAE (Table 7).

Table 7. ML model performance comparison using Landsat 9 image.

R2 RMSE MAE MedAE AIC BIC

CB 0.86 0.39 0.28 0.20 −495 −295
SVM 0.84 0.41 0.27 0.16 −458 −258
RF 0.84 0.41 0.29 0.20 −458 −258

LGBM 0.88 0.35 0.26 0.20 −552 −353
XGB 0.85 0.40 0.29 0.21 −474 −274
KTB 0.86 0.38 0.26 0.16 −511 −311

The model performance was then visualized using the scatter (Figure 4) and Taylor
plots (Figure 5).

At various levels of the coefficient of determination (R2 ranging from 0.84 to 0.88), all
the models demonstrate proficiency in handling and forecasting water depth. Nevertheless,
data points exhibited a more pronounced convergence along the standard line in the case
of LGBM. The scatter plot further revealed a dispersion of validation points across depth
ranges, confirming the enduring performance of the LGBM model.

We provided additional illustration to validate the skills of the selected model in Taylor
space with the correlation coefficient (CC), standard deviation (SD), and root mean squared
deviation (RMSD) (Figure 5) in addition to the metrics provided in Table 7 and Figure 4.
As seen in the Taylor space, LGBM was closest to the CC line (CC = 0.94) and the RMSD
curve (RMSD = 0.35 m), which indicates that the depth derived from LGBM was closer
to the measured depth than other ML models with a lower RMSD (Figure 5). Following
LGBM, the Taylor plot validated the order of the KTB, CB, XGB, and RF, as shown in Table 7.
Similar to the results obtained in Table 7, SVM had the lowest confidence of water depth
estimation as observed at the highest location in the Taylor space.
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3.2. Bathymetry Retrieval Using Machine Learning and Meta-Heuristic Optimization

The former analysis indicated a promising estimation of water depth in the turbid
water of Sam Chuon-Ha Trung lagoon at the highest R2 and RMSE of 0.88 and 0.35 m,
respectively. To improve the model accuracy, we adopted feature selection using different
meta-heuristic algorithms coupled with the best ML model, LGBM (Table 8). DF and GWO
were able to improve R2 by 1.47% and 1.59%, respectively, while PSO increased this number
to 3.18%. We observed approximately 2.85% as an amendment of RMSE when LGBM was
combined with DF and GWO, but an impressive value of 11.4% was obtained for PSO
(Table 8). Given the selected metrics, LGBM-PSO yielded the highest confidence at the
lowest RMSE of 0.31 m and MedAE of 0.16 m. The LGBM-DF shared a similar RMSE
(0.34 m) with LGBM-GWO; however, it had a lower MAE (0.24 m) and MedAE (0.17 m).

The employment of meta-heuristic algorithms aids in extracting diverse input fea-
tures, consequently enhancing the convergence of data points around the standard lines
(Figure 6). Notably, LGBM-PSO exhibited a better prediction of water depth, with valida-
tion points clustering closer to the line at the lower RMSE (0.34 m) compared to LGBM-DF
and LGBM-GWO.
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Table 8. Meta-heuristic algorithms performance.

R2 RMSE MAE MedAE AIC BIC

LGBM-DF 0.893 0.34 0.24 0.17 −585 −383
LGBM-PSO 0.908 0.31 0.23 0.16 −632 −432

LGBM-GWO 0.894 0.34 0.25 0.19 −586 −386
LGBM-DF (LGBM with Dragon Fly), LGBM-PSO (LGBM with Particle Swamp Optimization), and LGBM-GWO
(LGBM with Grey Wolf Optimization).
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Figure 6. LGBM model performance with (a) DF, (b) PSO, and (c) GWO.

To validate the superior predictive capability of LGBM-PSO, we compared the perfor-
mance of the three model across the domains of CC, RMSE, and SD (Figure 7). While LGBM-
DF and LGBM-GWO exhibited similar performance and were closely aligned (Figure 7),
LGBM-PSO occupied a lower position in terms of RMSD and aligned closely with the CC
line (0.95), indicating lower prediction errors and a stronger correlation with the true depth
compared to LGBM-DF and LGBM-GWO. In essence, LGBM-PSO demonstrated more
consistent and robust estimation of water depth in the Sam Chuon-Ha Trung lagoon.
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Next, we extracted the importance score to elucidate the contribution of input features
to the superior performance of LGBM-PSO (Figure 8). The built-in function of LGBM
revealed significant contributions from three groups: single bands, image-based feature
extraction, and band ratios. With the exception of single bands like Ln561, Ln613, Ln654,
the remaining groups (band ratio, GSMO, and MMSD transformations) demonstrated
substantial contributions across a wider spectral range of 443–654 nm. Given a thresh-
old of 1.0, then the variables Ln482/Ln443 (1.36), Ln_gsmo_erode561 (1.31), Ln613/Ln443
(1.19), Ln482/Ln654 (1.13), Ln_gsmo_dilate561 (1.03) exhibited a significant impact on the
performance of LGBM-PSO, while other features ranged in importance from 0.19 to 0.95.
Single band accumulated a score of 1.16, band ratio obtained a value of 8.96, and imaged-
based feature extraction garnered the highest accumulated value of 10.68, underscoring its
substantial contribution and pivotal role in the successful operation of LGBM-PSO.
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The GSMO and MMSD extracted information at different levels among the input bands.
The former shared the highest score with Ln_gsmo_erode561 (1.31) and Ln_gsmo_dialte561
(1.03), while the latter found the most informative features from Ln_mmsd482 (0.86) and
Ln_mmsd443 (0.80). Figure 8 indicates the important rank of the band Ln561 with a
larger contribution score in different forms of the single band (Ln561), extracted features
(Ln_gsmo_erode561, Ln_gsmo_dialte561), and the number of band ratios, followed by bands
at the peaks of 654, 613, and 443 nm.

As the most accurate retrieval model, we employed LGBM-PSO for the entire study
site to produce the final bathymetry map with tidal correction (Figure 9), as mentioned in
Section 2.1. A large area of Sam Chuon-Ha Trung has shallow water with the two deeper
regions in the northern and southern parts of the lagoon, which fit our field survey as well
as the color pattern in the surface reflectance image of Landsat 9 (Figure 2).

We selected three elevation profiles from the bathymetry map derived from LGBM-
PSO and Landsat 9 imagery (Figure 10a) to elucidate the overall topography, revealing a
diverse and intricate landscape within the study site. Located in the northern and central
regions, the first profile traversed both the shallow and deep channels, while the second
profile encompassed the shallow areas of the lagoon. Deliberately focusing on the southern
part, we extracted the depth profile to trace the movement through the deeper regions of
the water body.

Accordingly, the retrieved topography was shallow at the two banks of the lagoon and
increased in depth to the central point horizontally. The second profile (Figure 10c) shows
a complex elevation surface, which ranges between the shallow and deep points at depths
ranging from 0.80 to 2.83 m. The first profile (Figure 10b) presents another complex form
of bathymetry topography, in which the water depth sharply decreases to a magnitude of
3.82 m and then gradually moves to the bank, reaching a shallow depth of 0.91 m. As a
deeper region, profile 3 (Figure 10d) is determined as a deep but simple topography with
two high-slope banks and deep regions in the central areas of the profile at depth ranges
from 0.96 to 3.70 m.
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4. Discussion

This study is the first operation and integration of diverse approaches for bathymetry
mapping in coastal turbid water. Extracted data from the latest generation Landsat 9 image
were combined with the state-of-the-art ML models and meta-heuristic algorithms to derive
the water depth with an accuracy R2 of 0.908 and RMSE of 0.31 m using a fused model
of LGBM and PSO (LGBM-PSO). Of the selected ML models, the boosting algorithms
achieved superior performance compared to the bagging and the hyperplane-based SVM.
LGBM gained the highest confidence in depth estimation (R2 = 0.88, RMSE = 0.35 m),
followed by CB (R2 = 0.86) and XGB (R2 = 0.85). The KTB, a new boosting ML model
introduced in 2021, presented a high potential in learning and predicting complex data
with similar performance to the CB model (R2 = 0.86). Boosting was found to outperform
the bagging and SVM groups in the retrieval of both classification and bio-physical param-
eters [27,50,51,61] with advancements in algorithm structures and the creative workflow in
the decision making of the final model [62,63].

Following the proposed workflows, a significant improvement was gained when
using both approaches of feature extraction and feature selection. Feature importance
analysis (Figure 8) indicated the highest number of contributed variables (46%) of the band
ratio, followed by the image extraction (44%) and original band (10%) groups, and the
accumulated scores derived from LGBM-PSO were higher than those of the other variables.
Of the 44% contribution, we discovered 27% and 17% of the information derived from
the GSMO and the MMSD variables, respectively. There were only three original bands
at the wavelengths of 561, 613, and 654 nm, while a larger contribution in the range of
443–654 nm was found for the band ratio and image extraction, implying the importance
and necessity of feature extraction during the learning process of ML models. The working
range of Landsat bands (443-654 nm) also fits the model performances found in other
studies [23,24,27,64]. In addition to the successful retrieval of LGBM was the support of
feature selection attributed to the DF, PSO, and GWO meta-heuristic algorithms. PSO
produced the highest improvement in RMSE (~11%), while DF and GWO enhanced the
RMSE by approximately 3% compared to the original LGBM. We do not claim here an
absolute outperformance of the PSO to DF and GWO, due to a variation in the algorithm’s
performance by the study sites and dataset [50,65,66]. Rather, we motivated the integration
of feature selection using nature-inspired algorithms during the building of the retrieval



Geosciences 2024, 14, 130 21 of 24

framework, not only for bathymetry mapping but also for other studies that have great
accuracy improvement potential. However, a better convergence of PSO in our study may
be assumed for the velocity adjustment (i.e., acceleration coefficients c1 and c2 parameters)
of particle trajectories based on personal and global best solutions, which enables an
efficient exploration of the search space and convergence to optimal solutions. Given a
D-dimensional space, the inertial weight w controls the velocities c1 and c2 to balance
exploration (searching for new potential regions) with exploitation (tuning the current
searching area). The bird flock structure of PSO algorithms updates the next potential
position of each particle using not only the experience itself but diverse experiences from
other particles in the swamp, which increases the speed of convergence and the handling
of noisy datasets [67,68].

Using the turbid water in Sam Chuon-Ha Trung lagoon as an example, our results
derived from Landsat 9 imagery are more promising and have higher accuracy compared to
similar studies in clear water and in rivers. Most of the published studies involving Landsat
images use simple approaches of either original bands or the band ratio coupled with linear
models (i.e., Stumpf model [24], Generalized additive model (GAM) [23], Lyzenga optical
model [19] or common ML models [27]). While this approach showed promising confidence
in water depth estimation in clear coastal and ocean waters, there was a great variation in
accuracy in inland turbid waters (e.g., river [22], estuary [28]).

In addition to the reliability and consistency of the proposed methods, we emphasize
the leveraging of open-source remotely sensed data (i.e., Landsat image), open-source algo-
rithms (e.g., GSMO, MMSD feature extraction, ML, and meta-heuristic optimization) and
the open Python programing environment, which enable our study to be replicated and the
proposed framework to be expanded to a diverse environment at different scales. This can
be claimed as another valuable contribution of the current study to the research community
worldwide for both bathymetry mapping and the estimation of other parameters.

Despite reliable and promising results, this study comes with an unavoidable limi-
tation. Due to the high cloud coverage, the number of available multi-spectral satellite
images is reduced to a few scenes per year, which can make the comparison between field
survey data and satellite image acquisition challenging. In addition, the appearance of
private fish traps along the lagoon partly prevented a full observation of water depth to be
made during the field survey. Discussion was raised with many local fishermen to obtain
the information for water depth from these private areas. Ongoing studies are expanding
the proposed methods to other turbid water bodies in river, estuary, and coastal regions.
Drone images will be validated for bathymetry mapping together with other multi-spectral
sensors and will be coupled with a deep learning model. Additional feature extraction
techniques will be integrated with diverse meta-heuristic feature selection models (e.g.,
Harris Hawk Optimization, Genetic Algorithm) to improve the confidence of water depth
estimation in the future.

5. Conclusions

We present an innovative approach for bathymetry mapping in turbid water using
Landsat 9 image, leveraging state-of-the-art feature extraction techniques, such as GSMO
and MMSD, alongside feature selection through DF, PSO, and GWO-based meta-heuristic
optimization, coupled with ML-based learning employing RF, SVM, XGB, CB, LGBM, and
KTB models. Among these, LGBM demonstrated superior performance in estimating
water depth using all derived features (R2 = 0.88, RMSE = 0.35 m). This model was
further enhanced by integrating PSO for feature selection in the second phase of prediction,
resulting in the highest accuracy for bathymetry mapping (R2 = 0.908, RMSE = 0.31 m).

Of the 30 selected variables within the spectral range of 443-654 nm, band ratios
accounted for 46% of the variance, while image extraction techniques (GSMO, MMSD) con-
tributed 44% to the number of selected bands in the LGBM-PSO model. Feature importance
analysis revealed that image extraction had the highest accumulated contribution score
(10.68), followed by band ratios (8.96) and single-band groups (1.16).
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The DF, PSO, and GWO algorithms exhibit significant potential in selecting the optimal
combination of input variables for ML models, facilitating the derivation of accurate
bathymetry maps across various turbidity conditions. This study underscores the superior
learning capabilities of boosting compared to bagging and SVM techniques, with LGBM
and KTB models showing promise for further deployment in water depth estimation and
bio-physical parameter retrieval across different regions of the world.
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