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Abstract: The use of drop-in capable alternative fuels in aircraft can support the European aviation
sector to achieve its goals for sustainable development. They can be a transitional solution in the short
and medium term, as their use does not require any structural changes to the aircraft powertrain.
However, the production of alternative fuels is often energy-intensive, and some feedstocks are
associated with harmful effects on the environment. In addition, alternative fuels are often more
expensive to produce than fossil kerosene, which can make their use unattractive. Therefore, this
paper analyzes the environmental and economic impacts of four types of alternative fuels compared
to fossil kerosene in a well-to-wake perspective. The fuels investigated are sustainable aviation fuels
produced by power-to-liquid and biomass-to-liquid pathways. Life cycle assessment and life cycle
costing are used as environmental and economic assessment methods. The results of this well-to-
wake analysis reveal that the use of sustainable aviation fuels can reduce the environmental impacts
of aircraft operations. However, an electricity mix based on renewable energies is needed to achieve
significant reductions. In addition, from an economic perspective, the use of fossil kerosene ranks
best among the alternatives. A scenario analysis confirms this result and shows that the production
of sustainable aviation fuels using an electricity mix based solely on renewable energy can lead to
significant reductions in environmental impact, but economic competitiveness remains problematic.

Keywords: sustainable aviation fuels; biokerosene; synthetic kerosene; life cycle assessment; life
cycle costing; well-to-wake analysis

1. Introduction

The demand for passenger and cargo flights has grown considerably over the past
few decades. Due to continuing globalization and almost unlimited travel possibilities,
global air travel is expected to expand even further [1]. Pre-COVID studies of the two
leading aircraft manufacturers, Airbus and Boeing, predicted that the demand for flights
will increase by up to 4.5% annually, which would lead to a doubling of air traffic every
16 years [2,3]. Although the COVID-19 pandemic led to a decrease in air travel by 75% in
2020 and therefore slowed this growth in the short term, the demand for flights has fully
recovered, and a strongly positive trend is expected in the long term [4].

While this development is desired from an economic perspective, it is associated with
extensive negative environmental impacts. Especially the emission of greenhouse gases
(GHGs), such as carbon dioxide (CO,), is associated with undesirable and long-lasting
effects on the climate due to increased global warming [5]. In 2019, the aviation sector
was responsible for 2.6% of global CO, emissions and 5.9% of global anthropogenic GHG
emissions. Even if fuel efficiency improvements of approximately 25% can be achieved
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with each new aircraft generation, the predicted growth in flights would cause the aviation-
induced GHG emissions to triple until 2050 [6]. This is particularly critical, as the impacts
of emissions at high altitudes are more severe than those from ground-level emissions [7,8].

These negative impacts are mainly due to the combustion of fossil kerosene during
flight operation [9], in which about 2.5 kg of CO; is emitted per liter of kerosene [10].
An average medium-haul aircraft, such as the Airbus A320, consumes around 2700 L of
kerosene per flight hour, causing 6750 kg of CO, emissions during this period [10].

Due to the negative impacts on the environment as well as increasing societal pressure,
political regulations have been established to reduce these emissions. Various strategies
have been devised in the aviation sector, such as the introduction of the “Carbon Offsetting
and Reduction Scheme for International Aviation” (CORSIA) [11]. Notably, the European
aviation industry imposed ambitious goals on themselves until 2050 based on the Flightpath
2050 strategy: reduction of CO, emissions by 75% per passenger kilometer traveled (pkm),
reduction of nitrogen oxides (NOy) emissions by 90% per pkm, and subjective noise
reduction by 65% relative to a new aircraft from the base year 2000 [12,13]. A first step
toward the achievement of these reduction goals is the mandatory participation of airlines
in the European Union Emission Trading System (EU ETS) for intra-European flights [14].
However, CORSIA and the EU ETS predominantly aim to provide financial compensation
for the environmental impacts of air travel. Further far-reaching strategic concepts in the
aviation sector are of the utmost importance to enhance sustainable aviation independent
of fossil fuels.

Although a continuous improvement of aviation technologies is assumed, the effi-
ciency increase of existing technologies will not suffice to reduce harmful environmental
impacts substantially [13]. Consequently, disruptive technologies or radical changes to the
powertrain system are inevitable [15,16]. To this end, the aviation industry is increasingly
focusing on the use of alternative powertrain technologies in the aircraft fleet, such as fuel
cell-based and battery-based concepts. Extensive structural modifications of the aircraft
accompany these technological transitions. In the short term, however, they are not tech-
nologically feasible due to pending research and approval [17,18]. Considering the long
use phases as well as the long research and development cycles of aircraft and powertrain
concepts of 20-30 years in total, short-to-medium-term solutions need to complement the
long-term transition [16,18].

One such solution can be the use of drop-in capable alternative fuels, which are burned
instead of fossil kerosene and do not require any structural changes to the aircraft. Although
their combustion produces almost identical CO, emissions, significant reductions can be
achieved from the well-to-wake perspective through savings during production [19,20]. In
addition, alternative fuels contain no sulfur or aromatic compounds, which results in less
particulate matter and NOy being released during combustion. However, their production
is often energy-intensive, and some feedstocks lead to environmental pollution themselves.
In addition, alternative fuels are often more expensive to produce than fossil kerosene,
which is why airlines consider their use critically [21]. Therefore, the extent to which these
alternative fuels can contribute to achieving Europe’s ambitious emission reduction goals
must be analyzed and evaluated carefully.

This article seeks to analyze and assess different types of alternative fuels for aviation
regarding their potential to be a suitable transition solution toward sustainable transfor-
mation of the European aviation sector. To this end, the production pathways of four
different alternative fuels (i.e., three fuels based on the power-to-liquid pathway and one
fuel based on the biomass-to-liquid pathway) and their use in aircraft engines are modeled
and analyzed. A well-to-wake sustainability assessment is conducted based on the life
cycle assessment and life cycle costing methods. Subsequently, the alternative fuels are
compared to fossil kerosene regarding environmental and economic impacts.

The remainder of this article is structured as follows. In Section 2, promising aviation
fuels are identified, their characteristics are described, the assessment methods are pre-
sented, and the system under investigation is defined. In Section 3, the impact assessment
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results of the well-to-wake analysis are presented and discussed. To this end, alternative
compositions of the electricity mix are considered to account for the use of renewable
energies (REs) in the production of alternative fuels. In Section 4, the implications of the
results are discussed. In Section 5, the paper concludes with a summary of the benefits and
limitations of the conducted study and prospects for future research.

2. Materials and Methods
2.1. Aviation Fuels and Previous Sustainability Studies

At the 2017 Conference on Aviation and Alternative Fuels, definitions in the area
of turbine fuels and their production pathways were proposed. Fuels are classified as
conventional aviation fuel (CAF), aviation alternative fuel (AAF), and sustainable aviation
fuel (SAF) [22-24]. A schematic overview of the different types of aviation fuels is shown
in Figure 1.

CAFs are aviation fuels derived entirely from petroleum sources (e.g., crude oil, liquid
natural gas condensates, heavy oil, or oil sands) produced by refinery processes. A typical
CAF is the conventional Jet-A1 fuel. In contrast to CAFs, AAFs are derived from sources
other than petroleum. These sources can be renewable or non-renewable (e.g., biomass,
natural gas, electricity, or hydrogen). Fuels based on renewable sources within AAFs are
referred to as SAFs [22,23]. AAFs initially included all alternatives to fossil kerosene. At
this point, however, a distinction can be made between drop-in fuels and non-drop-in
fuels [25]. While drop-in fuels can be blended with fossil kerosene or replace it completely
without changing the current powertrain structure, non-drop-in fuels (e.g., liquid hydrogen
(LHy)) require extensive modifications to the powertrain. These structural changes to the
powertrain require longer development phases and are cost-intensive. Therefore, drop-in
capable fuels in particular are considered promising AAFs to contribute to sustainable
aviation in the short term.

Drop-in AAFs are mostly produced by X-to-liquid pathways [25-27], where the X
stands for the underlying energy source. Potential energy sources can be gas, coal, biomass,
and hydrogen. Gas-to-liquid (GtL) and coal-to-liquid (CtL) are used as pathways for
producing AAFs from non-renewable sources. In contrast, biomass-to-liquid (BtL), power-
to-liquid (PtL), and sun-to-liquid (StL) are potential pathways to produce alternative
fuels from renewable sources, which are SAFs [22,23,25]. Different approved synthesis
processes for the aforementioned pathways exist, such as Fisher-Tropsch synthesis (FTS),
methanol synthesis, or methanation. FTS is the most widely used industrial process and
the most commercially mature, resulting in low process costs. The first process step is
the reverse water gas shift reaction, in which synthesis gas is produced using hydrogen,
electricity, and CO,. This synthesis gas is converted into syncrude during the FTS, which is
further processed into alternative fuel with the help of hydrocracking and the addition of
hydrogen [25,28-31]. The synthesis processes are often preceded by electrolysis to generate
the hydrogen required to conduct the synthesis. In addition, with regard to biomass,
there are other production processes for SAFs aside from the BtL pathway. These are
hydrothermal liquefaction (HTL), hydroprocessed esters and fatty acids (HEFA), alcohol-
to-jet (At]), and direct sugar to hydrocarbons (DSHC). However, the production capacities
of fuels using these processes are still small and are not considered in this study.
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Figure 1. Classification and production pathways of aviation fuels (adapted from [32]).

Numerous studies exist in which the negative environmental impacts of the aviation
sector are analyzed (e.g., [18,24,33,34]). These studies primarily highlight that a large part
of the negative environmental impacts of the aviation sector results from flight operations,
or more precisely, the combustion of fossil kerosene. It is responsible for about 77-91%
(depending on the type of aircraft and the mission profile) of air travel-related GHG emis-
sions [25,33,34]. The remaining GHG emissions are generated in other phases and can be
attributed to aircraft production, kerosene production, transport, and airport infrastructure.
In this context, studies on alternative fuels, which replace fossil kerosene and are expected
to reduce GHG emissions due to savings in production, have been increasingly conducted
in recent years. Melo et al. [18], Gutiérrez-Antonio et al. [35], and Doliente et al. [36]
provided comprehensive overviews of this field. Accordingly, drop-in SAFs based on
biomass, also referred to as biokerosene, receive particular attention in the current literature
(e.g., [19,20,24,37-40]). In the aforementioned studies, the general impact of biokerosene
instead of kerosene and its production based on different feedstocks are analyzed. The
existing studies show that lignocellulosic biomass (e.g., miscanthus), starch and sugar, as
well as vegetable oils and fats are potential feedstocks [19]. They can be further processed
using various production routes (e.g., FTS, HEFA, HTL, AtJ, or DSHC) [19,20].

Using these BtL pathways, reductions in GHG emissions of 63-89% in a well-to-wake
perspective are achievable compared with fossil kerosene [20,37]. These reductions depend
highly on the underlying electricity mix in the production. If the biokerosene is produced
based on the current electricity mix, the GHG emissions are approximately 2.4 times higher
than for fossil kerosene along the life cycle. Therefore, the use of electricity based on RE
is an important lever to reduce climate-damaging GHG emissions [41]. In addition to
GHG emissions, scientific discourse explores land use for cultivating first- and second-
generation feedstocks. In this context, it has become clear that feedstocks of the second
generation especially are considered promising due to low competition for the cultivation
of food crops. However, the focus should be on feedstocks of the third generation in the
long term [39,40]. Studies with an economic focus mainly evaluate the competitiveness of
biokerosene compared to fossil kerosene, and its market penetration potential is analyzed.
The analyses indicate that biokerosene has significantly higher production costs, mainly due
to the higher energy demand and the resulting higher energy costs. Further improvements
in the production processes are required to reduce energy consumption and improve
production efficiency [24,38].

Aside from biokerosene, synthetic kerosene based on the PtL pathway is seen as a
potential solution to reduce the environmental impact and for transitioning the aviation
sector from fossil to renewable fuel, thereby leveraging existing aircraft systems and
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airport infrastructure. Synthetic kerosene based on PtL pathways produces less GHG
emissions along the life cycle than fossil kerosene and consumes less land and water during
production than biokerosene. However, its production is still problematic, as it is very
energy-intensive. A high share of RE in the electricity mix is again required to decrease
its environmental impacts. Analogous to biokerosene, the high energy demand results in
higher production costs [19].

In addition to drop-in fuels, several studies exist on the sustainability aspects of non-
drop-in fuels (e.g., [41-44]). Liquid hydrogen especially is of particular interest due to its
advantages in terms of GHG emissions, acidification, summer smog, and eutrophication
compared with fossil kerosene. However, these advantages can only be exploited if the
electricity for hydrogen production comes from renewable sources, resulting again in high
production costs. Since hydrogen is a non-drop-in fuel, it requires structural changes and
extensive modifications of the aircraft powertrain.

The previous studies in the scientific literature mainly focus on the analysis of en-
vironmental aspects associated with the production and use of biokerosene. These are
compared with fossil kerosene to analyze their potentials. However, economic aspects are
only considered to a limited extent. Furthermore, there are only a few studies on synthetic
kerosene, and a comprehensive comparative analysis of fossil kerosene, biokerosene, and
synthetic kerosene in the well-to-wake perspective is missing in the scientific literature so
far. Such a study is required to evaluate the potentials of alternative fuels compared to
fossil kerosene from an environmental and economic perspective, identify hotspots along
the entire supply chain, and derive recommendations for future research.

2.2. Assessment Method

Various methods for sustainability assessment were developed to assess the environ-
mental, economic, and social impacts associated with products, processes, and supply
chains. Common methods for quantification of the environmental impacts related to an
object of investigation include life cycle assessment (LCA), carbon footprinting, cumulative
energy demand, material flow analysis, and environmental impact assessment [45,46]. Next
to the environmental assessment methods, several economic assessment methods, such as
life cycle costing (LCC), techno-economic assessment, or the net present value method, are
available [46,47]. Recently, the assessment of social impacts has also become increasingly
important. In this context, methods such as social life cycle assessment, social sustainability
evaluation, or human development analysis are used to quantify the social impacts of an
object of investigation [18,46,48].

In addition to this wide range of methods for assessing specific sustainability di-
mensions, some approaches enable a holistic sustainability assessment of environmental,
economic, and social impacts. A widely established quantitative assessment method is the
life cycle sustainability assessment approach. It scrutinizes the three pillars of sustainability
by merging the environmentally-oriented LCA with the economically-oriented LCC and
the socially-oriented social life cycle assessment [45,49-52].

This study focuses on analyzing the environmental and economic impacts of fossil
kerosene and four SAFs in the well-to-wake perspective. Social analysis is omitted due
to the focus on a European supply chain configuration, in which the typically considered
social risks in global supply chains, such as child labor, forced labor, or corruption, are
negligible, and a meaningful analysis would not be possible.

LCA and LCC are commonly used in science and industry for the quantitative sus-
tainability assessment of products and processes. Therefore, they are also applied for the
assessment within this article.

The basic procedure of the LCA and LCC is derived from the ISO 14040/14044 stan-
dards and is divided into four phases: (1) goal and scope definition, (2) inventory analysis,
(3) impact assessment, and (4) interpretation [51,53,54]. The schematic procedure is pre-
sented in Figure 2.
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Figure 2. Methodology of life cycle assessment and life cycle costing.

Typical LCA and LCC start with the definition of the study’s goal and the scope,
including the definition of the subject of study within the system boundaries. In addition,
the functional unit is defined, establishing the reference to which all energy and resource
flows are normalized. Next, inventory data describing the exchanges between the unit
processes within the system under study and the external environment are collected along
the life cycle. The inventory data are assigned to impact categories in the subsequent impact
assessment, and the so-called impact scores are calculated. Finally, an interpretation of the
assessment results is conducted, taking into account the decision makers’ preferences and
enabling support for decision making. This step also accompanies the other steps and may
be carried out in an iterative procedure, as new insights, data limitations, or stakeholder
views can lead to a redefinition of the study’s focus, goal, and methods [51,53-55].

LCA addresses the environmental impacts of the system under study. The environ-
mental interventions of all processes within the systems’ life cycle, such as extraction of
natural resources, the release of emissions, or land use, are compiled in the inventory
analysis phase. In the subsequent impact assessment, the results of the inventory analysis
are linked to different areas of protection (human health, ecosystems, and resources). These
so-called endpoint indicators are determined based on midpoint indicators, such as climate
change, mineral resource depletion, or photochemical oxidant formation. The midpoint
indicators are calculated via characterization factors used to quantify the impact of the
environmental interventions [56,57].

LCC is used to assess the economic aspects of the system under study. It is a cost-
oriented method that aims to estimate the costs associated with the existence of a product or
system, taking into account externalities that are likely to be internalized in the future [58].
One common method is environmental LCC, which accounts for the costs associated with
a product or system within the system boundaries. The functional unit corresponds to that
of the LCA [59-61].

2.3. System Definition

This study aims to analyze the environmental and economic impacts of medium-haul
flight operations by using different SAFs compared with fossil kerosene. The analysis
was conducted from a well-to-wake perspective (i.e., the underlying foreground system
comprises the fuel supply chain as well as the flight operation (Figure 3)). The fuel supply
chain consists of different unit processes that are related to feedstock production, electricity
generation, and fuel production. The flight operation includes the unit processes related
to fuel distribution and storage as well as fuel combustion in the aircraft. The foreground
system is linked to version 3.7.1 of the ecoinvent database in the background system [62].
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The life cycle inventories (LCIs) of the respective systems under study can be found in the
Supplementary Material.
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Figure 3. Foreground and background system within the system boundaries, including exchanges
between the technosphere, ecosphere, and marketsphere.

Five different types of fuel were considered in this study. These included conventional
fossil kerosene as well as four types of SAFs (see Table 1). The supply chain of fossil
kerosene begins with the extraction of crude oil [44]. The crude oil is further processed in a
refinery by distillation processes and blending in various additives [42,43]. The crude oil is
assumed to be extracted in Tyumen, Russia and further processed in a refinery in Hamburg,
Germany [63]. The fossil kerosene was compared to four promising SAFs. They were
produced via X-to-liquid pathways, more precisely via BtL and PtL, as their production on
an industrial scale is the most researched [25,27,43]. The synthesis processes were based on
FTS (Section 2.1), as this is also the most widely used method in the industry and the best
researched.

Table 1. Considered aviation fuels.

Abbreviation Description

Fossil kerosene based on crude oil produced by
refinery processes
Biokerosene based on miscanthus produced by

Kerosene (fossil)

Kerosene (bio_SMR) steam methane reforming and Fisher-Tropsch
synthesis
Synthetic kerosene based on hydrogen
Kerosene (syn_SMR) produced by steam methane reforming and

Fisher-Tropsch synthesis

Synthetic kerosene based on hydrogen
Kerosene (syn_PEM) produced by polymer electrolyte membrane

electrolysis and Fisher—Tropsch synthesis

Synthetic kerosene based on hydrogen
Kerosene (syn_SOEC) produced by solid oxide electrolysis and

Fisher-Tropsch synthesis

The BtL pathway focuses on biokerosene of the second generation. The feedstock is
miscanthus, being cultivated in Saxony, Germany [64] and further processed in Hamburg,
Germany [63]. The individual production processes include biogas production, which is
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refined to biomethane by adding various additives, and then processing to hydrogen via
steam methane reforming (SMR). In the subsequent production step, the biokerosene is
produced using FTS [36].

Concerning the PtL pathway, three types of synthetic kerosene based on hydrogen
were investigated [65]. They differ in terms of hydrogen production. Regarding the first
synthetic kerosene, hydrogen is produced via the SMR process but by using natural gas,
electricity, and water instead of biomethane [66]. The other two production pathways
are based on hydrogen production via electrolysis. For this purpose, polymer electrolyte
membrane electrolysis (PEM) and solid oxide electrolysis (SOEC) were used. In the PEM
process, hydrogen is produced in an energy-intensive production step exclusively from
water (55 kWh electricity input per 1 kg of hydrogen) [67]. The SOEC process works
similarly, but in addition to water and electricity (36.8 kWh electricity input per 1 kg of
hydrogen), a small amount of natural gas is required [68]. The hydrogen is processed
to kerosene using FIS. The whole synthetic kerosene production process takes place in
Hamburg, Germany [63].

The transports were included for all feedstock materials and further processed fuels.
The transport distances to the refinery are covered by pipelines based on the European
pipeline network [69]. Final transport to the airport is conducted by trucks. The distances
for road transport were determined via the Searates website (www.searates.com (accessed
on 1 October 2021)). At the airport, storage takes place in tanks. The energy demand for
producing the fossil kerosene and the four types of SAFs were obtained from the scientific
literature and industry data [36,66-68]. The production costs were calculated based on the
energy demand during production, the country-specific electricity price, and the scientific
literature concerning the cost of SAF production [19,38,66-68].

For analysis of flight operation, a reference flight over a distance of 2000 km with a
load of 160 passengers, including luggage, was considered. This corresponded to a flight
from Frankfurt am Main, Germany to Moscow, Russia. The flight lasted 185 min, with a
take-off and climb time of 45 min and a cruise and landing time of 140 min. The functional
unit for the analysis was 100 pkm traveled on a 2000 km medium-haul flight with a load of
160 passengers, including luggage.

According to the Lufthansa Group, such a flight consumes 4.12 L of kerosene (specific
energy of 39.2 kWh) per 100 pkm [70], representing the fuel consumption within this study.
The combustion behavior of the fuels and the resulting emissions were derived from the
scientific literature [71,72].

The impact assessment within this study was based on two life cycle impact assessment
methods: one for each considered sustainability dimension. As a common method of
environmental assessment, the ReCiPe Midpoint method is used [57], and a life cycle
cost-based approach is used for the economic assessment [59].

Seven impact categories were analyzed for the environmental assessment (see Table 2).
Based on the objectives of the Flightpath 2050 strategy, these were climate change (CC) and
photochemical oxidant formation (POF) as well as, due to health-related impacts, particulate
matter formation (PMF) and human toxicity (HT). In addition, fossil resource depletion (FRD)
was analyzed, since raw materials such as crude oil and natural gas are of fossil origins
and fossil energy carriers are often used to generate electricity. Agricultural land occupation
(ALO) and mineral resource depletion (MRD) were analyzed regarding the use of agricultural
land to cultivate bio feedstocks and the need for mineral resources to build refinery and
synthesis plants. For the economic assessment, the costs associated with the fuel supply
chain and flight operation were assessed. These costs are referred to as life cycle costs (LC).
Revenues were not considered as they were mainly determined by the airline’s pricing
strategy and were not directly related to the fuel used.
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Table 2. Environmental and economic impact categories.

Dimension Impact Category Unit
Climate change (CC) kg COy-eq.
Fossil resource depletion (FRD) kg Oil-eq.
Particulate matter formation (PMF) kg PMjg-eq.

. Agricultural land occupation (ALO) m? per year
E tal
nVIronmenta Photochemical oxidant formation (POF) kg NMVOC-eq.

Human toxicity (HT) kg 1.4-DCB-eq.
Mineral resource depletion (MRD) kg Fe-eq.

Economic Life cycle costs (LC) US-Dollar

The calculation model for the inventory analysis and impact assessment was imple-
mented in Python using the Brightway2 framework [73].

3. Results
3.1. Overview of Impact Assessment Results

An overview of the environmental and economic assessment results is provided in
Table 3. The lowest scores in each impact category are highlighted in bold. As described
in Section 2.3, the use of the four SAFs compared to fossil kerosene was investigated on
a medium-haul flight of 2000 km. The assessment results are presented concerning the
functional unit of 100 pkm.

Table 3. Environmental and economic assessment results of the aviation fuels used for flight operation
regarding the functional unit of 100 pkm traveled.

Per 100 Passenger Kilometers Traveled

Impact
Dimension C at(fgory Unit Kerosene Kerosene Kerosene Kerosene Kerosene
(Fossil) (bio_SMR) (syn_SMR) (syn_PEM)  (syn_SOEQ)
CcC kg COz-eq. 15.7960 11.9856 14.7195 57.5965 43.3410
FRD kg Oil-eq. 5.4647 2.0757 9.7122 19.3292 16.1859
PMF kg PMjp-eq. 0.0288 0.0412 0.0539 0.0843 0.0740
Environmental ALO m? per year 0.1180 2.7944 0.2988 2.7630 1.9225
POF kg NMVOC-eq. 0.0678 0.0967 0.1221 0.1836 0.1629
HT kg 1.4-DCB-eq. 6.3265 2.3085 2.7208 58.3424 39.3755
MRD kg Fe-eq. 0.1320 0.1469 0.3564 0.9510 0.7482
Economic LC US-Dollar 2.5905 7.6675 6.4417 22.9424 17.8238

The aggregated results show that deployment of the investigated SAFs instead of
fossil kerosene could reduce some of the environmental impact scores (CC, FRD, and HT)
but was also associated with higher environmental impacts in other categories (PMF, ALO,
POEFE and MRD) as well as substantially higher LC.

Overall, the analysis of the environmental impact categories shows that the use of
SAFs would be advantageous, especially regarding the reduction of climate-damaging and
health-damaging emissions, but fossil kerosene could also be advantageous over SAFs
due to their higher impact scores in other impact categories. For example, the high impact
scores regarding ALO can be explained by the demand for land to cultivate the feedstock
for biokerosene and the extraction, processing, and final conversion of lignite, hard coal,
and wood chips to electricity, of which a high amount is required to produce synthetic
kerosene (PEM and SOEC).

Concerning the economic impact of LC, it is evident that SAFs cannot yet achieve mar-
ket penetration. The use of synthetic kerosene (PEM and SOEC) results in particularly high
LC which exceed those of fossil kerosene by 786% and 588%, respectively. Economically
semi-competitive is the use of biokerosene (SMR) and synthetic kerosene (SMR) which,
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however, lead to 196% and 149% higher LC, respectively. The key drivers of environmental
and economic impacts are analyzed in more detail in Sections 3.2 and 3.3.

3.2. Detailed Analysis of the Environmental Impacts

In the following, the environmental impact scores of fossil kerosene and the SAFs are
investigated further. For this purpose, the total impacts are split into the shares associated
with the fuel supply chain and flight operation, and the key drivers of the impacts are
analyzed. Figure 4 indicates that the fuel supply chain was mainly responsible for a
majority of the environmental impacts. In terms of SAFs, these were the main driver of
environmental impacts for six of the impact categories analyzed (POF, PMF, HT, FRD, ALO,
and MRD), accounting for 83-98% of the total impacts; however, the causes varied.

Regarding biokerosene, between 83% (HT) and 98% (ALO) of the environmental
impacts resulted directly from the fuel supply chain, while for ALO, this was mainly
due to the cultivation of miscanthus (responsible for 94%), and the large environmental
impact for PMF, POF, and FRD was mainly due to FTS. During the FTS process, a large
amount of emissions, including sulfur dioxide, volatile organic compounds, and particulate
matter smaller than 10 um, was released, accounting for 92% (PMF) and 90% (POF) of the
impacts. Regarding FRD, FTS was responsible for 46% of the total impact. In addition,
43% of the results were from the upstream chain of the required hydrogen, which included
the production of biogas as well as the refining to biomethane. This also applied to HT
and MRD, where the upstream chain of hydrogen was responsible for 80% and 55% of
the impacts, respectively. The main reason for this was the energy demand during these
production steps.

For synthetic kerosene (SMR), the fuel production using FTS was predominantly
responsible for 86% (HT) up to 97% (PMF and POF) of the environmental impacts. For ALO,
HT, and MRD, this was mainly due to the chemicals required for gas purification and their
upstream chains, which accounted for 56-76% of the total impacts. In addition, production
of the required hydrogen was generally responsible for 7-26% of the environmental impacts
of ALO, HT, and MRD. The situation was different when it came to FRD, where 76% of
the environmental impact could be attributed to the required natural gas for hydrogen
production. Its extraction and processing were responsible for 71% of the total impact.
Concerning the impact categories of PMF and POF, the process of FTS itself was responsible
for 81-88% of the total impacts. This was due to the emissions resulting from the FTS, such
as sulfur dioxide, volatile organic compounds, and particulate matter smaller than 10 pm.

Regarding synthetic kerosene (PEM and SOEC), which performed the worst in all
impact categories except ALO, the high energy demand during production was always
responsible for the negative environmental impacts. Thus, between 36% (POF) and 96%
(HT) of the total impacts could be attributed to the energy demand in hydrogen production.
This was mainly due to the composition of the electricity mix, which at the current time
still consists of almost 50% fossil and non-renewable sources [74]. Thus, the extraction,
processing, and final conversion of lignite, hard coal, and wood chips into electricity is a
significant driver of the environmental impacts.



Appl. Sci. 2022,12, 597

11 of 20

Climate change
[kg CO,-equivalents]

Kerosene (fossil)

Kerosene (bio_SMR) @

Kerosene (syn_SMR) [ T T]

Kerosene (syn_PEM) Bt T 1

Kerosene (syn_SOEC) [ L 1|
0 15 30 45 60

Particulate matter formation
[kg PM,j-equivalents]

Kerosene (fossil) e
Kerosene (bio_SMR)  [sstrd
Kerosene (syn_SMR) [
Kerosene (syn_PEM) [t
Kerosene (syn_SOEC) [
0 0025 005 0075 0.1

Fossil resource depletion
[kg Oil-equivalents]

Kerosene (fossil) )

Kerosene (bio_SMR) &4

Kerosene (syn_SMR)

Kerosene (syn_PEM)
Kerosene (syn_SOEC)

Photochemical oxidant formation
[kg NMVOC-equivalents]

Kerosene (fossil)
Kerosene (bio_SMR)  [ieameriaaiat]
Kerosene (syn_SMR) [t
Kerosene (syn_PEM) [ |
Kerosene (syn_SOEC)
0 005 01 015 02

Human toxicity
[kg 1.4-DCB-equivalents]

Kerosene (fossil) @

Kerosene (bio_SMR) E

Kerosene (syn_SMR)
Kerosene (syn_PEM) B
Kerosene (syn_SOEQC) [l

0 15 30 45 60

Agricultural land occupation
[m? per year]

Kerosene (fossil)

Kerosene (bio_SMR) B
Kerosene (syn_SMR)

Kerosene (syn_PEM) [t |
Kerosene (syn_SOEC)

0 5 10 15 20 0 0.75 1.5 2.25 3

Mineral resource depletion
[kg Fe-equivalents]

Kerosene (fossil) ]

Kerosene (bio_SMR)

Kerosene (syn_SMR) PR

Kerosene (syn_PEM) ]
Kerosene (syn_SOEC) [ |

0 0.25 0.5 0.75 1

Fuel supply chain

E Flight operation

Figure 4. Comparison of environmental impacts per 100 pkm for SAFs and fossil kerosene and a
breakdown of the impact scores regarding the fuel supply chain and flight operation.

An exception to this was the impact category CC where, in addition to the fuel supply
chain, flight operation had a significant impact. For biokerosene and synthetic kerosene
(SMR), it was responsible for 93% and 76% of the total impact, respectively. This was due to
the GHGs resulting from combustion, such as CO,, of which about 2.5 kg were emitted per
liter of fuel burned. In the case of synthetic kerosene (PEM and SOEC), the absolute amount
of GHGs emitted during the combustion of the fuels was almost identical. Yet, only 20-26%
was attributable to flight operation. As discussed previously for other impact categories,
this was due to the high energy demand in hydrogen production and the composition of
the electricity mix. Large amounts of GHGs were released during the extraction, processing,
and conversion of fossil, non-renewable feedstocks to electricity. Although CO; is also
consumed in FTS, fuel production using FTS was responsible for 74-80% of the CC impacts.

In the case of fossil kerosene, the fuel supply chain was mainly responsible for the
impacts in four of the seven environmental impact categories analyzed. Concerning FRD,
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ALO, and MRD, it was responsible for 74-96% of the total impacts. Crude oil extraction
was the primary driver of the impacts in all cases, accounting for 46-83% of the impacts. In
the case of PMF, fuel production (64%) and especially crude oil extraction were the main
drivers of the impacts, but 36% of the impact was also attributable to flight operation and
the particulate matter emitted during this process. Flight operation had an even higher
share in the impact categories POF (60%), CC (70%), and HT (77%). The GHGs, particulate
matter, and NOx emitted during the combustion of fossil kerosene drove the impacts.

Overall, the analysis shows that the fuel supply chain was the primary driver of the
environmental impacts of SAFs. In addition, energy-intensive production processes and
the demand for fossil sources in electricity generation were often responsible for making
them disadvantageous to fossil kerosene in some cases.

3.3. Detailed Analysis of the Economic Impact

The following section investigates the economic impacts of fossil kerosene and SAFs
in more detail. Analogous to the previous section, the total impacts are split into the shares
associated with the fuel supply chain and flight operation (Figure 5), and the key drivers of
the impacts are analyzed.

Life cycle costs
[US-Dollar]

Kerosene (fossil) B
Kerosene (bio_SMR) %}

s Fuel supply chain
Kerosene (syn_SMR) ] PPy

Kerosene (syn_PEM) [ e Flight operation
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Figure 5. Comparison of the life cycle costs per 100 pkm for SAFs and fossil kerosene and breakdown
of the impact scores regarding the fuel supply chain and flight operation.

With LC of around USD 2.59 per 100 pkm, fossil kerosene ranked best among the
alternatives. The LC of all SAFs considered in this study were between 149% and 786%
higher than the fossil variant. In general, the main contributor in the case of all fuels was the
fuel supply chain. This was responsible for around 98-99% of the total impact, while flight
operation was responsible for 1-2%. Due to the more mature and industrially implemented
production processes, the LC of fossil kerosene were significantly lower than for SAFs.
Although the fuel supply chain was mainly responsible for the LC with about 98% of the
total impact, this corresponded to costs of just USD 2.53 per 100 pkm, significantly lower
than the SAFs. The main driver of LC for fossil kerosene was the processing of crude oil
into kerosene, which accounted for about 66% of LC. Only 2% of the total LC resulted from
the distribution of fossil kerosene and its storage at the airport.

The most promising SAFs concerning economic impacts were biokerosene and syn-
thetic kerosene (SMR), with LC of USD 7.66 per 100 pkm and USD 6.34 per 100 pkm,
respectively. This was due to the significantly higher costs of USD 7.56 for biokerosene and
USD 6.34 for synthetic kerosene in the fuel supply chain. In the case of biokerosene, these
resulted primarily from miscanthus cultivation, gasification to biogas, and the subsequent
production of biomethane, which was used as feedstock for the SMR. In total, about 62%
of the LC could be attributed to this. In the case of synthetic kerosene (SMR), a large part
of the LC could be attributed to the upstream chain of natural gas, which was required as
feedstock for the SMR and was responsible for 54% of the LC.

From an economic perspective, SAFs based entirely on renewable sources performed
the worst. Synthetic kerosene (PEM and SOEC) had the highest LC at USD 22.94 and USD
17.82 per 100 pkm, respectively. Here, hydrogen production was the main driver, accounting
for 87% and 83% of the total LC, respectively. More precisely, most of the costs were related
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to energy demands, which were particularly high at 55 kWh and 38 kWh per kg hydrogen,
respectively, and an electricity price in Germany of USD 0.21 per kWh. At the current market
maturity of industrial hydrogen production based entirely on renewable sources, synthetic
kerosene (PEM and SOEC) is not competitive from an economic perspective.

Overall, the economic analysis shows that SAFs are not yet competitive with fossil
kerosene. Without political measures (e.g., substitution, subsidy programs, or tax measures
for non-SAFs), airlines will maintain their preference toward the less expensive fossil fuels.

3.4. Influence of Using Electricity Based on Renewable Energy in Production

The previous analyses show that fossil kerosene was advantageous over SAFs con-
cerning economic impacts and, to some extent, also concerning environmental impacts.
The economic competitiveness of SAFs can be improved primarily through improved
large-scale industrial production processes, which need to emerge over time. However,
SAFs are already partially advantageous in terms of environmental impacts. The analyses
show that the energy demand and the fossil source-based electricity mix were often mainly
responsible for negative impacts. The use of an electricity mix based on 100% RE could
lead to a further reduction in the environmental impacts of SAFs. This is investigated
in the following. For this purpose, the electricity required in the fuel supply chain was
replaced by an electricity mix based on 100% RE. This electricity mix was modeled based
on Jacobson et al. [75], who forecasted the electricity mix for the year 2050. The additional
LClISs of the scenarios can be found in the Supplementary Material. A comparison of the
environmental and economic impacts of the two scenarios is presented in Figure 6. In the
following, the addition of “-RE” indicates energy carriers produced with renewable energy.

In terms of environmental impacts, the use of an electricity mix based on 100% RE can
reduce the impacts of the SAFs in six of the seven impact categories. This is exclusively
due to reduced impacts in the fuel supply chain.

For biokerosene from renewable energy (SMR-RE), there were only slight improve-
ments of 1-2% in the impact categories PMF, ALO, and POF compared with biokerosene
(SMR). In contrast, 16% and 24% improvements could be achieved in the impact cate-
gories CC and FRD, respectively, and even 73% in the impact category HT. Therefore, the
advantageousness of the use of this fuel variant increased.

Concerning synthetic kerosene, it was necessary to differentiate between hydrogen
production by electrolysis and SMR. Accordingly, for synthetic kerosene (SMR-RE), in
the impact categories CC, FRD, PMF, ALO, and POEF, only minor improvements of 0.5—-
8% could be achieved compared with synthetic kerosene (SMR), but this was different
for HT. Here, an improvement of 22% occurred. These improvements were much more
significant regarding synthetic kerosene (PEM-RE and SOEC-RE). Thus, for PMF and POF,
improvements of 15-28% could be achieved, and for CC, FRD, ALO, and HT, improvements
of 71-97% could be achieved. This was due to the avoidance of fossil energy sources in
electricity generation. The negative environmental impacts could be significantly reduced
by eliminating the extraction and processing of lignite, hard coal, and wood chips. This is
particularly evident for the improvement in CC, where the energy-intensively produced
synthetic kerosene is now advantageous. Here, two aspects added up: on the one hand,
the low-emission hydrogen production and, on the other hand, the demand for CO, in the
FTS. This led to synthetic kerosene (PEM-RE and SOEC-RE) having a 90% and 61% lower
CC impact than fossil kerosene, respectively. Additionally, the use of synthetic kerosene
(PEM-RE) could reduce the impact of FRD, which was 20% lower than for fossil kerosene.
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Figure 6. Comparison of the environmental and economic impacts per 100 pkm using the current
electricity mix and an electricity mix based on 100% RE in the fuel supply chain of SAFs.

Only with regard to MRD, the use of an electricity mix based on 100% RE led to
deterioration due to the need for raw materials to build the RE plants. These were primarily
raw materials that were costly to extract and produce, such as copper and aluminum, which
were key drivers of the impact category MRD. Overall, there was a deterioration reflected
in the impact scores that were 4-124% higher, resulting in the disadvantageousness of SAFs
for this category.

The switch to an RE-based electricity mix did not affect the economic impact. This
was because it was assumed that the electricity price did not change due to the switch and
was accordingly identical in both scenarios.
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4. Discussion

The overall results of this study confirm that the use of SAFs can be a promising
solution for reducing the environmental impacts of the aviation sector. Although the GHG
emissions associated with flight operations were almost identical due to fuel combustion,
NOy and particulate matter emissions were reduced significantly in this phase. Addition-
ally, large amounts of CO, were sequestered in the upstream chains of fuel production,
reducing GHG emissions compared with fossil kerosene in a life cycle perspective.

Based on current production conditions and the currently available electricity mix,
biokerosene especially is a promising alternative to fossil kerosene in terms of its environ-
mental impacts. However, the cultivation of the feedstock poses potential challenges in
terms of agricultural land use if it competes with the food industry. In addition, synthetic
kerosene based on hydrogen produced by SMR or electrolysis is largely disadvantageous
compared with fossil kerosene. With regard to synthetic kerosene (SMR), this is due to the
use of natural gas, which is required as feedstock for SMR. In terms of synthetic kerosene
(PEM and SOEC), the high energy demand in hydrogen production in combination with
the current composition of the electricity mix are responsible.

However, concerning the electricity mix, it can be assumed that renewable sources
will be increasingly used for electricity generation in the future. This will have a positive
influence on the production of SAFs as well. This assumption is supported by a scenario
analysis carried out. An energy mix for the year 2050 was modeled based on the work of
Jacobson et al. [75], which was based 100% on RE. In particular, the environmental impacts
from energy-intensive hydrogen production could be significantly reduced, which results
in synthetic kerosene (PEM-RE and SOEC-RE) being associated with the lowest overall
impacts in terms of climate change.

While the results also show that there was still improvement potential from an eco-
nomic perspective, currently, the use of SAFs is not yet competitive with fossil kerosene,
mainly due to the significantly higher production costs. These are up to six times higher
than for fossil kerosene, thus lacking incentives for their use in flight operations. This
applies to both scenarios with the current electricity mix and an electricity mix completely
based on RE. At this point, political measures are necessary (e.g., substitution, subsidy
programs, or tax measures for non-SAFs) to allow for the economical production of SAFs
on a large industrial scale and increase their competitiveness.

At the same time, the question remains whether an expansion of the production
capacities of SAFs is possible with the current capacities of electricity generation. In
particular, the high energy demand in hydrogen production using electrolysis could lead to
overloads in the electricity grid, resulting in production restrictions. On the other hand, the
energy-intensive production of SAFs can positively contribute to balancing the fluctuating
supply of electricity from renewable resources.

Further uncertainties exist concerning the fuels analyzed and their production. For
the study carried out, the focus was on second-generation biokerosene and hydrogen-
based synthetic kerosene. For hydrogen production, SMR, as well as PEM and SOEC,
were considered. However, there is research that has been conducted addressing third-
generation biokerosene [76] as well as other hydrogen production pathways (e.g., methane
pyrolysis) [77]. In this article, FTS was assumed to be the synthesis process due to its market
maturity. Still, other synthesis processes (e.g., methanol synthesis and methanation) can
be considered in future analyses. Against this background, the analysis of the synthesis of
ammonia-based fuels using Haber-Bosch processes would be interesting. Since they are
carbon-free, no CO; is emitted during combustion. Moreover, in the case of biokerosene,
the HEFA, HTL, At], and DSHC processes can be analyzed.

A major aspect of uncertainty in this study results from the limited spatial differen-
tiation. With regard to SAFs, the assumption was made that production was carried out
entirely in Germany and that the input materials also originated from there. Different
supply chain configurations can be investigated in the context of a more robust spatial dif-
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ferentiation, whereby recommendations for action regarding supply chain configurations
can be derived.

Furthermore, this study focused on drop-in capable fuels. There are also non-drop-in
fuels such as alcohols (e.g., ethanol and methanol) and liquid hydrogen, which require
structural changes to the powertrain and the fueling infrastructure. This study did not
investigate the extent to which these would be advantageous over drop-in fuels and fossil
kerosene.

The aspects mentioned above can be considered in future research and extend the
conducted study. This way, a comprehensive comparison of potential fuels in the aviation
sector will be possible.

5. Conclusions and Outlook

This study scrutinized the potential of substituting fossil kerosene with different types
of SAFs on medium-haul flights. By doing so, the environmental and economic impacts
related to the use of the SAFs compared with fossil kerosene were analyzed by conducting
an environmental and economic assessment, and the advantages as well as disadvantages
were identified. The study focused on the fuel supply chain and flight operation in the
use stage.

The results of the study reveal that SAFs can be partially advantageous in environmen-
tal aspects. However, at the current state of development and considering the prevailing
production conditions of the fuels, fossil kerosene is to be preferred. Concerning the eco-
nomic impacts, SAFs are not yet competitive, and political measures must promote their use
(e.g., substitutions, subsidies, or tax measures). The drivers of the negative environmental
and economic impacts are mostly the high energy demand in fuel production as well as
the current composition of the electricity mix based on fossil sources. However, it can be
assumed that this composition will shift toward a higher share of RE in the long term.
Subsequent scenario analyses showed that using an electricity mix of 100% based on RE
could further reduce the environmental impacts in six of the seven impact categories inves-
tigated. It is particularly noticeable that the SAFs, which are energy-intensive to produce,
thus became competitive with fossil kerosene from an environmental point of view. Only
the impact category MRD deteriorated due to the RE plants to be built. Therefore, SAFs
produced by RE can be a solution for reducing the environmental impacts of the aviation
sector and contribute to the achievement of the Flightpath 2050 goals.

This study can be a starting point for future research. The results give an overview
of the environmental and economic impacts of different types of aviation fuels and thus
enable a detailed comparison. In future research, further fuels need to be added, such as
third-generation biokerosene or SAFs produced by HEFA, HTL, At], DSHC, or StL. In this
context, different synthesis processes have to be considered, and alternative process routes
for production of the fuels or required feedstocks (e.g., hydrogen) can be integrated. In this
way, the most promising SAFs can be identified at an early stage and become a focus of
further research.

In addition, spatial differentiation must be examined, especially in the fuel supply
chain. On the one hand, countries with a higher share of RE in the electricity mix can be
advantageous for the production of SAFs (and vice versa). At the same time, countries
with low energy costs exist, which can offer economic advantages. If these aspects are
taken into account through more advanced spatial differentiation in the fuel supply chain,
supply chain configurations associated with less environmental and economic impacts can
be designed. However, critical working conditions prevail in less developed countries, and
a conflict of objectives of the three pillars of sustainability may occur. Therefore, a social
analysis should be integrated.

While SAFs can contribute to a sustainable aviation sector in the short term, novel
propulsion technologies for aircraft have to be integrated in the long term, as proposed by
Barke et al. [15,78]. These include non-drop-in fuels (e.g., liquid hydrogen) that require
modification of the powertrain as well as the use of novel propulsion technologies (e.g.,
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battery-based or fuel cell-based concepts). Both approaches will be necessary to achieve
the long-term emission reduction goals of the aviation sector. Considering different market
entry times will allow the development of transition pathways to a sustainable aviation
sector, considering short-term and long-term sustainability objectives.

Overall, this article expands the scientific literature by creating novel LCI datasets
for a well-to-wake analysis of fossil kerosene and four types of SAFs. In addition, the
comparative environmental and economic analysis has revealed specific hotspots in the
production and use of SAFs that can be specifically handled in fuel development. Ultimately,
this enables the development of both environmentally advantageous and economically
competitive aviation fuels. Hence, this study provides a basis for further analyses of SAFs
and can be extended by the previously mentioned aspects in future research.

Supplementary Materials: The following supporting information can be downloaded at: https:
/ /www.mdpi.com/article/10.3390/app12020597/s1, LCI datasets S1: LCI datasets for medium-haul
flight operations using the investigated fuels (with current electricity mix and with 100% renewable
energies).
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Nomenclature

AAF Aviation alternative fuel
ALO Agricultural land occupation
At] Alcohol-to-jet

BtL Biomass-to-liquid

CAF Conventional aviation fuel
CcC Climate change

CO, Carbon dioxide

CORSIA  Carbon Offsetting and Reduction Scheme for International Aviation
CtL Coal-to-liquid

DSHC Direct sugar to hydrocarbons

EUETS  European Union Emission Trading System

FRD Fossil resource depletion

FTS Fisher-Tropsch synthesis

GHG Greenhouse gas

GtL Gas-to-liquid

HEFA Hydroprocessed esters and fatty acids
HT Human toxicity

HTL Hydrothermal liquefaction
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LC Life cycle costs

LCA Life cycle assessment

LCC Life cycle costing

LCI Life cycle inventory

LH, Liquid hydrogen

MRD Mineral resource depletion

NOy Nitrogen oxides

PEM Polymer electrolyte membrane electrolysis
pkm Passenger kilometer traveled
PMF Particulate matter formation

POF Photochemical oxidant formation
PtL Power-to-liquid

RE Renewable energy

SAF Sustainable aviation fuel

SMR Steam methane reforming

SOEC Solid oxide electrolysis

StL Sun-to-liquid
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