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Abstract: There has been a recent uptake in the use of polyether-ether-ketone (PEEK), which is an
organic thermoplastic polymer, in the manufacturing of various medical devices, implants, and
equipment. Finding the best time and procedure for PEEK after sulfonation is the goal of this research.
A total of 30 PEEK discs were sulfonated in this study by immersing them in concentrated (H,SO4)
sulfuric acid for various durations and subsequently treated using various post-treatment techniques.
Five experiments were carried out, aimed studying the effect of immersion time (5 s-2 min). The
methods used as post-treatment were hydrothermal treatment, immersion in NaOH, and washing
with acetone. The sulfonation time was measured, and the post-treatment techniques, surface charac-
terizations, were conducted using scanning electron microscopy (SEM) (Electron Optics Instruments,
LLC., West Orange, NJ, USA), atomic force microscopy (AFM) (AFM, Via Burton, CA, USA), and
hydrophilic properties. The results were confirmed by attenuated total reflectance-Fourier transform
infrared spectroscopy (ATR-FTIR). The findings of this study demonstrate that sulfonating PEEK
caused a structure with a porous network to form in every sample. As the sulfonation time increased,
the porous structure became more noticeable and the concentration increased. As a consequence, the
roughness of the surface increased notably, and the modified PEEK surface’s wettability improved
noticeably. Hydrothermal treatment was determined to be the most successful way for eliminating
the leftover sulfuric acid, and sulfonation for 2 min was determined to be ideal. By understanding
the best post-treatment procedures and ideal sulfonation duration, a theoretical foundation for the
production of sulfonated PEEK for orthopedic uses may be laid.

Keywords: polyether-ether-ketone; surface modification; sulfonation; dental implant

1. Introduction

A new thermoplastic engineering plastic is polyether-ether-ketone (PEEK) [1]. Its
mechanical, chemical, and biological qualities are outstanding [2,3]. Its main biomedical
use is as an orthopedic implant in vivo. PEEK’s biomechanical qualities are similar to those
of human bones, reducing the danger of bone resorption and osteolysis induced by implant
stress shearing. Medical PEEK is subject to fundamental performance criteria. The human
body is tough and caustic [3,4].

Body fluids include several electrolyte ions and complex chemical substances. Chemi-
cal erosion is inevitable if metal implants are exposed in human fluids for a long period of
time [5,6]. Therefore, orthopedic implants should resist rusting. The majority of corrosion is
electrochemical. Electrochemical changes cause metal orthopedic implant pitting corrosion
in humans. Function-based implant criteria are also important [7]. As sterile orthopedic
implants, PEEK is stable, radiation-resistant, and mature. Ethylene oxide, gamma rays, and
hot steam disinfect it [8].

PEEK’s linear aromatic backbone contains functional ether and ketone groups [9].
PEEK is biocompatible, compatible with reinforcing materials, and has low solubility and
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water absorption. Its corrosion resistance, fatigue resistance, high-temperature stability,
sterilization stability, radiolucent, and ease of machinability are improved by these qualities.

Fixed crowns, fixed and detachable bridges, removable dentures, implant abutments,
dental implants, and more are made from PEEK. Because of its better elastic and esthetic
modulus, which are similar to those of human bones, PEEK has been regarded as a good
contender to replace titanium in dental implants [10].

Ion-exchangeable charged groups are introduced to PEEK polymer chains with sulfuric
acid to improve hydrophilicity. Sulfonation promotes polymer hydrophilicity and cation
transport [11]. Acid etching modifies surface topography and creates a microinterlocking
structure [12,13]. Etching using 98% sulfuric acid creates a porous surface where adhesives
can penetrate, improving bond strength [14]. There is unanimity that alumina sandblasting
and sulfuric acid etching improve PEEK adhesion [15].

Sulfonated PEEK may be prepared by understanding the optimal sulfonation duration
and post-treatment procedure. This work examined the characteristics of sulfonated PEEK
with five sulfonation periods (5, 10, 30, 60, and 120 s) and three post-treatment procedures
(NaOH immersion, acetone washing, and HyO hydrothermal treatment). Finding the
optimal sulfonation period and post-treatment procedure was the aim.

We hypothesized that pre-treatment with either mechanical and/or chemical means
would result in the possible bonding of composite resin to PEEK. Secondly, as the time of
immersion extended, the porous structure increasingly became more evident as well as
more sophisticated.

2. Materials and Method
2.1. Preparing the Samples

Thirty disc-shaped samples of medical-grade PEEK were provided by Energetic In-
dustry Co., Ltd., which is located in Beiliu, China. By cutting continuous extruded PEEK
rods, disc-shaped samples with a 10 mm diameter and a 2 mm thickness [16] were created.
For the in vitro surface characterization of sulfonated PEEK, these discs served as the
test subject.

2.2. PEEK Sulfonation

The disc-shaped samples that were employed were put through the process. In order
to determine the optimal times for sulfonation, five sets of different sulfonation times
were tested: 5,10 s, 30 s, 1 min, and 2 min. The untreated PEEK served as the control
for this experiment. In order to produce sulfonated PEEK, discs made of PEEK were
submerged in room-temperature solutions of concentrated H,SO, for varying amounts
of time (refer to Scheme 1 and Table 1 (including Images 1A-D)). Three different post-
treatment procedures were conducted in order to maximize the process of removing any
residual sulfuric acid: (1) rinsing in acetone for ten minutes while ultrasonic stirring was
performed; (2) immersion in a solution of sodium hydroxide (NaOH) containing six weight
percent of sodium hydroxide (NaOH) for five minutes; and (3) hydrothermal treatment at a
temperature of one hundred and twenty degrees Celsius for four hours.

2.3. Surface Characterization

The surfaces of untreated PEEK, which served as the control, and sulfonated PEEK
were analyzed using the following criteria:

1. All of the analyses of the sulphonated PEEK’s” chemical composition were carried
out at room temperature and using attenuated total reflection-Fourier transform infrared
(ATR-FTIR). (IRAffinity-1, ATR-FTIR Shimadzu, Shimadzu Scientific Instruments, Kyoto,
Japan) was used to obtain the transmittance spectrum recorded from 4000 to 600 cm! in
order to validate the presence of new sulfonated groups with PEEK polymer chains after
the treatments.

2. Scanning electron microscopy (SEM) (SEM Test Speed Vega 111, Electron Optics
Instruments, LLC., West Orange, NJ, USA) was utilized in order to evaluate the surface



Appl. Sci. 2024, 14, 3980

3o0f14

morphology. For the purpose of elemental analysis, a scanning electron microscope with
energy dispersive X-ray (EDX) analysis was carried out.

3. Conduction of a test of wettability. The wettability of the samples was measured
using a contact angle goniometer made by Creating Nano Technologies Inc. in Taiwan,
China (model number Cam110). In order to assess the surface hydrophilicity of sulphonated
PEEK at room temperature, the static contact angle measurement was utilized to quantify
the water contact angle of the material. The water contact angle on a PEEK surface that had
not been treated in any way served as the control for this experiment.

4. The atomic force microscopy, also known as the AFM. In the tapping mode, a contact
AFM (BenYuan CSPM-5500, Being Nano-Instruments Ltd., Beijing, China) was utilized to
produce a 3D topographical picture, as well as the surface area ratio (Sdr) for the selected
sulphonated PEEK and the average surface roughness (Sa) in nanometers. Additionally,
the average surface roughness was measured in nanometers [17].
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Scheme 1. Sulfonation of the PEEK and neutralization of the sulfonated PEEK by rinsing in acetone,
immersion in a solution of sodium hydroxide (NaOH), and hydrothermal treatment at 120 C.
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Table 1. Sulfonation times/s.

Samples Immersion Solution Sulfonation Time/s Observation SEM Test

As the control, with a flat and
smooth surface (Image 1A)

The porous structure gradually

B,C,D,E Concentrated H,SOy4 5,10, 30, 60, and 120 s became more obvious (Image 1B-E)

Melting and damage of the whole
sample.
These sample were neglected

F Concentrated H,SOy4 More than 120 s

2.4. Statistical Analysis

For data analysis, Prism 9 (GraphPad Software version 9.0, USA) and SPSS (Statistical
Package for Social Science, version 21) were utilized. For the purpose of descriptive analysis,
the findings are shown as bar charts with mean values and standard deviations. A one-way
ANOVA and the post hoc Tukey’s HSD test were used. p-values of more than 0.05, less
than 0.05, and less than 0.01 indicated non-significant, significant, and highly significant
differences, respectively.

3. Results
3.1. Washing and Removal Methods of the Acid Residues

The FTIR spectra of various sulfonated PEEKs with varying degrees of sulfonation
over time are displayed in Figure 1. According to [18], the carbon—carbon stretching
vibrations in the aromatic ring caused peaks in the frequency ranges of 1600-1585 cm !
and 1500-1400 cm ™! in all of the samples. In comparison to the spectra of the untreated
PEEK, the novel sulfonate substitution resulted in the appearance of additional peaks
between the wavelengths of 1138.00 and 1473.62 cm~!. The findings demonstrate that
functional groups of SO3H were incorporated into the polymer chains of PEEK through the
process of sulfonation.
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Figure 1. The FTIR of the sulfonated PEEKs with various times of sulfonation (5, 10, 30, 60, and
120 s) and three post-treatment procedures: (A) NaOH immersion, (B) acetone washing, and (C) H,O
hydrothermal treatment.

3.2. Chemical Characterization and Surface Morphology of the Sulfonated PEEKs with Various
Sulfonation Times

The pictures obtained with SEM and AFM are shown in Figures 2 and 3, respectively.
Before it was sulfonated, the PEEK’s surface was perfectly flat and smooth (Figure 2A).
The sulfonation of PEEK with strong sulfuric acid resulted in the formation of a three-
dimensional porous network in all of the sulfonated PEEK samples (Figure 2B-D).
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Figure 2. SEM characterization of the surface morphology of PEEK and sulfonated PEEK samples
with different sulfonation times. At different magnifications: 1000, 15,000, and 30,000 x.
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Figure 3. Surface morphology characterized by AFM for PEEK and sulfonated PEEK samples with
various sulfonation times. (A) Three-dimensional topographical images; (B) mean value of the surface
roughness (Sa), with Turkey’s HSD significance; and (C) mean value of the interfacial area ratio (Sdr),

with Turkey’s HSD significance.

The location and quantity of sulfur contained in the specimens were further investi-
gated through the use of EDX mapping and analysis. EDX mapping at multiple locations
validated the sulfur distribution (Figure 4).
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Figure 4. SE: EDX mapping of sulfonated PEEKs with 120 s sulfonation and HyO hydrothermal
post-treatment procedures, showing the distribution of the SE S, O, and C elements.

3.3. Sulfonated PEEKs" Hydrophilic Properties with Various Sulfonation Times

An important factor to consider when conducting research on the hydrophilic qualities
of a material’s surface is the contact angle. Table 2 and Figure 5 present the findings of
the investigation on the water contact angles. In each group, the average water contact
angles of sulfonated PEEKs were lower than that of PEEK (90.00). For example, the water
average contact angles of 5 s sulfonated PEEK were 87.227 and 90.00, and the average
water contact angles of 30 s sulfonated PEEK were 81.467 and 75.212. The untreated PEEK
exhibited a contact angle that was greater than that of the other groups, which suggests
that sulfonation enhances PEEK’s hydrophilicity.
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Table 2. The etching times and angles obtained.

Sample Etching Times Angles Obtained
PEEK (control) 90

Sulphonated PEEK (5 s) 5s 90.00

Sulphonated PEEK (10 s) 10s 90.00

Sulphonated PEEK (30 s) 30s 87.22

Sulphonated PEEK (60 s) 60 s 81.467

Sulphonated PEEK (120 s) 120s 75.21
1.¢ El AN Series unn. C norm. C Atom. C :
[wt.%] [wt.5% [at. %] [
‘ C & K-series 96.01 96.01 96.98 |—
1.2 0O 8 K-series 3.99 3.99 3.02 ]
e Total: 100.00 100.00 100.00 ]

(A)

Figure 5. Cont.
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Figure 5. (A): EDX mapping of PEEK, showing the distribution of the O and C elements only.
(B) Water contact angle measurements. (C) Water contact angle’s mean values, with Turkey’s
HSD significance.

As the result of the current study, the significance of chemical processes on the polymer
was emphasized. Furthermore, the complexity of interaction and surface topography were
also considered.

The operation steps of the sulfonated surface modification method are relatively
simple and can form a porous structure conducive to cell growth on the PEEK surface,
introduce sulfonic acid groups with biological activity, and improve PEEK’s antibacterial
and osteogenic capabilities. However, the concentrated sulfuric acid and other modified
reagents are dangerous to handle; so, the experiment has certain limitations.
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PEEK can overcome some of the limitations of metal implants, such as stress shielding
and metal allergy. PEEK is currently used as an orthopedic implant in clinical practice and
has achieved good results.

4. Discussion

Acetone rinsing was the cleaning method used in this study in order to remove the
sulfuric acid’s residues in the porous network structure without affecting the surface shape
or the chemical composition of the sulfonated PEEK since acetone does not dissolve sul-
fonated PEEK [19]. Since PEEK is a crystalline polymer with a melt transition temperature
of approximately 343 degrees Celsius and a semicrystalline thermoplastic polymer with a
glass transition temperature of about 143 degrees Celsius [18], the hydrothermal treatment
at a temperature of 120 degrees Celsius can only remove the sulfuric acid that is left behind.
This indicates that neither its physical structure nor its chemical composition can be altered
by the hydrothermal treatment that is being applied. The residual sulfuric acid on the
sulfonated PEEK seeped from the pores into the alkaline solution, and after immersion in
the NaOH solution, the solutions were neutralized by each other; the pores’ structure was
not impacted in the slightest. After being sulfonated, PEEK should be treated with one of
the following three procedures: washing with acetone, immersing in NaOH, or heating
with heat. Any of these three processes is recommended as an effective PEEK process
treatment since it may eliminate any residual sulfuric acid.

As the time of immersion extended, the porous structure increasingly became more
evident as well as more sophisticated. At first, the porous structure on the surface of the
sulfonated PEEK was just superficial and straightforward, but as the time increased, it
gradually became more complex. After undergoing sulfonation in concentrated HySOy,
the surface of the sulfonated PEEK exhibited a three-dimensional nano- to micro-porous
network. Additionally, sulfonated functional groups were discovered on the surface of the
sulfonated PEEK. When the sample was removed from the sulfuric acid, there was a trace
amount of H,SO, that was left on the surface of the porous material.

On the other hand, if the duration of the immersion was prolonged for an excessive
amount of time, the porous structure that was produced on the surface layer had a tendency
to be damaged and destroyed. According to the findings of this research project, as the
amount of time spent sulfonating increased, the structure of the porous network became
more apparent. In a previous work, [20] found that increasing the immersion duration
resulted in the improved formation of nanostructures and porous materials. The findings
of this investigation are in agreement with the findings of previous investigations.

The findings demonstrated that the sulfur element was incorporated into the polymer
chains of PEEK through the process of sulfonation.

In terms of hydrophilicity, the untreated PEEK’s water contact angle was found to
range from 70 to 90 degrees in previous research [20], which is comparable to our findings.
According to the findings of earlier research conducted by [21], the PEEK’s water contact
angle was measured as 78.6, whereas the sulfonated PEEK’s water contact angle was
measured as 67.2. Although hydrophilic SOsH groups were added to the surface, the
findings of this study suggest that the morphology of the surface with a nanostructured
network and 3D porosity plays a crucial role in diminishing the hydrophilicity of the
surface. This was the conclusion drawn from this study. According to [5,20], the bioactivity
and osseointegration of a bone implant interface are significantly improved when the bone
implant interface possesses hydrophilicity and nano-topography. The sulfonation of PEEK
results in a considerable reduction in the material’s surface hydrophilicity; yet, the 3D nano-
to micro-porous structure that is created as a result of sulfonation is thought to be favorable
for increasing the bioactivity.

However, contrary findings were found in other research [22]. These findings con-
cerned an increase in the contact angle following sulfonation. The authors of [23] showed
that the surface morphology of sulphonated PEEK as well as the hydrophilic sulfonate
functional groups play a major part in increasing the hydrophilicity of sulfonated PEEK.
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Despite the fact that many studies have reported various results, this research has shown
that both of these factors have a vital impact.

Within the scope of this research, a rise in surface roughness was documented as a
probable concurrent impact. As a result, the adhesive qualities of the surface were shown
to increase even more. It is feasible to develop oxygen-rich nanofilms on PEEK with a high
surface energy, which can result in an increased cell performance [24,25].

Along with the surface’s chemistry, the surface’s topography also has a significant
impact on the behavior of cells when they are attached to the surface [26,27]. The mechanical
interlocking that occurs as a result of nanoscale surface roughness can lead to improved
bone implant fixation. The surface roughness at the nanoscale, on the other hand, has been
shown to dramatically alter hydrophilicity, which in turn has the potential to drastically
affect the behavior of cells. When cells are cultivated on substrates of varying roughness,
they frequently take on distinct forms. There is a wealth of data to suggest that the shapes of
the cells are connected to their behaviors, such as proliferation and protein secretion [27-29].

5. Conclusions

The ideal sulfonation duration was determined to be 2 min since a porous structure was
created very effectively and there was a comparatively low amount of leftover sulfuric acid.
The hydrothermal treatment had a greater impact on eliminating the remaining sulfuric acid
and had no impact on modifying the morphology of the surface when compared to NaOH
immersion or acetone washing. This is due to the fact that the hydrothermal treatment uses
higher temperatures. As a result, the hydrothermal treatment of water is recommended for
the purpose of treating sulfonated PEEK. A theoretical foundation may be created for the
preparation of sulfonated PEEK in order to achieve a potentially advantageous impact by
defining the ideal sulfonation period and post-treatment procedure.

Polyether-ether-ketone and its composites play an important role in the field of oral
repair given their excellent physical and chemical properties as well as biological properties.
Its machinability enables the accurate manufacturing of various kinds of implants with
complex structures. Its excellent properties, such as stable chemical properties, good
biosecurity, and elastic modulus, are close to those of human dense bones, and therefore,
make it an excellent potential oral implant material. The biological modification methods
described above are all aimed at improving PEEK’s biological activity. Each modification
method has its advantages and disadvantages. Despite considerable experimental studies,
modification technologies are still immature and lack sufficient clinical data to prove the
clinical efficacy of these modification methods. Therefore, future research should focus
on the development of more efficient and practical modification methods and clinical
practice, and the exploration of PEEK modification methods to address different branches
of stomatology.
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