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Abstract: The cooperative lane change among several connected and automated vehicles (CAVs)
provides ideas for enhancing the traffic safety and efficiency issues caused by lane changes. However,
most of the existing studies mainly focus on the independent analysis of the lateral and longitudinal
movements of the lane change without considering the impact of the lateral motion on the longitudinal
motion. These works usually assume that the target tracking-preceding vehicles are determined for
both the lane change vehicle and the following cooperative vehicle in the target lane. This work
proposes a model predictive control (MPC)-based cooperative lane change (CLC) control strategy by
considering the preceding vehicle switching and the correlation between the lateral and longitudinal
motions. It builds the lateral movement based on the appropriate function curve and integrates
this lateral movement in the construction of the coordinated longitudinal motion control strategy
by using a set of linear piecewise functions in the design of constraints and objective function of
the optimization model to provide smooth preceding vehicles switch. An advanced optimization
solver is used to solve the optimization control problem step by step. The proposed strategy is
validated based on numerical comparative experiments with two typical lane-changing scenarios.
The results show that the proposed control strategy can smoothly complete the preceding vehicle
switching during the lane change and quickly realize the stable tracking of the target lane vehicles
after changing lanes.

Keywords: cooperative lane change; connected and automated vehicles; model predictive control;
preceding vehicle switching

1. Introduction
1.1. Motivations

Lane change activity is one of the most frequent driving behaviors, significantly
impacting traffic efficiency [1,2]. Compared with the longitudinal-only car-following
behavior, the integration of longitudinal and lateral movement complicates the lane change
process. The disturbances caused by lane change eventually lead to traffic congestion,
resulting in the elongation of travel time and fuel wastage, thus significantly affecting
traffic operation [3]. According to statistics presented in [4], lane-changing maneuvers
contribute to approximately 4~10% of the total traffic accidents, which correspondingly
leads to a 10% delay in the traffic environment. Furthermore, it is noteworthy that 75% of
lane change accidents are directly caused by the wrong decision of the drivers [5].

The ongoing development of the connected and automated vehicle (CAV) technol-
ogy enabled CAVs to perform collaborative driving with each other on the road [6,7] and
showed great potential in addressing the current issues, such as improving safety [8,9],
enhancing mobility [10,11], improving traffic efficiency [12,13], and reducing fuel consump-
tion [14,15], via cooperatively controlling CAVs in traffic environment [16]. Most of these
approaches leverage the capabilities of CAV and actively collaborate CAVs in different lane
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change scenarios to diminish negative effects, such as traffic oscillation or urgent speed
change, caused by lane changes [17].

The research works presented in the literature regarding cooperative lane change (CLC)
mainly focus on two aspects, i.e., the decision-making strategies before performing a lane
change and control strategies in the lane change execution procedure. The decision-making
strategies are located on the upper level of a CLC functionality. According to the real-time
traffic status of the surrounding environment, these approaches use game theory [18], opti-
mization theory [19,20], and reinforcement learning [21] methods to evaluate the feasibility
of lane change gaps in the target lane and the goal of these methods is usually to mitigate
the negative impact of the lane change on the traffic flow in the target lane. The control
strategies in a CLC functionality will determine the microscopic control law, such as accel-
eration/deceleration rate and steering wheel angle, for each controlled CAVs in real-time
according to the determined lane change gap from the decision-making strategies.

In terms of the controller structure, the control strategies could be classified into two
categories, i.e., trajectory planning-tracking and integrated lane change control strategies.
The trajectory planning-tracking control strategy is a two-stage controller (i.e., trajectory
planning stage and trajectory tracking stage) [22–24]. The trajectory planning stage gener-
ates a reference trajectory with the given lane change gap, which satisfies the requirement
of safety, comfort, and traffic efficiency [22]. The trajectory tracking stage determines the
microscopic control law and makes each CAV follow the reference trajectory given by
the planning stage. In addition, better trajectory tracking control should have dynamic
adjustment capabilities such as autonomous collision avoidance when the external road
environment changes [25,26].

Although the planning-tracking control strategy makes the research problems clear and
easy to analyze, it usually includes two layers of optimization models, which not only increases
the computational burden of the controller but also leads to weak adaptability to dynamic
traffic environment in lane change procedure due to the one-time trajectory generation scheme
before lane change executing. Compared with the planning-tracking strategy, the integrated
lane change controller combines the trajectory and control law generation in an optimization
problem with a set of constraints in safety, physical capability, and comfort [27–30]. Integrated
lane change control strategy can be divided into two methods: single-step optimization [28,29]
and rolling-horizon optimization control strategies [27,30]. The single-step optimization
control strategy is usually given the CLC initial and terminal traffic states. However, the
given terminal state of the lane change may make the model less adaptable to the dynamic
environment. The rolling-horizon optimization control strategy can solve the optimization
iteratively in a given time domain and move forward in time in each solution step, which can
improve the adaptability to a dynamic traffic environment.

Even though various CLC control strategies have been studied, some conventional
assumptions may impede the further improvement of lane change control strategies in terms
of traffic flow efficiency. We discuss three major unrealistic assumptions which motivate
this research in the following: (i) most CLC control strategies with independent analysis
of lane change mainly focus on the modeling of the longitudinal motions of the controlled
CAVs during the lane-changing process and the interaction between the longitudinal and
lateral movements of the lane change is not considered [27,30]. However, completely ignoring
the influence between the lateral and longitudinal motions may reduce the environmental
adaptability of the model. (ii) The preceding vehicle switching process in lane change is
oversimplified in those studies. They usually assume no preceding vehicle on the original
lane or instantaneously preceding vehicle switch for all controlled CAVs [27–30]. However,
the preceding vehicles of the lane-changing vehicle and the following vehicle in the target
lane may switch during the lane-changing process. Ignoring the preceding vehicle switching
process may lead to a disturbance in the longitudinal controller for the following vehicles in
the target lane and may even cause traffic oscillations and traffic accidents in the target lane.
(iii) To simplify the problem-solving, most studies usually divide the whole CLC control into
two independent stages: lane change control and longitudinal tracking control [27,28,30]. In
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fact, after the lane-changing vehicle enters the target lane, it can perform longitudinal tracking
adjustment while continuing to execute the lane change lateral motion, so this division is
somewhat unreasonable.

Motivated by the aforementioned overlooked assumptions, this paper proposes an
MPC-based CLC control strategy for a two-lane highway under a pure CAV traffic flow. In
this work, the lane change control is divided into different stages according to the lane in
which the lane change vehicle is laterally positioned during the lane change. Based on the
architecture of lateral and longitudinal separation of the lane change, the lateral motion of
a lane change is described by an appropriate trajectory equation and it is integrated into
the process of the longitudinal motion model building. For the longitudinal motion of the
lane-changing process, a CLC optimization control strategy is established based on MPC
for obtaining the optimal control input of each CAV in real-time. This strategy achieves a
safe and effective lane change while considering the correlation between the lateral and
longitudinal movements of lane change and preceding vehicle switching of each controlled
CAV. In order to verify the performance of the proposed method, two typical lane-changing
scenarios are selected to perform a comparative analysis between the proposed model and
another separated lane change control strategy. The experimental results show that the
proposed method effectively completes the preceding vehicle switching during the lane
change and quickly realizes the stable tracking of the target lane vehicles after changing
lanes in a pure CAV traffic environment.

1.2. Related Work

As an important part of the CLC maneuver, the CLC control strategies have been
studied to control the CAVs for performing safe and smooth lane changes. For the trajectory
planning-tracking control strategy, Luo et al. [31] proposed a trajectory planning and
tracking scheme for multi-CAVs CLC under multi-lane scenarios. This trajectory planning
mode is based on multi-objective optimization problems, and the trajectory tracking mode
is based on an MPC controller. Du et al. [32] put forward a cooperative control framework
for connected HDVs to cooperate with the CAV to help them carry out safe and efficient
lane-changing maneuvers. This research is based on MPC control theory to solve the multi-
vehicle interaction and multi-constraint motion-planning problem. For heterogeneous
platoons scenarios, Nie et al. [33] proposed a CLC approach for heterogeneous platoons
under different communication topologies when the platoon encounters a slow obstacle
vehicle ahead. This study first performs trajectory planning for the leading vehicle, and
then the platoon vehicles behind the leading vehicle perform simultaneous lane changes
using a distributed model predictive control (MPC) algorithm. Wang et al. [34] explored
the possibility of accelerating the cooperation of leading vehicles on the target lane and
proposed a dynamic CLC control model. Different trajectory planning methods are used
in this model for lane change vehicles and cooperative vehicles, but the same trajectory-
tracking algorithm was used for all controlled CAVs.

For the integrated single-step optimization control strategy, by considering the concur-
rent mandatory lane change requirements, Li et al. [29] proposed a CLC trajectory planning
method for multiple CAVs by using a nonlinear programming approach with multiple
safety and efficiency constraints. For diverging the highway off-ramp, Zheng et al. [35] put
forward a cooperative lane-changing strategy to improve traffic operation and safety at
a diverging area nearby a highway off-ramp. Based on the cooperative control strategy
constructed by the modified Minimizing Overall Braking Induced by the Lane Changes
Model (MOBIL) and modified Intelligent Driver Model (IDM) to control the coordination
of behaviors between the diverging vehicle and the cooperative vehicle on the target lane.
As a typical representative of an integrated rolling-horizon optimization control strategy,
MPC has been applied to the field of heterogeneous vehicle platoon control due to its con-
venient model building and great dynamic control performance [36]. Due to the excellent
control effect of MPC in the field of longitudinal platoon control, some scholars have tried
to utilize MPC to solve the lateral CLC control problem. To clarify the control process
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of lane change, Ni et al. [30] divided the CLC control into two steps, namely feasibility
determination and distributed control. An incentive model is used to evaluate the lane
change feasibility in terms of acceleration capability and passenger comfort. An MPC-based
approach was proposed to collaborate the movement of CAVs. This study [30] divides the
complex cooperative lane-changing control process into the lane change phase and the
longitudinal headway adjustment phase to predigest the problem-solving of the simplified
MPC. Bai et al. [37] presented a CLC motion planning algorithm for partially connected
and automated environments. This algorithm reduces the oscillations and shockwaves
caused by the lane-changing process.

To summarize, CLC control strategies mainly include trajectory planning-tracking CLC
control strategy and integrated CLC control strategy. The integrated CLC control strategies
have many advantages over the trajectory planning-tracking CLC control strategies, such
as the simplicity of single optimization algorithm structure and dynamic adaptability, so
this type of control strategy is used in this study. The current research on integrated CLC
control strategy does not consider the longitudinal-lateral correlation of lane change and
the switching of controlled vehicles’ preceding vehicles, so this study aims to build a more
effective CLC control strategy to overcome these shortcomings.

1.3. Contributions

Based on the motivations and literature review, the contributions of this work can be
summarized as follows:

• Compared to the current CLC control strategies, which do not consider the lateral
and longitudinal correlations of lane change, the proposed CLC control strategy re-
associates the mutually independent lane change lateral and longitudinal motions,
resulting in a more reliable longitudinal control strategy.

• A series of linear piecewise functions are designed to address the preceding vehicles
switching tracking problem. These functions provide a smooth transition for the
controlled CAVs (i.e., lane-changing and cooperative vehicles) when their preceding
vehicles are changing in the lane-change process.

• Compared with the existing methods of building optimization models sequentially
according to different stages of CLC, the proposed CLC control strategy effectively
integrates multiple optimization models into a unified model by introducing the
preceding vehicle switching method.

Finally, this paper is organized as follows. Section 2 illustrates the problem statement.
In Section 3, we present the methodology of the CLC control strategy on a two-lane highway.
The numerical simulations are conducted and discussed in Section 4. Finally, this work is
concluded in Section 5.

2. Problem Statement

This work proposes a novel CLC control strategy in a pure CAV traffic flow by
considering a two-lane highway, as presented in Figure 1. Specifically, we mainly focus on
the movements of four vehicles, including the host CAV intending to change lanes (vehicle
M) and three surrounding vehicles (vehicles A, B, and C). As presented, vehicles A and B
denote the following and preceding vehicles of vehicle M in the target lane, respectively.
Vehicle C is the preceding vehicle of vehicle M in the original lane. The longitudinal
position, speed, and acceleration of vehicle i (where i = {M, A, B, C}) are denoted as xi,
vi, and ai, respectively. Vehicle M obtains the aforementioned motion state information in
real-time based on onboard sensors and V2V communication. Vehicle M leaves the original
lane behind vehicle C and enters the target lane when the gap constraint between vehicles
A and B is satisfied.
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Figure 1. The CLC scenario on a two-lane highway.

Since vehicles B and C are driving with free flow states forming a stable car-following
state with their preceding vehicles, there may not be enough space for coordinated control.
Therefore, if vehicle M sends a CLC request in its ambient area, vehicle A can act as the
cooperative vehicle employing V2V communication to form a cooperative relationship
with vehicle M. Based on the aforementioned lane-changing scenario, vehicle A provides
suitable space for vehicle M for changing lanes by adjusting its speed to improve the success
rate of lane change of vehicle M. Additionally, the vehicle M ensures a safe gap from vehicle
C by adjusting its speed. When vehicle M is about to leave the original lane and enter the
target lane, vehicles A and M should update their tracked preceding vehicles, i.e., switching
from vehicles M and C to vehicles M and B, respectively, and reach their expected motion
state without disturbing the traffic flow. Based on the previous description, we divide
the whole lane-changing process into two stages, including the lane change process in the
original lane (LC-O) stage and the lane change process in the target lane (LC-T) stage, as
presented in Figure 2. The LC-T stage follows the LC-O stage and includes its subsequent
car-following phase after the lane change vehicle enters the target lane.
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Figure 2. The two stages of the lane change.

During the lane-changing process, vehicle M performs both lateral and longitudinal
movements. At the same time, vehicle A adjusts its longitudinal motion based on the
CLC control strategy. In this work, the longitudinal accelerations of vehicles M and A
are coordinately determined by the proposed optimization model. The proposed model
considers the disturbance produced by a lane change maneuver and its negative effect
on an ambient area. On the other hand, the lateral acceleration changes according to an
appropriate lateral motion trajectory model. During the LC-O stage, vehicle M collaborates
with vehicle A to ensure that the vehicle M enters in the target lane safely and effectively
on the premise of less impact on the traffic flow of the target lane. In the LC-T stage, vehicle
M gradually enters in the target lane and drives in cooperation with vehicle A to achieve
the desired car-following states among vehicles M, A, and B.

In order to further support the proposed approach, we make the following assumptions:

(1) All the CAVs involved in this work can share real-time information accurately and
timely based on V2V communication [38]. It is assumed that there is no packet loss
and communication delay during the process of information sharing.

(2) The CAVs are equipped with high-precision onboard sensors, which can accurately
measure the position, speed, and acceleration of the vehicles.

(3) This work adopts a lateral and longitudinal separation structure [30,39].
(4) Vehicles M and A follow the same upper and lower bounds of acceleration constraints.
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(5) The control command of CLC is obtained by the central control vehicle and sent to
each vehicle for execution.

(6) Vehicle M is at the centerline of the original lane before making a lane change and is
also at the target lane’s centerline after the lane change’s completion.

3. Modeling Methodology

The lane-changing process of vehicle M is composed of two parts. The lateral move-
ment is mainly expressed by the existing mature trajectory function, whereas the longitudi-
nal movement is discussed in detail as the key point of the CLC control strategy, and the
construction of the optimization model is studied in this section.

3.1. Lateral Control for the Lane Change Vehicle

In the lateral direction, safety and comfort during driving should be considered when
designing the lane change trajectories. Therefore, the selected lane-changing trajectory is
required for smoothness, continuity, and easy generation. In this work, the sine function
is used to determine the lateral trajectory [40], which has a continuous second derivative
and is easy to construct. The lateral acceleration is expressed based on the sine function
as follows:

ay(t) =
{ 2dπ

T2 sin
( 2π

T t
)

i f 0 ≤ t ≤ T
0 otherwise

(1)

The duration of the lateral movement during the entire lane-changing process is T.
The lateral displacement is obtained by integrating the lateral acceleration ay(t) twice:

yM(t) =
{ d

T t− d
2π sin

( 2π
T t
)

i f 0 ≤ t ≤ T
d otherwise

(2)

Since vehicle M performs a lane change from the center line of the original lane to the
center line of the target lane, as shown in Figure 3, its lateral displacement exactly equals
the lane width d. In accordance with the industry standard of road construction in China,
in this work, the lane width d is 3.5 m. Based on the law of the sine function, vehicle M
moves to the boundary of two lanes at time t = T/2, which is regarded as the moment at
which vehicle M leaves the original lane and begins to enter the target lane.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 6 of 27 
 

In order to further support the proposed approach, we make the following assump-
tions: 
(1) All the CAVs involved in this work can share real-time information accurately and 

timely based on V2V communication [38]. It is assumed that there is no packet loss 
and communication delay during the process of information sharing. 

(2) The CAVs are equipped with high-precision onboard sensors, which can accurately 
measure the position, speed, and acceleration of the vehicles. 

(3) This work adopts a lateral and longitudinal separation structure [30,39]. 
(4) Vehicles M and A follow the same upper and lower bounds of acceleration con-

straints. 
(5) The control command of CLC is obtained by the central control vehicle and sent to 

each vehicle for execution.  
(6) Vehicle M is at the centerline of the original lane before making a lane change and is 

also at the target lane’s centerline after the lane change's completion. 

3. Modeling Methodology 
The lane-changing process of vehicle M is composed of two parts. The lateral move-

ment is mainly expressed by the existing mature trajectory function, whereas the longitu-
dinal movement is discussed in detail as the key point of the CLC control strategy, and 
the construction of the optimization model is studied in this section. 

3.1. Lateral Control for the Lane Change Vehicle 
In the lateral direction, safety and comfort during driving should be considered when 

designing the lane change trajectories. Therefore, the selected lane-changing trajectory is 
required for smoothness, continuity, and easy generation. In this work, the sine function 
is used to determine the lateral trajectory [40], which has a continuous second derivative 
and is easy to construct. The lateral acceleration is expressed based on the sine function as 
follows: 

𝑎 (𝑡) = 2𝑑𝜋𝑇 𝑠𝑖𝑛 2𝜋𝑇 𝑡  𝑖𝑓 0 ≤ 𝑡 ≤ 𝑇0    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒  (1) 

The duration of the lateral movement during the entire lane-changing process is 𝑇. 
The lateral displacement is obtained by integrating the lateral acceleration 𝑎 (𝑡) twice: 

𝑦 (𝑡) = 𝑑𝑇 𝑡 − 𝑑2𝜋 𝑠𝑖𝑛 2𝜋𝑇 𝑡  𝑖𝑓 0 ≤ 𝑡 ≤ 𝑇𝑑   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒  (2) 

Since vehicle M performs a lane change from the center line of the original lane to the 
center line of the target lane, as shown in Figure 3, its lateral displacement exactly equals 
the lane width 𝑑. In accordance with the industry standard of road construction in China, 
in this work, the lane width 𝑑 is 3.5 m. Based on the law of the sine function, vehicle M 
moves to the boundary of two lanes at time 𝑡 = 𝑇/2, which is regarded as the moment at 
which vehicle M leaves the original lane and begins to enter the target lane.  

d

X

Y

O

d

T / 20 T t

Target 
Lane

Original
Lane

 
Figure 3. Lateral movement of lane change vehicle. 

  

Figure 3. Lateral movement of lane change vehicle.

3.2. MPC-Based CLC Control Strategy by Considering Preceding Vehicle Switching

During the lane-changing process, the host vehicle M and the cooperative vehicle A
adjust their longitudinal motions based on the proposed control strategy [41]. In order to
ensure the safe and smooth implementation of lane change, a multi-objective collaborative
optimization control problem is constructed, which considers the safety, comfort, and traffic
efficiency of the upstream traffic in the target lane.

In the proposed optimization model, vehicle M and vehicle A are considered as the
optimization objects. The preceding vehicles in the target and original lanes, i.e., vehicles B
and C, are considered to be uncontrolled vehicles that impact the safety of vehicles M and
A. The optimization objective is to achieve safe and effective lane change and reduce the
negative impact on the traffic flow in the target lane by cooperating with the two controlled
vehicles A and D with consideration of preceding vehicle switching.
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3.2.1. Vehicle Dynamics

This work mainly focuses on the longitudinal motion of the vehicles. Therefore, the
classical linear vehicle kinematic model for vehicle longitudinal dynamics is used for the
implementation of the proposed strategy. The lane-changing vehicle M and the cooperative
vehicle A only possess the longitudinal motions and is expressed by the following equation:{ .

xi = vi.
vi = ai

i = M, A (3)

As the linearization process may reduce the accuracy of the model, this study dis-
cretizes the longitudinal motion model of vehicles M and A. The results of discretization
are expressed as follows:{

xi(k + 1) = xi(k) + vi(k)dt + ai(k)dt2/2
vi(k + 1) = vi(k) + ai(k)dt

i = M, A (4)

where dt is the sampling interval.

3.2.2. Constraints with Preceding Vehicle Switching of CLC Control Strategy

(1) Speed limitation

First, the longitudinal speed of vehicle M and its cooperative vehicle A should not
exceed the maximum allowable speed in their current lanes, and they should always be
positive.

0 < vM(k) ≤
{

vOmax i f 0 ≤ yM(k) ≤ d/2
vTmax otherwise

, k = 1, 2, . . . , N (5)

0 < vA(k) ≤ vTmax, k = 1, 2, . . . , N (6)

where vM(k) and vA(k) represent the longitudinal speeds of vehicles M and A, respectively,
and vOmax and vTmax represent the maximum allowable speeds in the original and target
lanes, respectively.

(2) Longitudinal safety distance requirements with preceding vehicle switching

Second, the longitudinal distance between the controlled vehicles, i.e., vehicles M and
A, should be more than the corresponding critical longitudinal safety distance during the
two stages of the whole lane-changing process. In the LC-O stage, the main movement
area of vehicle M is the original lane. So, the tracking-preceding vehicles of controlled
vehicles M and A are vehicles C and B, respectively. In order to ensure a safe lane-changing
process, the longitudinal safety distance constraints between vehicles C and M and vehicles
B and A should be satisfied. These constraints are expressed using (7) and (8), respectively.
Please note that the critical longitudinal safety distance is fixed due to the advantages of
high-precision and high-response control of CAVs.

SCM(k) = xC(k)− xM(k) ≥ Ssa f e, CM(k) = d0, k = 1, 2, . . . , N (7)

SBA(k) = xB(k)− xA(k) ≥ Ssa f e, BA(k) = d0, k = 1, 2, . . . , N (8)

where ∗(k) denotes the related predicted state at step k, SCM(k), SBA(k) Ssa f e, CM(k), and
Ssa f e, BA(k) represent the actual longitudinal distance and the critical longitudinal safety
distance between vehicles C and M, and vehicles B and A, respectively, xC(k), xM(k), xB(k),
and xA(k) represent the longitudinal positions of vehicles C, M, B, and A, respectively, and
d0 represents the fixed minimum safety distance.

In the LC-T stage, the area where vehicle M is located in the target lane, the tracking-
preceding vehicles of controlled vehicles M and A are switched from vehicles C and B to
vehicles B and M, respectively. Therefore, the safe longitudinal distance constraints between
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vehicles B and M, and vehicles M and A should also be guaranteed. These constraints are
mathematically expressed in (9) and (10).

SBM(k) = xB(k)− xM(k) ≥ Ssa f e, BM(k) = d0, k = 1, 2, . . . , N (9)

SMA(k) = xM(k)− xA(k) ≥ Ssa f e, MA(k) = d0, k = 1, 2, . . . , N (10)

where SBM(k), SMA(k), Ssa f e, BM(k), and Ssa f e, MA(k) represent the actual longitudinal
distance and the critical longitudinal safety distance between vehicles B and M, and vehicles
M and A, respectively.

The aforementioned analysis shows that if the expressions presented in (7)–(10) are
satisfied, then the driving safety of the four vehicles in two stages of the lane-changing
process is ensured. However, it is noteworthy that these constraints are independent of
each other and do not consider the switching problem for the preceding vehicles M and
A. In addition, these constraints consider that the tracking of vehicles M and A can show
sudden changes. Therefore, establishing an optimization problem based on the premise of a
sudden change of the preceding vehicles for the controlled vehicles may lead to unsolvable
optimization problems.

In reality, vehicle M moving from the original lane to the target lane is a gradual
process instead of being an instantaneous process. Let us consider vehicle A as an example;
if the instantaneous constraint switching is applied, the longitudinal safety constraint
between vehicles M and A is only satisfied during the LC-T stage but not during the LC-O
stage. Consequently, vehicle A is unable to provide a safe lane-changing gap for vehicle
M to change lanes at the beginning of the LC-T stage. On the other hand, the sudden
switching of constraints may also cause drastic speed changes, thus affecting comfort.
The longitudinal safety constraint between vehicles M and A should change gradually
with the lateral movement of vehicle M. Therefore, a suitable preceding vehicle switching
method is needed to cope with the above problems. Studies have been conducted to
apply switching control methods to connected and automated vehicle platoon control and
showed superior performance in cooperative driving of heterogeneous nonlinear vehicle
platoons [42]. Inspired by the above study, to ensure both the traffic efficiency and the
applicability of the proposed CLC control strategy, two linear piecewise functions are
designed, as presented in (11) and (12). These functions are integrated in the longitudinal
safety constraints of LC-O and LC-T, as presented in (13)–(14) and (15)–(16), respectively.
As a result, the constraints can be updated smoothly with the lateral motion of vehicle M.

LPFA(k) =
{

L1 i f 0 ≤ yM(k) ≤ d/2
L1 − L2[yM(k)− d/2] otherwise

, k = 1, 2, . . . , N (11)

LPFB(k) =
{

L3yM(k) i f 0 ≤ yM(k) ≤ d/2
L4 otherwise

, k = 1, 2, . . . , N (12)

During the LC-O stage, we have:

SCM(k) ≥ Ssa f e,CM(k)LPFA(k), k = 1, 2, . . . , N (13)

SBA(k) ≥ Ssa f e,BA(k)LPFA(k), k = 1, 2, . . . , N (14)

During the LC-T stage, we have:

SBM(k) ≥ Ssa f e,BM(k)LPFB(k), k = 1, 2, . . . , N (15)

SMA(k) ≥ Ssa f e,MA(k)LPFB(k), k = 1, 2, . . . , N (16)

where yM(k) denotes the actual lateral distance of vehicle M from the centerline of the
original lane. LPFA(k) is a function that first maintains a constant value and then decreases
with a fast speed to a large negative value with the variation of the lateral position of vehicle
M. In LPFA(∗), L1 and L2 denote the control parameters, L1 is a positive value equal to
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1 and L2 is a large negative value. LPFB(∗) is a function that first increases and then
maintains a constant value. Its value rises gradually from 0 to 1 and then remains 1 with
the variation of the lateral position of vehicle M. L3 and L4 denote the control parameters
of LPFB(∗), which are positive values and equal to 2/d and 1, respectively.

The shape of LPFA(∗) is presented in Figure 4. It changes with the lateral position of
vehicle M, i.e., yM(k). In the LC-O stage, i.e., 0 ≤ yM(k) ≤ d/2, the value of the function
that LPFA(∗) maintains 1. In the LC-T stage, i.e., yM(k) > d/2, the value of LPFA(∗)
decreases with a fast speed to a large negative value.
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In order to explain the physical meaning of introducing a linear piecewise function, i.e.,
LPFA(∗), in the longitudinal safety distance constraint, the longitudinal distance constraint
between vehicles C and M, presented in (13) is illustrated as an example. By introducing
LPFA(∗), the right side of inequality (13), i.e., Ssa f e,CM(k)LPFA(k), maintains Ssa f e,CM(k)
in the LC-O stage, thus indicating that the longitudinal distance constraint between vehicles
C and M should always be held in this stage. This physically shows that vehicle C always
has an impact on the longitudinal motion of vehicle M in this stage. In the LC-T stage, the
right side of inequality Ssa f e,CM(k)LPFA(k) decreases rapidly from Ssa f e,CM(k) to a large
negative value. Physically, vehicle M has moved into the target lane and vehicle B has
become the new preceding vehicle of vehicle M in this stage and influences the longitudinal
motion of vehicle M. Similarly, vehicle C no longer influences the longitudinal motion
of vehicle M. Therefore, the right side of the inequality (13), i.e., Ssa f e,CM(k)LPFA(k), is
quickly replaced by a negative value. Mathematically, the function LPFA(∗) assists in
describing the longitudinal safety distance constraint switching between the vehicles in
two stages as a smooth transition process rather than sudden changes. Similarly, vehicles
B and A also satisfy this similar change process. The change in the influence of vehicle
B on vehicle A due to the change in vehicle M’s cut-into is slightly different. Although
vehicles B and A are still in the same lane in the LC-T stage, the longitudinal distance
constraint is also changed to a negative value in this stage as vehicle M has become the
actual preceding vehicle of vehicle A in this stage and the influence of vehicle B on vehicle
A has been replaced by vehicle M.

The shape of LPFB(∗) is presented in Figure 5. This function also changes the lateral
position of vehicle M, i.e., yM(k). In the LC-O stage, i.e., 0 ≤ yM(k) ≤ d/2), the value of
the function LPFB(∗) increases with a slope of L3, i.e., 2/d from 0 to L4, i.e., 1. In the LC-T
stage, the value of the function LPFB(∗) remains at L4, i.e., 1.
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Similar to LPFA(∗), LPFB(∗) also provides smooth longitudinal distance constraints
switching processes between vehicles B and M and vehicles M and A. The difference is
that with the help of the function LPFB(∗), the longitudinal distance constraint between
vehicles B and M and vehicles M and A increases gradually in the LC-O stage. On the other
hand, in the LC-T stage, the constraints remain constant after vehicles M and A enter the
stable car-following mode.

(3) Comfort constraints

In order to guarantee a comfortable CLC, the accelerations of vehicles M and A should
not be too large. Vehicles M and A have the same acceleration performance and satisfy the
same upper and lower bounds of acceleration constraints.

amin ≤ aM(k) ≤ amax, k = 1, 2, . . . , N − 1 (17)

amin ≤ aA(k) ≤ amax, k = 1, 2, . . . , N − 1 (18)

where amin and amax denote the minimum and maximum comfortable acceleration accept-
able for vehicles M and A. aM(k) and aA(k) represent the acceleration control inputs of
vehicles M and A.

(4) Dynamic kinematics model constraints

The actual predictive models for vehicles M and A should be updated iteratively based
on their differential longitudinal motion models, which are mathematically expressed
as follows:

xM(k + 1) = xM(k) + vM(k)dt + aM(k)dt2/2, k = 1, 2, . . . , N − 1 (19)

vM(k + 1) = vM(k) + aM(k)dt, k = 1, 2, . . . , N − 1 (20)

xA(k + 1) = xA(k) + vA(k)dt + aA(k)dt2/2, k = 1, 2, . . . , N − 1 (21)

vA(k + 1) = vA(k) + aA(k)dt, k = 1, 2, . . . , N − 1 (22)

3.2.3. Objective Functions with Preceding Vehicle Switching of CLC Control Strategy

(1) Longitudinal distance tracking control with preceding vehicle switching

The longitudinal distance tracking error is described as the difference between the
actual longitudinal distances between vehicles M, A, and their preceding vehicles and the
expected longitudinal distance between these two vehicles. The expected longitudinal
distance dexp,M(k) and dexp,A(k) are set according to the constant time headway rule.

dexp,M(k) = vM(k) ∗ thd + d0, k = 1, 2, . . . , N (23)
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dexp,A(k) = vA(k) ∗ thd + d0, k = 1, 2, . . . , N (24)

In the LC-O stage, the longitudinal distance tracking errors between vehicles C and M,
and B and A are computed using (25) and (26) as follows:

exM1(k) = SCM(k)− dexp,M(k), k = 1, 2, . . . , N (25)

exA1(k) = SBA(k)− dexp,A(k), k = 1, 2, . . . , N (26)

where thd denotes the expected time headway, which is a predetermined value.
In the LC-T stage, the longitudinal distance tracking errors between vehicles B and M,

and M and A are calculated by using (27) and (28) as follows:

exM2(k) = SBM(k)− dexp,M(k), k = 1, 2, . . . , N (27)

exA2(k) = SMA(k)− dexp,A(k), k = 1, 2, . . . , N (28)

The preceding vehicle switching problem during the lane-changing process should
be considered not only in the constraints but also in the optimization objectives. Based on
the ideas of the previous longitudinal distance constraints construction between vehicles C
and M, and B and A, the linear piecewise function LPFB(∗) is also applied to soften the
change in the longitudinal distance tracking errors from the LC-O stage to LC-T stage when
the preceding vehicle switches. It is evident from Figure 4 that this function can map the
proportion of the switching of preceding vehicles to a range of [0, 1], and take half of the
total lateral distance d/2 as the watershed because of the two stages during the whole lane
change. When the lateral distance is less than d/2, i.e., in the LC-O stage, the proportion
coefficient gradually grows from 0 to 1 with a slope of 2/d. On the contrary, when it is
greater than d/2, i.e., in the LC-T stage, the proportion coefficient remains unchanged at 1.

Based on the aforementioned analysis, the longitudinal distance tracking errors of
vehicles M and A are rewritten as (29) and (30). The linear piecewise function LPFB(∗) is
used to control the weight values of the two preceding vehicles that should be switched
and tracked.

ẽxM(k) = LPFB(k)exM2(k) + [1− LPFB(k)]exM1(k), k = 1, 2, . . . , N (29)

ẽxA(k) = LPFB(k)exA2(k) + [1− LPFB(k)]exA1(k), k = 1, 2, . . . , N (30)

where ẽxM(k) and ẽxA(k) represent the improved longitudinal distance tracking errors of
vehicles M and its original and new preceding vehicles (i.e., vehicles C and B), and vehicles
A and its original and new preceding vehicles (i.e., vehicles B and M), respectively.

(2) Longitudinal speed tracking control with preceding vehicle switching

In addition, vehicles M and A should track their expected longitudinal distances while
tracking the longitudinal speeds of their preceding vehicles during the process of lane
change. Therefore, longitudinal speed-tracking errors should also be considered.

In the LC-O stage, the longitudinal speed tracking errors between vehicles C and M,
and B and A are expressed as (31) and (32).

evM1(k) = vM(k)− vC(k), k = 1, 2, . . . , N (31)

evA1(k) = vA(k)− vB(k), k = 1, 2, . . . , N (32)

In the LC-T stage, the longitudinal speed tracking errors between vehicles B and M,
and M and A are expressed by using (33) and (34).

evM2(k) = vM(k)− vB(k), k = 1, 2, . . . , N (33)

evA2(k) = vA(k)− vM(k), k = 1, 2, . . . , N (34)
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Similar to the longitudinal distance tracking errors associated with vehicles M and
A, the condition of the preceding vehicles switching should be considered in longitudinal
speed tracking errors as presented in (35) and (36).

ẽvM(k) = LPFB(k)evM2(k) + [1− LPFB(k)]evM1(k), k = 1, 2, . . . , N (35)

ẽvA(k) = LPFB(k)evA2(k) + [1− LPFB(k)]evA1(k), k = 1, 2, . . . , N (36)

where ẽvM(k) and ẽvA(k) represent the improved longitudinal speed tracking errors of
vehicles M and B, C, and vehicles A and B, M, respectively.

(3) Comfort

Acceleration is an important indicator of driving comfort. An acceleration with small
fluctuations leads to a better driving experience. Thus, considering the comfort of the
vehicles, we need to constraint the control quantities like aM(k) and aA(k).

Furthermore, jerk is another important factor that influences ride comfort. In order
to improve the ride comfort, the jerk values of all the vehicles should be as small as
possible [43]. All jerk values in this work are expressed based on the variations of the
control quantities within a single step and are mathematically expressed in (37) and (38).

jM(k) = [aM(k + 1)− aM(k)]/dt, k = 1, 2, . . . , N − 2 (37)

jA(k) = [aA(k + 1)− aA(k)]/dt, k = 1, 2, . . . , N − 2 (38)

where jM(k) and jA(k) represent the jerk values of longitudinal motion control of vehicles
M and A.

(4) Objective function of the optimization model

In summary, we obtain the following objective function of the optimization model
based on MPC:

minJ(s) = ∑N
k=1

[
ωexM‖ẽxM(s + k)‖2 + ωevM‖ẽvM(s + k)‖2

+ωexA‖ẽxA(s + k)‖2 + ωevA‖ẽvA(s + k)‖2
]

+∑N−1
k=1

[
ωaM‖aM(s + k)‖2 + ωaA‖aA(s + k)‖2

]
+∑N−2

k=1

[
ωjM‖jM(s + k)‖2 + ωjA‖jA(s + k)‖2

] (39)

where J(s) represents the sum of comfort, tracking, and traffic efficiency cost of the op-
timization model. A discrete time interval is set as dt. N represents the length of the
predictive horizon. ωexM , ωevM , ωexA , ωevA , ωaM , ωaA , ωjM , and represent the weighting
factor of each item. (s + k) denotes the predicted state at time s + k, and s denotes the
current time.

In the first summarization term presented in (39), the first two items represent the
penalty for the longitudinal tracking error of vehicle M considering the switching of the
preceding vehicles. The last two items represent the penalty for the longitudinal tracking
error of vehicle A considering the preceding vehicles switching.

In the second summarization term presented in (39), the two items represent the
penalties for vehicles M and A’s expected control accelerations.

In the last summarization term presented in (39), the two items represent the penalties
for the jerks of vehicles M and A, respectively.
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All the constraints of the optimization model are summarized as follows:

xM(s + k + 1) = xM(s + k) + vM(s + k)dt + aM(s + k)dt2/2, k = 1, 2, . . . , N − 1
vM(s + k + 1) = vM(s + k) + aM(s + k)dt, k = 1, 2, . . . , N − 1
xA(s + k + 1) = xA(s + k) + vA(s + k)dt + aA(s + k)dt2/2, k = 1, 2, . . . , N − 1
vA(s + k + 1) = vA(s + k) + aA(s + k)dt, k = 1, 2, . . . , N − 1
SCM(s + k) ≥ Ssafe,CM(s + k)LPFA(s + k), k = 1, 2, . . . , N
SBM(s + k) ≥ Ssafe,BM(s + k)LPFB(s + k), k = 1, 2, . . . , N
SBA(s + k) ≥ Ssafe,BA(s + k)LPFA(s + k), k = 1, 2, . . . , N
SMA(s + k) ≥ Ssafe,MA(s + k)LPFB(s + k), k = 1, 2, . . . , N

0 < vM(s + k) ≤
{

vOmax if 0 ≤ yM(s + k) ≤ d/2
vTmax otherwise

, k = 1, 2, . . . , N

0 < vA(s + k) ≤ vTmax, k = 1, 2, . . . , N
amin ≤ aM(s + k) ≤ amax, k = 1, 2, . . . , N − 1
amin ≤ aA(s + k) ≤ amax, k = 1, 2, . . . , N − 1

(40)

Since the vehicle motion state prediction model used in this study is a classical linear
vehicle kinematic model, the online optimization problem of the MPC controller based
on this model is a nonlinear, convex optimization problem (its constraint function is also
composed of a series of linear expressions). Therefore, a suitable rolling time domain
optimization tool can be used to optimize and iterate the deviation amount within a finite
rolling time interval. Here, the discrete nonlinear optimization problem presented in (39)
and (40) in the receding horizon can be solved with the help of the advanced optimization
solver pyomo in Python [44]. The state quantities at time s are used as the state values
of the first step for performing N-step prediction, i.e., *(s + 1) equals *(s). By solving this
model predictive optimization problem, the desired control inputs of the two vehicles in
each control period are obtained and active cooperation can be implemented according
to the desired control inputs. Please note that a control sequence containing N-1 control
variables can be gained by solving the model predictive optimization problem. However,
only the first element of the control sequence is selected as the final desired control input.

3.3. Solvability Analysis of the Proposed CLC Control Strategy

MPC-based control strategies should be online feasible, and sequential solvability
is one way to measure online feasibility. Specifically, it means the optimization problem
(39) and (40) can find a feasible solution at each step if their initial states are feasible. The
constraints in (39) and (40) consider two perspectives: safety and comfort. The following
analysis proves that if the longitudinal safety distance constraints of controlled vehicles
and their preceding vehicles are satisfied at the k step, we can always find a solution that
satisfies the constraints of comfort to make the longitudinal safety distance constraints hold
at the k + 1 step. Due to the different preceding vehicle switching functions and safety
constraints designed in different lane change stages, we will first investigate the vehicles
C and M, and vehicles B and A adopting the same preceding vehicle switching function
LPFA(∗) (i.e., At the LC-O stage) from Lemma 1 to Lemma 2. Then, the vehicles B and
M, and vehicles M and A (i.e., at the LC-T stage) adopting the same preceding vehicle
switching function LPFB(∗) will be investigated from Lemma 3 to Lemma 4. Note that the
mathematical method for analyzing the sequential solvability of each controlled vehicle
and its preceding vehicle are similar. However, due to the difference in the constraints’
mathematical format (such as preceding vehicle switching function LPFA(∗) and LPFB(∗)),
the investigation processes will be present one by one as each controlled vehicle and its
preceding vehicle in two stages.

Lemma 1. Given SCM(k) ≥ Ssa f e,CM(k)LPFA(k) is satisfied at step, a feasible solution aM(k) = amin
can make SCM(k + 1) ≥ Ssa f e,CM(k + 1)LPFA(k + 1) hold, if the speed difference between vehicles C
and M satisfies vC(k)− vM(k) ≥ amindt/2 for any step (k = 1, 2, . . . , N).
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Proof. Since LPFA(∗) is a segmented function, it needs to be discussed separately. When
0 ≤ yM(k) ≤ d/2 and because all critical longitudinal safety distances is a fixed value d0,
the following relationship exists.

SCM(k) ≥ Ssa f e,CM(k)LPFA(k) = d0L1 (41)

The above Equation (41) can be rewritten in the following form.

SCM(k)− Ssa f e,CM(k)LPFA(k) = SCM(k)− d0L1 ≥ 0 (42)

By substituting (4) into (42), the following inequality (43) can be obtained.

SCM(k + 1)− Ssa f e,CM(k + 1)LPFA(k + 1) = SCM(k + 1)− d0L1
= SCM(k) + [vC(k)− vM(k)]dt− aM(k)dt2/2− d0L1
≥ [vC(k)− vM(k)]dt− aM(k)dt2/2

(43)

Let aM(k) = amin and if the speed difference between vehicles C and M satisfies
vC(k)− vM(k) ≥ amindt/2 at the same time, the following inequality (44) will be held after
multi-step amplification.

SCM(k + 1)− Ssa f e,CM(k + 1)LPFA(k + 1)
≥ [vC(k)− vM(k)]dt− aM(k)dt2/2
= amindt2/2− amindt2/2 = 0

(44)

Thus, when 0 ≤ yM(k) ≤ d/2, the longitudinal distance constraint SCM(k + 1) ≥
Ssa f e,CM(k + 1)LPFA(k + 1) will be satisfied at k + 1 step.

When yM(k) > d/2, the following relationship exists.

SCM(k) ≥ Ssa f e,CM(k)LPFA(k) = d0LPFA(k) (45)

Equation (45) can also be rewritten as following; Equation (46).

SCM(k)− Ssa f e,CM(k)LPFA(k) = SCM(k)− d0LPFA(k) ≥ 0 (46)

When yM(k) > d/2, the function LPFA(∗) is monotonically decreasing, so we have
LPFA(k + 1) < LPFA(k), then by substituting (4) and (46), the following inequality (47)
can be obtained.

SCM(k + 1)− Ssa f e,CM(k + 1)LPFA(k + 1) = SCM(k + 1)− d0LPFA(k + 1)
> SCM(k + 1)− d0LPFA(k)
= SCM(k) + [vC(k)− vM(k)]dt− aM(k)dt2/2− d0LPFA(k)
≥ [vC(k)− vM(k)]dt− aM(k)dt2/2

(47)

Let aM(k) = amin, and if the speed difference between vehicles C and M satisfies
vC(k) − vM(k) ≥ amindt/2 at the same time, the following inequality will be held after
multi-step amplification.

SCM(k + 1)− Ssa f e,CM(k + 1)LPFA(k + 1)
≥ [vC(k)− vM(k)]dt− aM(k)dt2/2 = 0

(48)

Hence, when yM(k) > d/2, the longitudinal distance constraint SCM(k + 1) ≥
Ssa f e,CM(k + 1)LPFA(k + 1) will be satisfied at k + 1 step.

To sum up, the analysis, if vC(k) − vM(k) ≥ amindt/2 is satisfied, SCM(k + 1) ≥
Ssa f e,CM(k + 1)LPFA(k + 1) will hold, given that SCM(k) ≥ Ssa f e,CM(k)LPFA(k). The proof
of Lemma 1 is closed. �
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Lemma 2. Given SBA(k) ≥ Ssa f e,BA(k)LPFA(k) is satisfied at k step, a feasible solution aA(k) = amin
can make SBA(k + 1) ≥ Ssa f e,BA(k + 1)LPFA(k + 1) hold, if the speed difference between vehicles B
and A satisfies vB(k)− vA(k) ≥ amindt/2 for any step k (k = 1, 2, . . . , N).

Proof. The proof process of lemma 2 is similar to that of Lemma 1 and will not be re-
peated here. �

Lemma 3. Given SBM(k) ≥ Ssa f e,BM(k)LPFB(k) is satisfied at k step, a feasible solution
aM(k) = amin can make SBM(k + 1) ≥ Ssa f e,BM(k + 1)LPFB(k + 1) hold, if the speed differ-
ence between vehicles B and M satisfies vB(k)− vM(k) ≥ amindt/2 + d0L3∆yMmin for any step k
(k = 1, 2, . . . , N).

Proof. Since LPFB(∗) is also a segmented function, it needs to be discussed separately.
When 0 ≤ yM(k) ≤ d/2, the following relationship exists.

SBM(k) ≥ Ssa f e,BM(k)LPFB(k) = d0L3yM(k) (49)

Equation (49) can be rewritten in the following form.

SBM(k)− Ssa f e,BM(k)LPFB(k) = SBM(k)− d0L3yM(k) ≥ 0 (50)

According to the mathematical expression of LPFB(∗), the following Equation (51)
can be obtained:

Ssa f e,BM(k + 1)LPFB(k + 1) = d0L3yM(k + 1) = d0L3[yM(k) + ∆yM(k)] (51)

By substituting (4) and (51), the following Equation (52) can be obtained.

SBM(k + 1)− Ssa f e,BM(k + 1)LPFB(k + 1)
= SBM(k + 1)− d0L3[yM(k) + ∆yM(k)]
= SBM(k) + [vB(k)− vM(k)]dt− aM(k)dt2/2
−d0L3[yM(k) + ∆yM(k)]
≥ [vB(k)− vM(k)]dt− aM(k)dt2/2− d0L3∆yM(k)

(52)

Let aM(k) = amin and ∆yM(k) = ∆yMmin , where ∆yMmin is the minimal single-step
lateral movement distance, and if the speed difference between vehicles B and M satisfies
vB(k)− vM(k) ≥ amindt/2 + d0L3∆yMmin at the same time, the following inequality (53)
will be held after the multi-step amplification.

SBM(k + 1) −Ssa f e,BM(k + 1)LPFB(k + 1)
≥ [vB(k)− vM(k)]dt− aM(k)dt2/2− d0L3∆yM(k)
= amindt2/2 + d0L3∆yMmin − amindt2/2− d0L3∆yMmin = 0

(53)

Thus, when 0 ≤ yM(k) ≤ d/2, the longitudinal distance constraint SBM(k + 1) ≥
Ssa f e,BM(k + 1)LPFB(k + 1) will be satisfied at k + 1 step.

When yM(k) > d/2, the following relationship exists.

SBM(k) ≥ Ssa f e,BM(k)LPFB(k) = d0L4 (54)

Equation (54) also can be rewritten as following Equation (55).

SBM(k)− Ssa f e,BM(k)LPFB(k) = SBM(k)− d0L4 ≥ 0 (55)



Appl. Sci. 2023, 13, 2193 16 of 27

When yM(k) > d/2, by substituting (4) and (55), the following inequality (56) can be
obtained.

SBM(k + 1)− Ssa f e,BM(k + 1)LPFB(k + 1) = SBM(k + 1)− d0L4
= SBM(k) + [vB(k)− vM(k)]dt− aM(k)dt2/2− d0L4
≥ [vB(k)− vM(k)]dt− aM(k)dt2/2

(56)

Let aM(k) = amin, and if the speed difference between vehicles B and M satisfies
vB(k) − vM(k) ≥ amindt/2 at the same time, the following inequality will be held after
multi-step amplification.

SBM(k + 1)− Ssa f e,BM(k + 1)LPFB(k + 1)
≥ [vB(k)− vM(k)]dt− aM(k)dt2/2 = 0

(57)

Hence, when yM(k) > d/2, the longitudinal distance constraint SBM(k + 1) ≥
Ssa f e,BM(k + 1)LPFB(k + 1) will be satisfied at k + 1 step.

To sum up, the above analysis, if vB(k) − vM(k) ≥ amindt/2 + d0L3∆yMmin is satis-
fied, SBM(k + 1) ≥ Ssa f e,BM(k + 1)LPFB(k + 1) will hold, given that SBM(k) ≥ Ssa f e,BM(k)
LPFB(k). The proof of Lemma 3 is closed. �

Lemma 4. Given SMA(k) ≥ Ssa f e,MA(k)LPFB(k) is satisfied at k step, a feasible solution
aM(k) = amax and aA(k) = amin can make SMA(k + 1) ≥ Ssa f e,MA(k + 1)LPFB(k + 1) hold, if
the speed difference between vehicles M and A satisfies vM(k)− vA(k) ≥ (amin − amax)dt/2 +
d0L3∆yMmin for any step k (k = 1, 2, . . . , N).

Proof. The proof process of lemma 4 is similar to that of Lemma 3 and will not be repeated here.
�

In summary, vehicle differences between the controlled vehicles (A and D) and their
preceding vehicles in the LC-O and LC-T stages are provided as the Lemma 1 to Lemma 4 to
ensure the sequential solvability of the optimization problem (39) and (40) in the proposed
CLC control strategy.

It should be noted that the above conclusion is based on the longitudinal distances
among vehicles close to the critical longitudinal safety distance d0, if the longitudinal
distance between the controlled vehicle and its preceding vehicle is greater than this critical
value, then the speed difference between the controlled vehicle and its preceding vehicle is
allowed to have a greater lower limit.

4. Numerical Simulations
4.1. Experiments Design and Parameter Settings

In order to verify the feasibility and practicability of the proposed strategy, two
typical preset lane change scenarios are selected to conduct the experiments. In order to
intuitively evaluate the control effects of the proposed control strategy, we first compare the
motion trajectory and control input diagrams of the proposed CLC control strategy and the
combined CACC and sine function (CACC_Sine) control strategy. The latter also adopts the
lane change longitudinal-lateral independent analysis. Then the statistical indicators of the
difference between the actual and the expected motion states of the two control strategies
are presented to validate the improvement effect of the proposed CLC control strategy for
ensuring the stability of traffic flow in the target lane after changing lanes.

The parameters of the proposed model are presented in Table 1. For the weighting
parameters, we select different weight coefficients depending on the importance of different
terms in the optimization problem to ensure that the final optimization results meet the
control requirements. Specifically, in the tuning process, we first determine the weight
coefficients of the spacing and speed tracking errors (i.e., ẽxM, ẽxA, ẽvM, and ẽvA), and
in this study, we consider that the spacing and speed tracking errors of the lane change
vehicle M and the cooperative vehicle A are of the same importance, so we set these weight
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coefficients to the same value, i.e., ωexM = ωexA = ωevM = ωevA . After determining the weight
coefficients of the spacing and speed tracking errors, we keep them unchanged and then
adjust the weight coefficients of the control accelerations (i.e., aM and aA) and control
jerks(i.e., jM and jA). In this study, considering the driving comfort, the accelerations and
jerks of the controlled vehicles M and A should be ensured to be as small as possible,
so the weight coefficients of the control accelerations and jerks are chosen to be larger
than those of the spacing and speed tracking errors in this study. In addition, during the
experiment, we found that too large control accelerations weight coefficients will prolong
the time for the controlled vehicles to reach the desired motion states, so the control
accelerations weight coefficients are higher than the spacing and speed tracking errors
weight coefficients and smaller than the jerks weight coefficients in this experiment, that is
ωexM = ωexA = ωevM = ωevA < ωaM = ωaA < ωjM = ωjA .

Table 1. Related parameters in the simulations.

Related Parameters Value Related Parameters Value

T 4 s d 3.5 m
vOmax 20 m/s vTmax 30 m/s

d0 5 m L1 1
L2 −1000 L3 0.571
L4 1 amin −4 m/s2

amax 2 m/s2 dt 0.1 s
ωexM 200 ωevM 200
ωexA 200 ωevA 200
ωaM 500 ωaA 500
ωjM 1000 ωjA 1000
thd 1.2 s

In these two comparative experiments, the CACC model for the longitudinal move-
ment of the lane change adopts the CACC car-following model with constant time headway
proposed in [45]. The lateral movement is described by the sine function, which is the same
as the proposed CLC control strategy. Please note that there is no cooperation between all
the controlled CAVs in this comparative control strategy. Therefore, vehicles M and A keep
track of vehicles C and B during the LC-O phase and do not track vehicles B and M until
the LC-T phase, and it is considered that their preceding vehicles suddenly change from
the LC-O stage to LC-T stage.

The selection of lane-changing time has a great influence on the security of the actual
lane change on the highway. The statistical analysis shows that a vehicle generally takes
3–5 s to complete the accelerated lane-changing process. The longer time the vehicle takes,
the more dangerous is the process [46]. Therefore, the duration of lane-changing process in
the sine function is set as 4 s.

The simulations are conducted on a two-lane road segment developed in Python. Two
representative lane-changing scenarios are selected. First, a general lane-changing scenario,
where the longitudinal distance between vehicles B and A in the target lane is large enough
to provide a safe lane-changing gap without requiring a significant speed adjustment by
vehicle A. Second, the longitudinal distance between vehicles B and A in the target lane is
relatively smaller, which requires vehicle A to make active speed adjustment to provide a
safe lane change gap. The specific scene parameters at the beginning of the lane-changing
process are presented below:

Scenario 1: vM(0) = 17 m/s, vB(0) = 22 m/s, vC(0) = 18 m/s, vA(0) = 20 m/s,
SCM(0) = 18 m, SBM(0) = 15 m, SMA(0) = 22 m;

Scenario 2: vM(0) = 18 m/s, vB(0) = 20 m/s, vC(0) = 18 m/s, vA(0) = 19 m/s,
SCM(0) = 10 m, SBM(0) = 15 m, SMA(0) = 10 m.
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We compare the control effects of the proposed model and the comparative model
including the LC-O stage and LC-T stage, and select the same experimental duration, which
is 30 s for scenarios 1 and 2.

4.2. Performance Comparison of the Proposed CLC Control Strategy and Combination with CACC
and Sine Function Control Strategy

Figures 6 and 7 show the longitudinal position and speed variations of vehicles M, A,
and B of two control strategies in scenario 1. Considering the longitudinal positions, as
shown in Figure 6a, the proposed CLC control strategy realizes smooth switching of vehicle
A’s tracking-preceding vehicles from vehicles B to M. It also makes the vehicles on the target
lane (i.e., vehicles B, M, and A) quickly attain stable car-following states in the LC-T stage
and keeps longitudinal safety distances among vehicles B, M, and A from the initial instant
of the LC-T stage. As presented in Figure 6b, for the comparative CACC_Sine control
strategy, vehicle A in the LC-O stage regards vehicle B as its tracking-preceding vehicle.
Therefore, in the LC-O stage, vehicle A gradually approaches vehicle B longitudinally in the
LC-T stage, and vehicle A takes vehicle M as its new preceding vehicle. Eventually, during
the transition from the LC-O stage to the LC-T stage, the longitudinal distance between the
vehicles M and A is slightly higher as compared to the basic safety distance requirement,
i.e., 5 m.
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(a) The proposed CLC control strategy, (b) CACC_Sine control strategy.

Considering the longitudinal speeds, Figure 7 shows that the proposed CLC control
strategy has smoother speed variation and less fluctuations as compared to the CACC_Sine
control strategy. Furthermore, the proposed CLC control strategy considering the preceding
vehicle switching avoids excessive speed adjustment in the LC-O stage, thus enabling a
smooth speed transition from the LC-O stage to the LC-T stage (Figure 7a), instead of the
more drastic speed change of the CACC_Sine strategy (Figure 7b). Moreover, the speed
variation trends of the two control strategies show that the trajectory of vehicle A follows
the trend of vehicle B from 5 s in the proposed CLC strategy, while in the CACC_Sine control
strategy vehicle A follows from 10 s with an obvious sequential change. As an optimal
controller, the proposed CLC control strategy obtains the optimal control quantities based
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on the current motion state of all related vehicles, while CACC_Sine is an independent
control structure and is non-optimal for the following vehicle’s control quantity, which only
relies on its preceding vehicle.

Figure 8 shows the actual and expected longitudinal distances between vehicles M
and A and their preceding vehicles of two control strategies in scenario 1. In the LC-
O stage, it is evident that the CACC_Sine control strategy has a better tracking control
effect as compared to the proposed CLC control strategy, because it considers that the
tracking-preceding vehicles of controlled vehicles doesn’t change in this stage. However,
for vehicle A, it is unable to provide a sufficient gap for vehicle M to cut into the lane
when its preceding vehicle suddenly switches to vehicle M. Due to the consideration of
preceding vehicle switching in the proposed CLC control strategy, vehicle A is far away
from its expected distance in the late period of the LC-O stage to make preparation for
vehicle M’s merging. In the LC-T stage, as compared with the CACC_Sine control strategy,
the proposed CLC control strategy has a better tracking control effect for vehicle A, while
having a relatively larger tracking control error in the early LC-T stage, i.e., from 3 s to
10 s. However, it can reach the expected tracking state at about 20 s which is the same as
CACC_Sine control strategy.
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Figures 9 and 10 show the comparison between the longitudinal accelerations and jerks
for the proposed CLC control strategy and the comparative CACC_Sine control strategy.
The acceleration and jerk of the proposed CLC control strategy are more continuous. How-
ever, the CACC_Sine control strategy shows sharp variations with extreme fluctuations.
According to Figure 10, it is easy to observe that the longitudinal jerk of the proposed CLC
control strategy fluctuates within a low range, i.e., from −0.8 m/s3 to 0.4 m/s3,. However,
the longitudinal jerk of the CACC_Sine control strategy fluctuates more frequently and
with greater amplitude, i.e., greater than 4 m/s3, which causes a significant driving dis-
comfort. As a result, the proposed CLC control strategy has smoother acceleration and less
fluctuating jerk compared to the comparative CACC_Sine control strategy, thus ensuring
driving comfort and leading to a better driving experience.
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Similarly, Figures 11–15 show the longitudinal positions and speeds of vehicles M, A,
and B, and the longitudinal distances between vehicles M, A, and their preceding vehicles
and longitudinal accelerations and jerks of vehicles M and A of two control strategies with
the change of time for another typical lane change scenario. As compared with scenario 1,
in scenario 2, the vehicles M and A in scenario 2 are closer longitudinally and the speed
differences between vehicle M and vehicles B and A are smaller. Figures 11–13 show
that when the longitudinal distance between vehicles on the target lane is unable to meet
the safe lane-changing gap, the proposed CLC control strategy smoothly completes the
preceding vehicle switching and actively changes the speed of vehicle A in the LC-O stage
to ensure the safety of vehicle M when entering the target lane in the LC-T stage. Based on
this smooth switching method, a more continuous speed profile can be obtained, which
can produce a leading effect on the upstream traffic flow. However, for the CACC_Sine
control strategy without the consideration of preceding vehicle switching, the longitudinal
distance between vehicles M and A at the beginning of the LC-T stage, i.e., from 2 s to 5 s,
is very slightly greater than 0 with a great risk of collision. As a result, vehicles M and A
should make a greater speed adjustment as compared to the proposed CLC control strategy
to ensure safety and catch up with their preceding vehicles quickly. Figures 14 and 15 also
show that the acceleration and jerk of the CACC_Sine control strategy are more volatile
as compared to the proposed CLC control strategy, which means that the proposed CLC
control strategy has better performance in terms of ensuring driving comfort.
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In summary, the proposed CLC control strategy achieves smooth preceding vehicle
switching of the controlled vehicles M and A during the lane-changing process. Please note
that the smoother speed variations have a positive impact on traffic flow upstream of the
target lane, this improving road mobility. In addition, less fluctuating acceleration and jerk
effectively ensure the driving comfort.

In order to analyze the improvement effect of the proposed CLC control strategy on the
traffic flow of the target lane, some statistical indicators of the difference between the actual
and expected motion states in the LC-T stage are analyzed for the above two lane-changing
scenarios. Tables 2 and 3 show the statistical indicators of the difference between the actual
and expected longitudinal distances and speeds of vehicles M, A, and their preceding vehicles
in the LC-T stage for the two control strategies in two scenarios, respectively. The first three
characters “Avg”, “Std”, and “Max” in all the indicators of all tables denote the average,
standard deviation, and maximum, respectively. The last five characters “DLD_M(A)” and
“DLS_M(A)” in Tables 2 and 3 denote the difference between the actual and the expected
longitudinal distances and speeds of the vehicle M (A) and its preceding vehicle. It is evident
that most of the indicators in the proposed CLC control strategy for longitudinal distance and
speed tracking effects are obviously below that of the CACC_Sine control strategy. Although
the average indicator of longitudinal distance tracking of the proposed CLC control strategy
in scenario 1 is slightly better as compared to the CACC_Sine control strategy, its standard
deviation and maximum are still better. It shows that the proposed CLC control strategy has
better tracking control effects of vehicles M and A in the target lane during the LC-T stage
and ensures a more stable car-following state.

Table 2. Indicator comparison for longitudinal distance of two control strategies.

Indicators

Control Strategies Scenario 1 Scenario 2

CLC CACC_Sine CLC CACC_Sine

AvgDLD_M (m) 0.630 0.432 0.718 0.928
StdDLD_M (m) 0.952 1.029 1.091 1.972
MaxDLD_M (m) 3.053 4.023 3.510 6.918
AvgDLD_A (m) 0.733 2.487 0.835 3.748
StdDLD_A (m) 1.649 6.048 1.896 6.404

MaxDLD_A (m) 10.121 24.229 12.069 25.978

Table 3. Indicator comparison for longitudinal speed of two control strategies.

Indicators

Control Strategies Scenario 1 Scenario 2

CLC CACC_Sine CLC CACC_Sine

AvgLSD_M (m/s) 0.428 0.354 0.454 0.521
StdLSD_M (m/s) 0.810 0.935 0.818 1.124
MaxLSD_M (m/s) 4.050 5.323 3.850 5.953
AvgLSD_A (m/s) 1.112 1.116 1.324 1.703
StdLSD_A (m/s) 1.860 2.111 2.238 2.620
MaxLSD_A (m/s) 6.552 8.711 7.864 10.283

Tables 4 and 5 show the statistical indicators of longitudinal acceleration, i.e., “LA_M(A)”,
and longitudinal jerk, i.e., “LJ_M(A)”, of vehicles M and A for the two control strategies in
two scenarios, respectively. The results in Tables 4 and 5 show that the proposed CLC control
strategy has significantly lower indicators as compared to the CACC_Sine control strategy
except for the average longitudinal accelerations of vehicles M and A in two scenarios, and
the average jerk of vehicle A in scenario 1. This further validates the conclusion obtained in
Figures 9, 10, 14 and 15. The proposed CLC control strategy has more stable control inputs
that greatly ensure the driving comfort.
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Table 4. Indicator comparison for longitudinal accelerations of two control strategies.

Indicators

Control Strategies Scenario 1 Scenario 2

CLC CACC_Sine CLC CACC_Sine

AvgLA_M (m/s2) 0.166 0.166 0.067 0.066
StdLA_M (m/s2) 0.459 0.805 0.674 1.144
MaxLA_M (m/s2) 1.823 2.0 1.365 2.0
AvgLA_A (m/s2) 0.067 0.066 0.033 0.033
StdLA_A (m/s2) 0.974 1.521 1.071 1.516

MaxLA_A (m/s2) 2.0 2.0 1.980 2.0

Table 5. Indicator comparison for longitudinal jerks of two control strategies.

Indicators

Control Strategies Scenario 1 Scenario 2

CLC CACC_Sine CLC CACC_Sine

AvgLJ_M (m/s3) 0.0052 0.0133 0.0133 0.0133
StdLJ_M (m/s3) 0.0558 0.2304 0.0907 0.2573
MaxLJ_M (m/s3) 0.3458 3.2520 0.5256 3.7890
AvgLJ_A (m/s3) −0.0067 −0.0067 0.0007 −0.0020
StdLJ_A (m/s3) 0.1284 0.4651 0.1009 0.4087

MaxLJ_A (m/s3) 0.3676 5.1104 0.4252 5.1577

4.3. Operating Efficiency Analysis of the Proposed CLC Control Strategy

A good CLC control strategy should not only have good control performance but
also ensure considerable execution efficiency. The execution efficiency of a control strategy
determines whether the control strategy is feasible to be embedded in an actual control
module. It is usually evaluated by the control strategy computational simulation time and
memory usage of the control strategy. These two indicators were also used in this study to
evaluate the execution efficiency of the proposed CLC control strategy. In addition, since in
this study, the proposed CLC control strategy is performed with 0.1 s as the execution cycle
and the control inputs are obtained by continuously rolling-horizon optimization as time
advances, the control strategy execution (computational) time and memory usage within
each execution cycle are collected and analyzed of the above two lane change scenarios in
this section.

The control strategy execution time and memory usage within each execution cycle
for the entire simulation time in scenario 1 and scenario 2 are shown in Figures 16 and 17,
respectively. From Figure 16, it can be found that the execution time of the proposed
CLC control strategy in each execution cycle fluctuates mainly in the range of 0.06–0.075 s
for both scenario 1 and scenario 2, and there are a few cases where the execution time is
longer than 0.08 s. And the maximum execution time in both scenario 1 and scenario 2 is
0.089 s, and the average execution time are 0.064 s and 0.063 s, respectively, after statistical
calculation. From the viewpoint of all execution durations in the whole simulation time,
although there are fluctuations of a certain magnitude, the overall is less than 0.1 s, which
can satisfy the minimum requirement of the algorithm embedded in the control module.
In addition, the average execution times of 0.063 s and 0.064 s for the two scenarios are
basically in line with the control application requirements, and the maximum execution
time of 0.089 s is also an acceptable boundary value.

As shown in Figure 17, it can be easily found that the memory usage of the proposed
CLC control strategy is mainly in the range of 0.08–0.20 MB in each execution cycle, with a
few cases of more than 0.25 MB. This memory usage is overall in a reasonably acceptable
range, and there are no drastic changes, indicating that the proposed CLC control strategy
implementation has good stability. And the maximum memory usages in scenario 1 and
scenario 2 are 0.367 MB and 0.340 MB, and the average memory usages are 0.1419 MB and
0.1388 MB, respectively. Due to the limitation of the hardware and computing capacity
of the experimental computer equipment, there are cases that the memory consumption
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is large in a few simulation cycles, but the overall memory consumption in the whole
simulation cycle can be bounded within a reasonable range. Therefore, the proposed
CLC control strategy can satisfy the basic requirements for implantation into embedded
application devices.
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In summary, both the execution time and memory usage of the proposed control
strategy in each execution cycle are in a reasonable and acceptable range, which indicates
the proposed CLC control strategy has good operating efficiency and can meet the basic
requirements of the embedded system implantation algorithm.

5. Conclusions

This study proposes a CLC control strategy under a pure CAV traffic flow on a two-
lane highway segment. It considers the correlation between the longitudinal and lateral
motion of the lane change and the preceding vehicles switching problems of the controlled
vehicles. The proposed CLC control strategy divides the lane-changing process into LC-O
and LC-T stages based on the lateral position of the lane-changing vehicle. This effectively
achieves the specific objective division of different stages of the lane change and reduces
the complexity of the model solution. A preceding vehicle switching method using a set of
linear piecewise functions based on a given lateral motion is designed to provide a smooth
transfer when the preceding vehicles of the controlled vehicle changes. The proposed
CLC control strategy is validated by comparing the CACC_Sine control strategy and with
regard to the two typical lane change scenarios. The results show the proposed CLC
control strategy has a good effect on vehicle switching tracking and can quickly realize the
stable tracking of the target lane vehicles after changing lanes. Due to the real-time rolling
optimization feature of MPC, the proposed CLC control strategy can also be applied to the
scenario where the motion states of the preceding vehicles of two lanes change dynamically.
Besides, the good operating efficiency makes the proposed CLC control strategy possible to
be integrated into embedded control applications.
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Firstly, the study scenario is based on pure CAV traffic flow and assumes that the
motion states of leading vehicles on both lanes are known which is unrealistic the relevant
research on the motion states of preceding vehicles will be explored in future work. Sec-
ondly, although the correlation between the movement of the two directions is considered
in the model construction process, the lateral motion determined by the given trajectory
function restricts the applicability of the model. In the future, we will consider constructing
a preceding vehicle switching control strategy based on dynamic lane change lateral trajec-
tories. Thirdly, the proposed CLC control strategy in this study is based on deterministic
MPC, and uncertainties such as model prediction errors and control delays have not been
considered. The introduction of these uncertainty factors in the model construction process
will be considered in future work to make the model have better dynamic adaptability and
robustness. Lastly, to further improve the efficiency of algorithm execution, we will do
some memory optimization for the existing equipment and further optimize the algorithm
code to keep the memory usage of the algorithm execution within the memory limit of the
hardware equipment.
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