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Abstract: This study presents a dynamic model of a passenger vehicle and analyzes its dynamic char-
acteristics and responses. A dynamic vehicle model with seven degrees of freedom was established
to analyze the behavior of a driving vehicle. The vehicle model had three degrees of freedom for the
sprung mass’s motion and four degrees for the unsprung masses. For this model, the equations of
motion were derived using Lagrange’s equation. To verify the model, the suspension deformations
computed using the model were compared with those measured through three actual vehicle driving
tests: the slalom, double lane change, and step steer tests. Furthermore, we investigated the effects
of suspension stiffness, suspension damping, and anti-roll bar torsional stiffness on the dynamic
characteristics and responses of the vehicle model. This study presented a new full-car model that
can analyze a turning vehicle’s behavior in response to changes in the steering angle input. The
developed dynamic vehicle model may help vehicle designers predict the dynamic responses of a
vehicle through simulation without performing a driving test.

Keywords: dynamic analysis; dynamic model; dynamic responses; mode shapes; natural frequencies;
suspension deformations; vehicle driving test; steering conditions

1. Introduction

The ride comfort of vehicles has continuously improved in response to the diverse
needs of consumers over the years. Previously, in degraded road environments, ride
comfort was evaluated according to the behavior of a vehicle traveling on an uneven road
surface. However, in recent years, when the road environment has improved, the behavior
of the vehicle based on the steering wheel operation of the driver on a uniform road surface
has also had a significant influence on the evaluation of riding comfort. To satisfy the
riding comfort performance with the conditions mentioned above and consumers’ demand,
automobile manufacturers have continuously conducted driving tests using numerous
test vehicles from the past and have evaluated and improved ride comfort through the
analysis of driving test results. However, the driving test process is time-consuming and
expensive and involves the vehicle design stage, developing a prototype, and preparing and
performing the test. In addition, variables such as external environmental factors during
the driving test and the driver’s driving condition may adversely affect the reliability of
the test. Therefore, to address the shortcomings and limitations of these driving tests,
various studies are being conducted to establish a vehicle dynamics model and evaluate
and improve riding comfort through simulations.

Vehicle dynamics have been studied by several researchers. Genta [1] presented the
dynamic modeling of a vehicle and the dynamic behavior of the vehicle in some driving
conditions, while Gillespie [2] presented the vehicle dynamics and balanced engineering
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with practical explanations of the performance of an automotive vehicle. Gillespie and
Karamihas [3] examined the factors that must be considered in developing a simplified dy-
namic model for truck response to road roughness inputs. Meanwhile, the dynamics of tires
and suspensions, which are vehicle parts, were also studied. Pacejka and Bakker [4] pro-
vided a set of mathematical formulae that accurately describe measured tire behavior and
contain physically based formulations to calculate the forces and moments acting from road
to tire during longitudinal, lateral, and camber slips. Dixon [5] provided comprehensive
coverage of the design, installation, and utilization of a vehicle’s shock absorbers.

Based on the procedures of various driving tests, studies have been conducted to
analyze ride comfort through the simulation of vehicle models. Accordingly, some notable
studies related to driving tests are summarized. Choi et al. [6] experimentally measured
and evaluated the vertical direction (bounce) and front-rear tilting (pitch) behavior of a
vehicle body, which occurs predominantly when the vehicle passes through an uneven
road surface during the test. Jonsson and Johansson designed a suspension system that can
control bounce and pitch behavior to improve riding comfort [7]. On the other hand, the
left and right tilting (roll) behavior of the vehicle body while turning on a flat road surface
is also very important, considering ride comfort and stability. In this regard, Uys et al. [8]
experimentally evaluated the roll behavior caused by changing the steering wheel of a
driving vehicle. Additionally, Darling and Hickson [9] developed an anti-roll suspension
system that can improve riding comfort by controlling roll behavior. Further, Choi et al. [10]
performed an experiment suggesting a method to control the damping characteristics of
the suspension. This method takes into account the distinct body bounce, pitch, and roll
behaviors, which were previously examined individually in separate studies.

Several studies have been published on the analysis of ride comfort, utilizing simu-
lation techniques that simplify vehicle systems into basic dynamic models These studies
predominantly focus on the quarter-car model, which solely considers the vertical behavior
of the vehicle body. Sun et al. [11] established a two-degree-of-freedom vehicle model with
vertical road surface excitation and derived the equation of motion using the Lagrange
equation. Subsequently, the vertical vibration of the vehicle body according to the change in
parameters such as mass, stiffness, and damping ratio in the model was analyzed through
numerical analysis. Georgiou et al. [12] presented an optimization technique for deriving
optimum values of damping and stiffness of suspension for improved ride comfort with
vehicle models, including manual and semi-active suspension. Singh et al. [13,14] estab-
lished a model by additionally considering a seat and a human body in a quarter-car model
that depicts only existing vehicles. They proposed a methodology to improve ride comfort
through vibration responses from seats or body parts according to vertical road excitation.

After that, the vehicle model was expanded from the existing quarter-car model to
the half-car model to consider the tilting behavior of the car body. Some studies that
analyzed ride comfort using this model are as follows: Sun et al. [15] derived the equations
of motion for a vehicle model with four degrees of freedom that can consider the bounce
and pitch of the vehicle body traveling on a rough road. They analyzed various responses
in the time and frequency domains for the change in model parameters. Zhu et al. [16]
obtained frequency response functions for random road excitation through a vehicle model
considering the pneumatically interconnected suspension (PIS) system and compared and
analyzed them with the vehicle model without the PIS system. On the other hand, Hudha
et al. [17] were interested in the roll behavior of the vehicle body. They established a
vehicle model with the effects of the anti-roll bar and the control arm and presented a
suspension control system that can control the roll of the vehicle body caused by road
excitation. Gosselin-Brisson et al. [18] proposed an active anti-roll bar system that can
effectively control the roll motion of the vehicle body caused by lateral acceleration under
vehicle turning conditions.

Recent studies analyzed the riding comfort of a full-size car model to better understand
the behavior of the actual vehicle. Abu Bakar et al. [19] proposed a full car model with seven
degrees of freedom that can analyze ride comfort. To verify the validity of the proposed
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model, the similarity between the simulation and experimental results was shown in the
pitch mode test condition of the vehicle body that occurs when passing through a bump.
Palli et al. [20] and Sentilkumar et al. [21] established a full vehicle model with seven degrees
of freedom considering active suspension and found that active suspension improves riding
comfort by preventing vehicle resonance that may occur due to road excitation. On the
other hand, Ghike and Shim [22] proposed a full car model with 14 degrees of freedom that
can analyze the rolling behavior of a turning vehicle according to steering conditions. He
also showed the limitations of his model and demonstrated its excellence and validity.

On the other hand, vehicle dynamics can be analyzed by using commercial multi-body
dynamics software packages such as ANSYS-Motion [23], RecurDyn [24], MSC/Adams [25],
and Simpack [26]. These commercial packages provide the advantage of easily constructing
detailed vehicle models. However, they require a lot of experience and skill in constructing
the model, assigning boundary conditions/constraints, and often requiring long computa-
tion times. On the contrary, concentrated mass models are difficult to apply to complex
systems. However, it is relatively easy to analyze the influence of various parameters of the
model and requires shorter computation times.

With improvements in the road environment and recent developments in the vehicle
industry, vehicle consumers are demanding improvements in ride comfort performance
according to the driver’s steering conditions rather than solely focusing on ride comfort
performance against irregular road surface disturbances. In this regard, various vehicle
manufacturers have attempted to analyze and improve ride comfort through driving tests.
However, a time-efficient and affordable method is needed for driving tests to quickly
respond to consumer demands. Therefore, building a simple mathematical model of a
vehicle that can analyze the riding comfort of a vehicle driven by steering input through
simulation is desired.

However, most of the previous studies investigated by the authors tend to focus on
vehicle models for analyzing ride comfort under disturbance conditions, such as uneven
road surfaces or irregularities. In addition, several studies have been published to analyze
the behavior of the vehicle body by establishing a vehicle model for turning conditions.
However, they have used a method to obtain a response generated by inputting an arbitrary
lateral acceleration into the vehicle body. Since lateral acceleration is a variable determined
by the change in steering angle input by the driver, it is limited as an actual input condition
for a turning vehicle. In summary, the limitation of vehicle models in the previous studies
is that they cannot analyze the dynamic responses of a turning vehicle according to the
vehicle speed and steering angle controlled by a driver. Therefore, this study introduces a
full-car model that can analyze the dynamic behavior of a turning vehicle according to the
change in steering angle, which is the driver’s input condition. The new 7-DOF full-car
model proposed in this study is valuable in that the simulation and driving test results for
various steering conditions have been comparatively verified. The main contribution of
this study is to present a full car model encompassing an anti-roll bar that can analyze the
dynamic behavior of the variation of the steering angle controlled by a driver.

The remainder of this paper is organized as follows: In Section 2, a dynamic vehicle
model that can analyze the behavior of a driving passenger car is developed. A vehicle
model with seven degrees of freedom was established, considering the centrifugal force
acting on the vehicle during turning and the torsional stiffness of the anti-roll bar. Based on
this model, the equations of motion are derived using Lagrange’s equation. In Section 3, the
established vehicle model is verified by comparing the vertical suspension deformations
computed with the vehicle model with the deformations measured through actual vehicle
driving tests. For comparison, three driving tests were performed: the slalom, double lane
change, and step steer tests. In Section 4, the natural frequencies and mode shapes of the
dynamic vehicle model are computed and analyzed using the developed vehicle model.
Furthermore, the effects of changes in the design parameters on the dynamic response of
the vehicle model were investigated. The considered design parameters were suspension
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stiffness, suspension damping, and anti-roll bar torsional stiffness. Finally, conclusions and
a summary of this study’s results are presented in Section 5.

2. Dynamic Vehicle Model

In this section, a dynamic model of a vehicle that can analyze the behavior of a driving
passenger car is presented. This study assumes that the speed of the vehicle is kept constant,
and the driving direction of the vehicle is changed by the steering wheel. Under these
assumptions, the vehicle does not accelerate in the longitudinal direction (direction of
travel), but only in the lateral direction perpendicular to the traveling direction. This
lateral acceleration imparts a centripetal force to the vehicle and maintains it on a turning
trajectory.

The centrifugal force acting on the vehicle during turning is given by the following
equation:

F = mt
V2

R
(1)

where mt is the total mass of the vehicle, V is the speed of the vehicle, and R is the turning
radius. When the vehicle is traveling at a constant speed, as long as the mass mt and speed
V are constant, the centrifugal force F is determined by the turning radius R.

The relationship between the turning radius of the vehicle and the steering angle of the
steering wheel was analyzed. First, the relationship between the vehicle’s turning radius
and the steering angles of the front wheels can be derived from the Ackermann steering
geometry [27], as shown in Figure 1. In Figure 1, point O is the instantaneous turning
center, G is the center of mass of the vehicle, and l1 and l2 are the distances from the center
of mass to the front and rear wheels, respectively. w is the distance between the centers of
the left and right wheels, and L is the distance from the front wheel to the rear wheel. As
shown in this figure, the position of the turning center O coincides with the intersection of
the extension line of the rear axle and the vertical lines inside and outside the front wheels.
Accordingly, the steering angle of the inner front wheel, δi is formed by the extension line
of the rear axle and a line perpendicular to the inner front wheel. Additionally, the steering
angle of the outer wheel, δo is formed by the extension line and a line perpendicular to the
outer front wheel. The distance R from the turning center O to the vehicle center of mass G
is called the turning radius, and the distance from the turning center O to the center of the
rear axle is expressed as Rr.

Figure 1. Ackermann steering geometry for the front steer angles of the inner and outer wheels.

Thus, if the instantaneous turning center is determined geometrically, the turning
radius R can be expressed as the inner and outer front wheel steering angles, δi and δo. The
relationship between the steering angles of the inner and outer front wheels, the distance
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from the turning center to the center of the rear wheel axle, and the distance between the
left and right wheels can be expressed by the following equations:

tan δi =
L

Rr − w/2
(2)

tan δo =
L

Rr + w/2
(3)

In general, as the steering angle is not large when the vehicle is traveling, the steering
angles δi and δo are assumed to be small, and the turning radius R is very large compared to the
distance w between the centers of the left and right wheels. Therefore, in Equations (2) and (3),
tan δi and tan δo can be approximated by δi and δo, the distance from the turning center to the
center of the rear wheel axle, Rr can be replaced by the turning radius R, and the distance
between the left and right wheels w can be neglected. Denoting the average steering angles
of the inner and outer front wheels by δ, that is, δ = (δi + δo)/2, the turning radius of the
vehicle is given by:

R =
L
δ

(4)

This equation implies that the turning radius R is determined by the average steering
angle of the front wheels δ and wheelbase distance L.

The centrifugal force applied to a turning vehicle can be obtained by substituting
Equation (4) with Equation (1).

F =
mtV2δ

L
(5)

The average steering angle of the front wheels is determined by the steering ratio and
steering wheel angle, which can be expressed by the following equation [28]:

δs = isδ (6)

where δs is the angle of the steering wheel and is is the steering ratio of the steering wheel
angle to the steering angle of the front wheels. The steering angle ratio is is determined by
the gear ratio of the steering linkage connecting the steering wheel and the front wheel,
which is 15 for the target vehicle of this study. Finally, the centrifugal force applied to
a turning vehicle is expressed as follows: vehicle mass mt, vehicle speed V, wheelbase
distance L, steering wheel angle δs, and steering ratio is.

F =
mtV2δs

isL
(7)

Next, a dynamic vehicle model with seven degrees of freedom was established to
analyze the behavior of a driving vehicle. As shown in Figure 2, the vehicle was modeled
with one sprung mass and four unsprung masses, for a total of five rigid bodies, and the
suspension, anti-roll bar, and tires were modeled as springs and dampers. In Figure 2,
the vehicle’s forward direction is the negative x-axis direction. In addition, the y- and
z-axes are parallel to the left and right directions and the up and down directions of
the vehicle, respectively. The sprung mass is the total mass of a vehicle supported by the
suspension, which includes the body, frame, engine, transmission, and internal components.
The unsprung mass includes wheel axles, wheel bearings, wheel hubs, tires, drive shafts,
springs, shock absorbers, and suspension links. The motion of the sprung mass is described
by the bounce displacement of the mass center Z, the pitch angle ϕ, and the roll angle θ,
while the motions of the unsprung masses are described by the vertical displacements of
z1, z2, z3 and z4. In this study, the x-direction motion of the sprung mass is defined as a
constant vehicle speed V. Since the vibration and yaw motion in the x and y directions are
ignored, the motion of the sprung mass is defined by the bounce displacement, pitch angle,
and roll angle.
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Figure 2. Dynamic model of a vehicle with seven degrees of freedom.

As shown in Figure 2, the sprung mass has a roll motion that rotates about a roll axis
parallel to the x-axis at a distance h = 476 mm vertically from the center of mass [29]. This
considers the phenomenon that the lateral centrifugal force acting on the center of mass of
the vehicle body located at a distance h from the roll axis generates a roll moment for the
vehicle body when the vehicle turns to the right. The position of the roll axis changes with
a very complex mechanism depending on the kinematics of the suspension links. However,
in this study, the relative position of the roll axis to the body is considered fixed to establish
a simple and efficient model. Therefore, the roll moment Mr shown in Figure 2 is expressed
as the product of the centrifugal force F applied to the vehicle and the distance h from the
roll axis to the mass center, that is, Mr = Fh.

The sprung mass has mass ms, mass moment of inertia about the center of mass Ix,
and mass moment of inertia about the y-axis Iy. The mass center of the sprung mass G is
located at a distance l1 = 1.07 m from the front of the vehicle, l2 = 1.579 m from the rear,
w1 = 0.734 m from the left end of the vehicle, and w2 = 0.824 m from the right end of the
vehicle. The front unsprung masses with mass m f have vertical displacements z1 and z2,
while the rear unsprung masses with mass mr have displacements z3 and z4. However,
experimentally obtaining the mass and mass moment of inertia values of various parts
to calculate the inertia parameters of the model shown in Figure 2 is a time-consuming
and complicated procedure. Therefore, in this study, the inertial values of the sprung
and unsprung masses for the dynamic vehicle model were extracted from the 3-D solid
model of the vehicle using commercial CAD software. These are the values: ms = 1568 kg,
m f = 47 kg, mr = 31 kg, Ix = 719 kg·m2, and Iy = 2495 kg·m2. The products of inertia
were neglected in this study because they were relatively small.

The suspension, tire, and anti-roll bar that connect the rigid body and ground defined
above were modeled with linear equivalent springs and dampers. The front suspensions
vertically connected between the sprung mass and front unsprung masses were modeled
with an equivalent stiffness k f and an equivalent damping coefficient c f . Additionally, the
rear suspension vertically connected between the sprung mass and rear unsprung masses
was modeled with an equivalent stiffness kr and equivalent damping coefficient cr. As
the tires between the ground and the unsprung masses have very high stiffness, they are
modeled with an equivalent stiffness kt without damping.

On the other hand, anti-roll bars, which help reduce vehicle body roll in fast cornering
or on irregular roads, are modeled as torsion springs. The bars are long U-shaped metals
with hollow cross sections that join the suspensions on the right and left sides of an axle.
They are usually attached to the chassis at two points using rubber bushings. The torsional
stiffnesses of the front and rear anti-roll bars were assumed to be κ f and κr, respectively [30].
The twist angles of the anti-roll bars were determined by the angular displacements of the
axel shafts relative to the sprung mass. The axle shaft has an angular displacement owing
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to the difference between the right and left wheels. To help understand this, a dynamic
vehicle model viewed from the front is shown in Figure 3 as an example.

Figure 3. Front view of the dynamic model of the vehicle.

As the front left and right unsprung masses have vertical displacements z1 and z2, re-
spectively, the angular displacement of the front axle shaft is computed as tan−1[(z2 − z1)/
(w1 + w2)]. Therefore, the twist angle of the front anti-roll bar φ f , is given by

φ f = tan−1
(

z2 − z1

w1 + w2

)
− θ (8)

Similarly, the twist angle of the rear anti-roll bar can be expressed as

φr = tan−1
(

z4 − z3

w1 + w2

)
− θ (9)

The equivalent stiffness and damping coefficients presented above were calculated
using an experimental method. The equivalent stiffness values of the suspensions and
tires were obtained through static vertical load-deflection tests [31,32]. Similarly, the
equivalent torsional stiffness values of the anti-roll bars were obtained through torsional
load-torsion angular deformation tests. The values for the various equivalent stiffness,
equivalent torsional stiffness, and damping coefficients obtained by the tests were as
follows: k f = 44, 400 N/m, kr = 36, 000 N/m, kt = 255, 487 N/m, κ f = 62, 085 N·m/rad,
κr = 58, 098 N·m/rad, and c f = cr = 5000 N·s/m.

The equations of motion for the driving vehicle were derived using the following
Lagrange equation:

d
dt

(
∂T
∂

.
qk

)
+ ∂Fd

∂
.
qk
− ∂T

∂qk
+ ∂V

∂qk
= Qk

for k = Z, θ, ϕ, z1, z2, z3, z4
(10)

where the superposed dot represents differentiation with respect to time; qk stands for the
seven generalized coordinates; T, V, Fd and Qk are the kinetic energy, potential energy,
Rayleigh’s dissipation function, and generalized force, respectively. Among the generalized
coordinates, the three coordinates (Z, θ, and ϕ) are for the motion of the sprung mass,
whereas the four coordinates (z1, z2, z3, z4) are for the motions of the unsprung masses.

First, the kinetic energy of the dynamic vehicle model can be expressed as the following
equation:

T =
1
2

ms
.
Z

2
+

1
2

Ix
.
θ

2
+

1
2

Iy
.
ϕ

2
+

1
2

m f

( .
z2

1 +
.
z2

2

)
+

1
2

mr

( .
z2

3 +
.
z2

4

)
(11)
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where the first term is for the translational motion of the sprung mass, the second and third
terms are for the rotational motion of the sprung mass, and the fourth and fifth terms are
for the translational motions of the unsprung masses.

Next, the potential energy owing to the deformations of the springs and torsional
springs in the dynamic vehicle model may be given by

V =
1
2

kt

4

∑
i=1

z2
i +

1
2

k f

(
d2

1 + d2
2

)
+

1
2

kr

(
d2

3 + d2
4

)
+

1
2

κ f φ2
f +

1
2

κrφ2
r (12)

where the first term is the potential energy of the tire, the second and third terms are
the potential energies of the suspensions, and the fourth and fifth terms are the potential
energies of the anti-roll bars. In the second and third terms, d1, d2, d3, and d4 are the
suspension deformations at the left front wheel, right front wheel, left rear wheel, and right
rear wheel, respectively.

The suspension deformation at each wheel, di for i = 1, 2, 3, 4, is determined by
subtracting the displacement of the unsprung mass from the z-directional displacement of
the sprung mass at the point corresponding to each suspension. The displacement of the
sprung mass at the left–front suspension, x1, displacement at the right–front suspension, x2,
displacement at the left–rear suspension, x3, and displacement at the right–rear suspension,
x4, can be determined by

xi = xG + T ϕT θP i for i = 1, 2, 3, 4 (13)

where xG is the displacement of the mass center of the sprung mass, Pi is the position vector
of the point on the spring mass corresponding to each suspension, and Tθ and Tϕ are the
rotation matrices about the x and y axes, respectively. The vectors and matrices in Equation
(13) are given by

xG =


0
0
Z

, P 1 =


−l1
−w1

0

, P 2 =


−l1
w2
0

, P 3 =


l2
−w1

0

, P 4 =


l2
w2
0

 (14)

T θ =

1 0 0
0 cos θ sin θ
0 − sin θ cos θ

, T ϕ =

cos ϕ 0 − sin ϕ
0 1 0

sin ϕ 0 cos ϕ

 (15)

In other words, the suspension deformations were obtained by subtracting the dis-
placements of the corresponding unsprung mass zi from the z-directional components of xi.
Consequently, the suspension deformations can be expressed as

d1 = Z− z1 − w1 sin θ cos ϕ + l1 sin ϕ, d2 = Z− z2 + w2 sin θ cos ϕ + l1 sin ϕ,
d3 = Z− z3 − w1 sin θ cos ϕ− l2 sin ϕ, d4 = Z− z4 + w2 sin θ cos ϕ− l2 sin ϕ

(16)

On the other hand, Rayleigh’s dissipation function for the vehicle model can be
represented by

Fd =
1
2

c f

(
.
d

2
1 +

.
d

2
2

)
+

1
2

cr

(
.
d

2
3 +

.
d

2
4

)
(17)

where
.
di (i = 1, 2, 3, 4) are the time derivatives of the suspension deformations given by

Equation (16). Finally, the non-conservative generalized forces of Equation (10) are given by

Qθ = Mr, QZ = Qϕ = Qz1 = Qz2 = Qz3 = Qz4 = 0 (18)

As shown in these equations, there are no generalized forces except for Qθ , and this
generalized force Qθ is the roll moment described above.

The equations of motion were obtained by substituting the kinetic energy (Equation (11)),
potential energy (Equation (12)), Rayleigh’s dissipation function (Equation (17)), and general-



Appl. Sci. 2023, 13, 5903 9 of 25

ized forces (Equation (18)) into the Lagrange equation (Equation (10)). The derived equations
are nonlinear ordinary differential equations for generalized coordinates. Assuming that
the roll and pitch angles are small, the nonlinear equation can be linearized. The linearized
equations of motion can be written as a matrix–vector equation as follows:

M
..
q + C

.
q + Kq = f (19)

where the superposed dot represents differentiation with respect to time, q is the displacement
vector defined by q ={θ , ϕ, Z, z1, z2, z3, z4}T, M is the mass matrix, C is the damping matrix,
K is the stiffness matrix, and f is the load vector defined by f = {Mr , 0, 0, 0, 0, 0, 0}T.

3. Dynamics Model Verification

To verify the dynamic vehicle model proposed in this study, the vertical suspension
deformations computed using the vehicle model were compared with the deformations
measured through actual vehicle driving tests. The vehicle for the driving tests was a
semi-midsize hatchback-type passenger car with the specifications mentioned above. This
vehicle, with one driver on board, was driven at a constant speed of 100 km/h on an
outdoor proving ground with a dry and flat road surface. Three types of driving tests
were conducted according to ISO standards: the slalom test [33], the double lane change
test [34], and the step steer test [35]. These tests are performed for three steering wheel
angle variations, the details of which will be discussed later.

The experimental setup for measuring suspension deformations is shown in Figure 4.
The pedal controller was used to maintain the vehicle’s speed at 100 km/h. The steering
machine provides steering wheel angle variations for driving tests according to the steering
wheel angle pattern entered in advance. Four wheel-watch cameras were installed on
the exterior of the vehicle to measure the suspension deformations under the dynamic
condition of the vehicle. These cameras were mounted on camera mounts that extended
approximately 300 mm outward and transversely from the vehicle body on the tops of
the four wheels and measured the relative motions of the wheels in the longitudinal,
lateral, and vertical directions with respect to the vehicle body. The data on suspension
deformations measured by the cameras were stored in the data acquisition module, and a
laptop computer was installed to monitor these data in real-time.

First, the suspension deformations were experimentally measured while performing
the slalom test and compared with the deformations from the simulation using the dynamic
model established in the previous section. For the slalom test, six cones were installed
at equal intervals of 45 m on a flat road, and the test vehicle was driven zigzag between
the cones at a constant speed of 100 km/h. The steering wheel angle variation for zigzag
driving, as shown in Figure 5, was imposed on the vehicle. Note that the positive direction
of the steering wheel angle is clockwise.

The suspension deformations measured during the slalom test are shown in Figure 6.
Figure 6a shows the deformation at the left front wheel. Figure 6b shows the deformation
at the right front wheel. Figure 6c shows the deformation at the left rear wheel. Figure 6d
shows the deformation at the right rear wheel. In Figure 6, the blue, red, and black lines
represent the deformations in the directions of the x, y, and z axes, respectively, which
are the forward-rearward, left–right, and down–up directions with respect to the vehicle.
The vertical deformations of the left suspensions of the vehicle (Figure 6a,c) have opposite
phases to those of the right suspensions (Figure 6b,d). This is because the vehicle body
rolls about the x-axis during turning, causing compressive deformation on the left side
of the suspension and tensile deformation on the right side. The deformations in the
z-direction are much larger than those in the x- and y-directions. This implies that the
suspensions, which are connected in a nearly vertical position between the wheels and
body, are vertically tensioned or compressed. Therefore, only the z-directional suspension
deformations were considered in the comparison between the simulation and experimental
results.
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Figure 4. Schematic diagram for the experimental setup for measuring suspension deformations.

Figure 5. Time variation of the steering wheel angle for the slalom test.

Figure 6. Suspension deformations measured during the slalom test: (a) at the left front wheel; (b) at
the right front wheel; (c) at the left rear wheel; and (d) at the right rear wheel.

Simulations were performed with the dynamic vehicle model expressed as the equa-
tions of motion derived in the previous section. After obtaining the roll moment Mr using
the centrifugal force computed with the steering wheel angle for the slalom test shown in
Figure 5, it was substituted into the equations of motion given by Equation (19). Applying
the Newmark time integration method [36] with a time step size of 0.005 s to the equations
of motion, the time histories of the bounce displacement (Z), pitch angle (ϕ), roll angle
(θ), and vertical displacements of the unsprung masses (z1, z2, z3, z4) were computed.
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Using these time histories, the vertical suspension deformations at the four wheels were
computed from the following linearized deformations:

d1 = Z− z1 − w1θ + l1 ϕ, d2 = Z− z2 + w2θ + l1 ϕ,
d3 = Z− z3 − w1θ − l2 ϕ, d4 = Z− z4 + w2θ − l2 ϕ

(20)

The dynamic responses of the suspension deformations by simulation and experiment
during the slalom test for 14 s are shown in Figure 7. Figure 7a represents the left front
wheel; Figure 7b corresponds to the right front wheel; Figure 7c illustrates the left rear
wheel; and Figure 7d depicts the right rear wheel. In Figure 7, the red and blue solid
lines represent the simulated and experimental results, respectively. Figure 7 shows that
the overall behaviors of the simulation are very similar to those of the experiment. This
implies that the vehicle dynamics model presented in this study can be used to predict
the behavior of a vehicle during a slalom test. However, the experimental results for the
suspension deformations at all wheels had high-frequency vibrations compared with the
simulation results. This is because, unlike the vehicle dynamic model, real vehicles have
high-frequency components of vibration in suspension deformations. These high-frequency
components are caused by wheel vibrations owing to the uneven road surface and the
vibrations of various power transmission system components.

Figure 7. Comparison of the vertical suspension deformations during the slalom test between the
simulation and experiment: (a) at the left front wheel; (b) at the right front wheel; (c) at the left rear
wheel; and (d) at the right rear wheel.

Next, while the steering wheel angle shown in Figure 8 was imposed on the vehicle,
the suspension deformations were measured during the double lane change test. These
measured deformations were compared with the simulated deformations to validate the
vehicle dynamic model. The double-lane change test was performed by maintaining the
vehicle speed constant at 100 km/h. Similar to the slalom test, the suspension deformations
in the horizontal directions of the vehicle (x and y directions) were very small compared to
the deformations in the vertical direction (the z direction). Therefore, the deformations in
only the vertical direction were compared between the simulation and the experiment.

Figure 9 compares the results of the simulation and experiment for suspension defor-
mations during the 7 s double lane change test. The suspension deformations at the four
wheels are shown in Figure 9a–d, where the red and blue lines represent the simulation
and experiment results, respectively. For the double-lane change test, the suspension defor-
mations obtained by simulation using the vehicle dynamic model presented in this study
followed the deformations measured through the experiment. However, slightly larger
overshoots are observed in the simulation results compared to the experimental results
at approximately 4.09 s in Figure 9a,c and 2.08 s in Figure 9d. This implies that the sim-
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plified and linearized vehicle dynamic model proposed in this study does not sufficiently
reflect the complex kinematic and nonlinear elements of an actual vehicle. The numerical
calculation errors may be attributable to the modeling of the nonlinear suspension system
with variable stiffness and damping as a linear system. Nevertheless, the suggested model
simulates the overall vehicle behavior relatively well while performing the double-lane
change test.

Figure 8. Time variation of the steering wheel angle for the double lane change test.

Figure 9. Comparison of the vertical suspension deformations during the double lane change test
between the simulation and experiment: (a) at the left front wheel; (b) at the right front wheel; (c) at
the left rear wheel; and (d) at the right rear wheel.

Finally, the validity of the vehicle model was further confirmed through a step steer
test. This involved comparing the suspension deformations measured on the actual vehicle
in motion with the deformations calculated in the simulation using the presented model.
The step steer test, often referred to as the J-turn test, involves applying a fast steering-wheel
input to a fixed magnitude of the steering wheel angle while the vehicle moves along a
straight path at a constant speed. While maintaining the vehicle speed at 100 km/h, the
steering wheel angle, shown in Figure 10, was imposed on the vehicle.
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Figure 10. Time variation of the steering wheel angle for the step steer test.

The suspension deformations for the step steer test by simulation and measurement
are shown in Figure 11. This figure shows that the suspension deformations obtained by the
simulation, indicated by the red line, were in good overall agreement with the deformations
measured by the experiment, indicated by the blue line. The high-frequency components
in the time responses of suspension deformations, which were shown in the experimental
results of the slalom test above, were also observed in the experimental results of the step
steer test. Consequently, the simulations using the vehicle dynamic model proposed in this
study provide reasonable computations of the suspension deformations for the three tests:
the slalom, double lane change, and step steer.

Figure 11. Comparison of the vertical suspension deformations during the step steer test between the
simulation and experiment: (a) at the left front wheel; (b) at the right front wheel; (c) at the left rear
wheel; and (d) at the right rear wheel.

4. Results and Discussion

In this section, not only the natural frequencies and mode shapes of the dynamic
vehicle model are analyzed, but the effects of suspension stiffness, suspension damping,
and anti-roll bar torsional stiffness on the dynamic response of the vehicle are also analyzed.
The natural frequencies, mode-shaped responses, and dynamic responses were computed
using MATLAB [37], which is a programming and numeric computing platform.

4.1. Natural Frequencies and Mode Shapes

Considering the natural frequencies and mode shapes of the vehicle model developed
in Section 2, the natural frequency and mode shape were computed from the eigenvalue
problem obtained by ignoring the damping term on the left and the force term on the right
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in Equation (19). As the damping properties have little influence on the natural frequencies,
the damping term is negligible. Assuming q = Qejωt where j =

√
−1, ω is the natural

frequency, and Q is the modal vector, the eigenvalue problem is given by

(K−ω2 M)Q = 0 (21)

As the proposed model has seven degrees of freedom, the number of acquired natural
frequencies and corresponding mode shapes is seven. The computed natural frequencies
are 1.44, 1.62, 1.99, 12.73, 13.78, 15.45, and 16.67 Hz. The obtained mode shapes for these
natural frequencies are displayed in Figures 12 and 13, which show the mode shapes for the
sprung and unsprung masses, respectively. In these figures, the dashed lines represent the
positions where each mass does not move, and the solid lines represent the mode shapes
where each mass moves.

Figure 12. Mode shapes of the sprung mass: (a) the bounce–pitch mode with the natural frequency
of 1.44 Hz; (b) the bounce–pitch mode with the natural frequency of 1.62 Hz; and (c) the roll mode
with the natural frequency of 1.99 Hz.

Figure 13. Mode shapes of the unsprung mass: (a) the in-phase front wheel mode (12.73 Hz); (b) the
out-of-phase front wheel mode (13.78 Hz); (c) the in-phase rear wheel mode (15.45 Hz); and (d) the
out-of-phase rear wheel mode.

The mode shapes of the sprung mass are shown in Figure 12. The bounce mode is for
a vertical motion of the sprung mass, the pitch is for a rotation about the y axis, and the
roll mode is for a rotation about the x axis. However, because the two modes shown in
Figure 12a,b are modes in which bounce and pitch motions are combined, it is difficult to
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clearly distinguish these two modes as the bounce and pitch modes. In the mode shown
in Figure 12a, bounce motion is more dominant than pitch motion. In contrast, the mode
shown in Figure 12b has more pitch motion than bounce motion. In this study, the two
modes with combined bounce and pitch motions, shown in Figure 12a,b, are called bounce–
pitch modes. Comparing Figure 12a,b, the mode in Figure 12c has a distinct roll motion,
indicating that it is a roll mode. The natural frequencies for the bounce–pitch modes are
1.44 and 1.62 Hz, and the natural frequency for the roll mode is 1.99 Hz.

The mode shapes of the unsprung masses are displayed in Figure 13, where Figure 13a–d
show the in-phase front wheel mode, out-of-phase front wheel mode, in-phase rear wheel
mode, and out-of-phase rear wheel mode, respectively. In the in-phase front wheel mode
with a natural frequency of 12.73 Hz, the two front wheels vibrate in the same direction, but
the rear wheels are motionless (Figure 13a). On the other hand, the out-of-phase front wheel
mode with a natural frequency of 13.78 Hz has vibrations of the front wheels in opposite
directions and no motion in the rear wheels (Figure 13b). Similarly, in the in-phase rear wheel
mode with a natural frequency of 15.42 Hz, the rear wheels vibrate in the same direction
(Figure 13c). Additionally, in the out-of-phase rear wheel mode with a natural frequency of
16.67 Hz, the rear wheels vibrate in opposite directions (Figure 13d). Note that the natural
frequencies of the vibration modes related to sprung masses are much lower than those of the
vibration modes related to unsprung masses.

We analyzed the effects of the vehicle suspension stiffness and anti-roll bar torsional
stiffness on the natural frequencies for the sprung and unsprung modes. The natural
frequencies for the change in stiffness are shown in Figures 14–19, where the abscissa
represents the front suspension stiffness and the ordinate represents the natural frequency.
The numbers on the abscissa indicate the multiples of the stiffness given in Section 2.
For example, “0.1” on the abscissa of Figure 14 means 0.1 times k f , which is the front
suspension stiffness of 0.1k f . In Figures 14–19, the hollow inverted triangles represent the
natural frequencies of the two bounce–pitch modes of the sprung mass. These inverted
triangles are not connected by lines because the bounce and pitch modes are not clearly
distinguished and are mixed, as previously explained. The natural frequencies for the roll
mode of the sprung mass are shown as blue triangles connected by solid blue lines. The
natural frequencies for the in-phase front wheel mode, out-of-phase front wheel mode,
in-phase rear wheel mode, and out-of-phase rear wheel mode are represented by hollow
squares with solid lines, hollow circles with red dotted lines, hollow triangles with solid
lines, and blue crosses with blue dotted lines, respectively.

Figure 14. Natural frequencies for the variation of the front suspension stiffness.
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Figure 15. Natural frequencies for the variation of the rear suspension stiffness.

Figure 16. Natural frequencies when the front and rear suspension stiffnesses change simultaneously.

Figure 17. Natural frequencies for the variation of the torsional stiffness of the front anti-roll bar.
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Figure 18. Natural frequencies for the variation of the torsional stiffness of the rear anti-roll bar.

Figure 19. Natural frequencies when the torsional stiffnesses of the front and rear anti-roll bars
change simultaneously.

First, we consider the effect of suspension stiffness variation on the natural frequencies
of the modes. Figure 14 shows the natural frequencies for the values of the front suspension
stiffness, 0.01k f , 0.1k f , k f , 10k f , and 100k f , where k f = 44, 400 N/m, as given in Section 2.
The dimensions and material properties of the vehicle model, excluding the front suspen-
sion stiffness, were the same as those presented in Section 2. As shown in the figure, the
natural frequencies of the sprung mass modes were much lower than those of the unsprung
mass modes. The natural frequencies for the bounce–pitch modes of the sprung mass are
0.16 and 1.61 Hz for 0.01k f , 0.49 and 1.61 Hz for 0.1k f , 1.44 and 1.62 Hz for k f , 1.61 and
2.95 Hz for 10k f , and 1.62 and 3.51 Hz for 100k f . Notably, one of the natural frequencies
for the bounce–pitch modes does not change significantly and remains close to 1.61 Hz.
Other natural frequencies not close to 1.61 Hz increase to 0.16, 0.49, 1.44, 2.95, and 3.51 Hz
as the suspension stiffness increases. As observed in this figure, the natural frequencies
for the roll mode of the sprung mass, as well as the in-phase and out-of-phase front wheel
modes, increase with the front suspension stiffness. However, the natural frequencies
of the in-plane and out-of-plane rear-wheel modes remained constant even as the front
suspension stiffness increased. In other words, the front suspension stiffness affects the
natural frequencies of the front-wheel modes but not the frequencies of the rear-wheel
modes.
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The changes in the natural frequencies of the dynamic vehicle model are presented in
Figure 15 when the rear suspension stiffness is varied from 0.01kr to 100kr while the front
suspension stiffness is fixed at k f . Similar to Figure 14, one of the natural frequencies for
the bounce–pitch modes increases and the others remain constant at around 1.45 Hz as the
rear suspension stiffness increases. The natural frequency for the roll mode also increased
with the rear suspension stiffness. However, when the rear suspension stiffness increases,
the natural frequencies of the rear wheel modes increase, while the natural frequencies
of the front wheel modes remain constant. Based on the analysis of Figures 14 and 15, it
can be inferred that an increase in either the front and rear wheel suspension stiffnesses
leads to an increase in the natural frequencies associated with the roll mode, wheel modes,
and one of the bounce–pitch modes. However, the frequencies of the other modes remain
constant. Figure 16 shows the changes in natural frequencies when the stiffnesses of both
the front and rear suspensions increase simultaneously from 0.01 times to 100 times the
stiffness values given in Section 2. In this case, as expected, the natural frequencies for all
modes for the sprung and unsprung masses increased.

Next, we analyzed the effects of changes in the torsional stiffness of the front anti-
roll bar on the natural frequencies of the vehicle model. Using the torsional stiffness of
the front anti-roll bar κ f = 62, 085 N·m/rad as a reference value, the natural frequencies
were computed for five torsional stiffness values of 0.01, 0.1, 1, 10, and 100 times κ f . The
computed results are shown in Figure 17. As shown in this figure, the natural frequency for
the roll mode of the sprung mass increases with the torsional stiffness of the front anti-roll
bar. However, the natural frequencies for the bounce–pitch modes remain unchanged,
regardless of the torsional stiffness. Among the natural frequencies for the modes of
unsprung masses, only the natural frequency for the out-of-phase front wheel mode
increases with the torsional stiffness, while the natural frequencies of other modes remain
unchanged.

Figure 18 shows the change in the natural frequencies of the dynamic vehicle model
when the torsional stiffness of the rear anti-roll bar is increased. The natural frequencies
were computed while increasing the torsional stiffness of the rear anti-roll bar from 0.01κr
to 100κr with all other dimensions and material properties fixed. The value of κr is 58,098
N·m/rad, as given in Section 2. As shown in Figure 18, the natural frequencies of the
sprung mass roll mode and out-of-phase rear wheel mode increased with the torsional
stiffness of the rear anti-roll bar. However, this change in torsional stiffness had no effect
on the natural frequencies of the other modes. It is observed from Figures 17 and 18 that if
only one of the two anti-roll bar torsional stiffnesses increases, the natural frequencies of
the roll mode and the corresponding out-of-phase wheel mode increase, while the natural
frequencies of the other modes remain unchanged.

Figure 19 shows the changes in natural frequencies of the vehicle model when the
torsional stiffnesses of the front and rear anti-roll bars increased simultaneously. The
natural frequencies in this figure were computed with values of 0.01, 0.1, 1, 10, and 100
times the values of κ f and κr presented in Section 2. As shown in this figure, the natural
frequencies of the bounce–pitch modes and in-phase wheel modes remain unchanged even
when the torsional stiffness increases. However, the natural frequencies of the roll mode
and out-of-phase wheel modes increase with torsional stiffness. Comparing Figures 17–19,
the result of simultaneously increasing the front and rear torsional stiffnesses (Figure 19) is
a combination of the results of increasing the front torsional stiffness (Figure 17) and rear
torsional stiffness (Figure 18). Therefore, the natural frequency of the roll mode in Figure 19
is higher than the natural frequencies of the roll modes shown in Figures 17 and 18.

4.2. Dynamic Responses

We analyzed the effects of changes in the design parameters on the dynamic response
of the vehicle model. In this study, suspension stiffness, suspension damping, and anti-roll
bar torsional stiffness, which are relatively easy to change, were selected as the design
parameters related to dynamic responses. The sprung mass, mass moment of inertia for
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the sprung mass, unsprung mass, and tire stiffness are not considered design parameters
because their design changes are difficult. To obtain the dynamic responses of the vehicle
model, simulations were performed for the step steer test with the steering wheel angle
shown in Figure 10 and a vehicle speed of 100 km/h. The reason for selecting dynamic
responses for the step steer test is that the step steer test provides a much harsher driving
condition than the slalom and double-lane tests. Therefore, the dynamic responses to the
step steer test have been analyzed in many studies [38–40]. When the step steer test is
performed, the dynamic response to the pitch angle is much smaller than the dynamic
response to the bounce displacement and roll angle. Therefore, in this study, the dynamic
responses for the bounce and roll, excluding the pitch, are analyzed.

First, the effects of suspension stiffness on the dynamic response of the sprung mass’s
bounce and roll were investigated. The dynamic responses of the bounce displacement and
roll angle for the step steer test are shown in Figure 20. These responses were computed for
the three sets of front and rear suspension stiffnesses: (0.1k f , 0.1kr), (k f , kr), and (10k f , 10kr),
where the values of k f and kr are the same as those presented in Section 2.

Figure 20. Dynamic responses of the displacements for three values of the suspension stiffness: (a) the
bounce and (b) the roll.

As shown in Figure 20a, a positive bounce displacement occurs when the steering
wheel angle of Figure 10 is given to the vehicle model. As shown in this figure, the bounce
displacement is large when the suspension stiffness is low (in the case of 0.1k f and 0.1kr) and is
small when the stiffness is high (in the case of 10k f and 10kr). However, Figure 20b shows that
the roll angles obtained by this step steer test have negative values and become larger as the
suspension stiffness decreases. The negative roll angle was caused because a positive steering
wheel angle moved the left side of the sprung mass down and the right side up, as shown in
Figure 11, resulting in a negative roll angle. Notably, the bounce displacement and roll angle,
shown as solid black lines, exhibit high-frequency oscillations when the suspension stiffness
is large. The high-frequency oscillation period of the bounce displacement was approximately
0.292 s, and the oscillation period of the roll angle was approximately 0.250 s. These periods
correspond to frequencies of 3.42 and 4.00 Hz. The natural frequencies of the bounce–pitch
modes are 2.93 and 3.46 Hz, and the natural frequency of the roll mode is 3.96 Hz when the
front and rear suspension stiffness are 10k f and 10kr, respectively. Considering these natural
frequencies, the oscillation of 3.42 Hz in the bounce displacement is due to the bounce–pitch



Appl. Sci. 2023, 13, 5903 20 of 25

mode with 3.46 Hz, while the oscillation of 4.00 Hz in the roll angle is due to the roll mode
with 3.96 Hz.

The oscillation amplitudes of the bounce acceleration are shown in Figure 21a. Ad-
ditionally, the roll angular acceleration shown in Figure 21b increases with suspension
stiffness. The oscillation frequencies for these accelerations are the same as those for the
displacements in Figure 20. As mentioned above, these oscillations occur due to the natural
vibrations of the bounce–pitch and roll modes. The increase in the acceleration values
of the bounce and roll may adversely affect the riding comfort and steering stability that
passengers can feel.

Figure 21. Dynamic responses of the accelerations for three values of the suspension stiffness: (a) the
bounce and (b) the roll.

Next, we analyze the effects of suspension damping on the dynamic responses to the
bounce and roll motions of the sprung mass. Based on the damping values c f and cr of the
front and rear suspensions presented in Section 2, the dynamic responses of the vehicle
were calculated for three damping values of 0.5, 1, and 1.5 times these values. Damping
values of 0.1, 1, and 10 times c f and cr were not used because the vehicle system with 10c f
and 10cr showed unrealistically overdamped motion. Figure 22 shows displacements for
three damping values of 0.1, 1, and 10 times c f and cr, demonstrates that the oscillation
amplitudes of the bounce displacement and roll angle decrease as damping increases.
This phenomenon is also observed in Figure 23, which shows the bounce acceleration and
roll angular acceleration. It is widely recognized that suspension damping contributes to
reducing the dynamic responses of the vehicle. Therefore, it improves the ride comfort and
cornering feel of the vehicle.

Finally, the effects of the torsional stiffness of the anti-roll bar on the dynamic responses
to the bounce and roll motions are considered. Based on the torsional stiffness κ f and κr
of the front and rear anti-roll bars presented in Section 2, simulations for the step steer
test were performed for the three torsional stiffness values of 0.1, 1, and 10 times κ f and
κr. The dynamic responses of the bounce displacements and roll angles for these three
torsional stiffness values are shown in Figure 24. This figure illustrates that the larger the
torsional stiffness, the smaller not only the bounce displacement and roll angle but also their
oscillation amplitudes. Figure 25 also shows that the amplitudes of the bounce acceleration
and roll angular acceleration decrease as the torsional stiffness increases. Consequently,
as shown in Figures 24 and 25, the increase in the torsional stiffness of the anti-roll bar
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provides a more comfortable driving environment for the driver by reducing the roll and
bounce motions.

Figure 22. Dynamic responses of the displacements for three values of the suspension damping:
(a) the bounce and (b) the roll.

Figure 23. Dynamic responses of the accelerations for three values of the suspension damping: (a) the
bounce and (b) the roll.



Appl. Sci. 2023, 13, 5903 22 of 25

Figure 24. Dynamic responses of the displacements for three values of the torsional stiffness of the
anti-roll bar: (a) the bounce and (b) the roll.

Figure 25. Dynamic responses of the accelerations for three values of the torsional stiffness of the
anti-roll bar: (a) the bounce and (b) the roll.

Automobile manufacturers utilize the Dynamic Kinematics and Compliance (K&C)
System to evaluate the ride and handling performance of their vehicles. By analyzing the
kinematic characteristics of suspension and the compliance characteristics of springs and
bushings, these test devices can help simulate a vehicle’s dynamic state while running on a
real road indoors. To achieve this, a dependable and controllable vehicle model is necessary,
and the model developed in this study can be applied for this purpose.
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5. Summary and Conclusions

This study presents a dynamic vehicle model that can analyze the dynamic behavior
of a vehicle without an actual driving test. Considering the centrifugal force acting on
the vehicle during turning and the torsional stiffness of the anti-roll bar, a vehicle model
with seven degrees of freedom was constructed to investigate the dynamic characteristics
and responses to driving conditions. The equations of motion for this vehicle model were
derived using Lagrange’s equation. The constructed vehicle model was verified by com-
paring the suspension deformations computed by the simulations with the deformations
measured through actual driving tests. Using this model, the natural frequencies and mode
shapes of the vehicles were analyzed. Moreover, the effects of the suspension stiffness and
anti-roll bar torsional stiffness on the natural frequencies were also analyzed. In addition,
the effects of suspension stiffnesses, suspension damping coefficients, and anti-roll bar
torsional stiffnesses on the dynamic responses of the vehicle were also investigated when
the vehicle was under the step steer test. The results obtained in this study can be applied
not only to internal combustion engine vehicles but also to electric and hybrid vehicles.

The results of analyzing the dynamic characteristics of the driving vehicle using the
proposed dynamic model are summarized as follows:

• The natural frequencies of the vibration modes associated with the sprung mass were
much lower than those of the modes associated with the unsprung masses.

• When one of the front and rear wheel suspension stiffnesses increases, the natural
frequencies for the roll mode, the associated wheel modes, and one of the bounce–pitch
modes increase, whereas the frequencies of the other modes remain constant.

• When both the front- and rear-wheel suspension stiffnesses increase simultaneously,
the natural frequencies of all modes for the sprung and unsprung masses increase.

• When only one of the two anti-roll bars’ torsional stiffnesses increases, the natural
frequencies of the roll mode and the corresponding out-of-phase wheel mode increase,
while the natural frequencies of the other modes remain unchanged.

• When the two torsional stiffnesses of the front and rear anti-roll bars increase simul-
taneously, the natural frequencies of the roll mode and out-of-phase wheel modes
increase, while those of the bounce–pitch modes and the in-phase wheel modes remain
unchanged.

When performing the step steer test, the analysis results of the effects of design
parameters such as suspension stiffness, suspension damping, and anti-roll bar torsional
stiffness on the dynamic responses of the vehicle model are as follows:

• The bounce displacement and roll angle decrease with the suspension stiffness.
• When the suspension stiffness is large, the bounce displacement and roll angle have

high-frequency oscillations because of the bounce–pitch mode and the roll mode,
respectively.

• The oscillation amplitudes in the bounce acceleration and roll angular acceleration
increase with the suspension stiffness.

• Suspension damping contributes to reducing the dynamic responses of the vehicle,
including both the displacements and accelerations for bounce and roll motions.

• The torsional stiffness of the anti-roll bar reduced both the displacements and accelera-
tions of the bounce and roll motions.
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