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Featured Application: Parametric optimization design study of low-pressure turbine vane by
means of artificial immune system.

Abstract: One requirement posed by customers is to achieve adequate durability levels as described
in technical requirement documents. Modal analysis is one of the design assessments aimed at
identifying the risks of high cycle fatigue (HCF). This article presents a novel application of an
artificial immune system (AIS) in the optimization of a nozzle guide vane’s modal characteristics.
The aim is to optimize the system’s natural frequencies in the vibration vane and adjacent hardware
(turbine casing). The geometrical characteristics accounted for in the optimization process include
the shell thicknesses on the turbine casing side and the nozzle outer band features (hook thickness,
leaning and position). The optimization process is based on a representative model established from
FEM analysis results. The framework is robust because of the applied metamodel and does not
require time-consuming FEM analysis in order to evaluate the fitness function. The aim is to minimize
the model area (a derivative of the system weight) with constraints imposed on the frequency (a
penalty function). The optimum design is given as the solution with an increased shell thickness
in the turbine casing and leaning nozzle outer band hooks to obtain the maximum stiffness of the
system. The results obtained by means of the artificial immune system (AIS) and a novel variant
based on an additional costimulation procedure (CAIS) are compared with the solution obtained by
means of a genetic algorithm implemented in the commercial CAE software (Ansys version 19.2).

Keywords: modal analysis; vane; artificial immune system; optimization; system mode

1. Introduction

A balance between program requirements like weight or durability and component
costs is crucial to create competitive products. The design process of nozzle vanes (Figure 1)
includes a modal analysis [1,2].

The results of the modal analysis are the modal forms (eigenvectors) and associated
natural frequencies (eigenvalues) of the system. This analysis is crucial to understand
the dynamic behavior and avoid failure modes related to high cycle phenomena. The
development phase extensively uses finite element method (FEM) analyses [3]. The re-
ported approach is based on a metamodel established via 2D modal analysis. A surrogate
model describes the relationship between the geometrical characteristics and the natural
frequency and model area. Typically, an optimization process on airfoils is used to tune
the performance [4], lift coefficient [5] and turbine blade aerodynamics [6]. Blade natural
frequency optimization [7] accounts for the thickness as a geometrical characteristic. The
study presented in [8] revealed the additional impacts of the thicknesses, hook positions
and leaning on the casing nozzle assembly.
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Figure 1. Nozzle guide vane of low-pressure turbine in aircraft engine. 

In the optimization process, an artificial immune system and a novel version of the 
algorithm based on costimulation were used. The use of artificial intelligence methods in 
the optimization of engineering problems is becoming more and more common. The com-
bination of artificial intelligence methods with algorithms in the numerical analysis of en-
gineering problems, such as the finite element method, makes it possible to obtain effec-
tive tools to support the work of an engineer. Examples of the use of artificial intelligence 
in various technical problems are considered in [9–11]. 

The nozzle geometry can be subdivided into several design zones, as presented in 
Figure 2. The primary criterion for zone A (aerodynamic profile) is to meet the require-
ments regarding the turbine performance and flow function through airfoil design. A sec-
ondary aspect in this location is related to the dynamic characteristics of the airfoil. Loca-
tion B is the connection between the airfoil and the outer and inner bands. This zone is 
mainly optimized for the level of stress in order to maximize the components’ durability. 
An example of such a study is presented in [12]. Zone D establishes proper sealing be-
tween the rotating components (bladed disks and interstage seals) and prevents hot gas 
from bypassing the main flow path (reducing the performance). Zone C is designed to 
ensure correct mounting with the casing rails; it is determined by the durability require-
ments and is the subject of the optimization. 

 
Figure 2. Nozzle guide vane—design zones; A—aerodynamic profile, B—hub and tip fillets, C—
outer band, D—inner band. 

Figure 1. Nozzle guide vane of low-pressure turbine in aircraft engine.

In the optimization process, an artificial immune system and a novel version of the
algorithm based on costimulation were used. The use of artificial intelligence methods
in the optimization of engineering problems is becoming more and more common. The
combination of artificial intelligence methods with algorithms in the numerical analysis of
engineering problems, such as the finite element method, makes it possible to obtain effec-
tive tools to support the work of an engineer. Examples of the use of artificial intelligence
in various technical problems are considered in [9–11].

The nozzle geometry can be subdivided into several design zones, as presented in
Figure 2. The primary criterion for zone A (aerodynamic profile) is to meet the requirements
regarding the turbine performance and flow function through airfoil design. A secondary
aspect in this location is related to the dynamic characteristics of the airfoil. Location B
is the connection between the airfoil and the outer and inner bands. This zone is mainly
optimized for the level of stress in order to maximize the components’ durability. An
example of such a study is presented in [12]. Zone D establishes proper sealing between
the rotating components (bladed disks and interstage seals) and prevents hot gas from
bypassing the main flow path (reducing the performance). Zone C is designed to ensure
correct mounting with the casing rails; it is determined by the durability requirements and
is the subject of the optimization.
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Typical failure modes for nozzle guide vanes are low cycle fatigue (LCF), high cy-
cle fatigue (HCF), creep and environmental attack (oxidation and corrosion). The main
contributors to the low and high cycle fatigue failure modes are thermal and pressure
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loads. A thermal load creates thermal stress due to the gradients between the aerodynamic
profile and the inner and outer bands. A pressure load pushes the nozzle backward, which
concentrates the stresses at the airfoil tip and outer band hooks (the simple supported beam
concept). The HCF failure mode relates to the vibration of the structure due to excitation of
a natural frequency within the operating range (high dynamic response; see Figure 3).
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2. Materials and Methods
2.1. Formulation of the Optimization Function

For the optimization of the dynamic characteristics, the function J0 and a set of con-
straints (related to frequency level O1 and the design variable domain) are defined. The
optimization problem can be described as a set of design variables (1) for which the opti-
mization function (2) reaches a global minimum.

X = [x1, x2 . . . xi . . . xn], (1)

where:

n—number of design variables (geometrical parameters);
xi—ith design variable from design domain [xi]MIN < xi < [xi]MAX ,

min
X

J0(X), (2)

where:

J0—optimization function;
X—design variable vector.

The desired frequency level of the nozzle guide vane system is driven by the Campbell
diagram, presented in Figure 4. The aim is to reach a natural frequency above the excitation
level coming from rotor imbalance.

O1 → f1 ≥ 125 Hz, (3)

where: f1—natural frequency of the nozzle guide vane, i.e., the first system mode.
The optimization function used in this work is described by Equation (4), including a

penalty formula due to the constraint imposed on the frequency:

J0 =
∫

Ω
dΩ ∗ γ f req → min

XA
J0(XA), (4)

where:

Ω—model area;
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XA—set of geometrical design variables;
γ f req—penalty function defined according to constraint O1.

The penalty function is represented by Equation (5):

γ f req =

{
I f f1 < 125 then (125 − f1) ∗ 2

else 1
. (5)
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In the next section, the design parameters and optimization algorithm used to solve
the defined optimization problem are described.

2.2. Artificial Immune System with Costimulation Effect

Immunology [13] describes the biological and biochemical processes of the immune
system in reaction to pathogens or external substances like toxins. The immune system
is characterized by the fuzzy detection of anomalies and self-organization. The system
is composed of multilayer barriers and each of the elements has a different strategy and
defense mechanism. The first two fundamental layers are the skin (a mechanical barrier
protecting from biological, chemical and other physical factors) and physiological barrier
(the body’s temperature, pH level). The third layer of the system is the inborn immune
system, which is not subjected to any changes during life. The most interesting from an
artificial intelligence standpoint is the fourth layer, called the adaptive defense immune
system. This layer is able to design an immune response to particular pathogens through
continuous learning. The main actors in this system are B-lymphocytes (B-cells), presented
in Figure 5, and T-lymphocytes (T-cells).
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The basic pathogen detection mechanism is to use the high structural conformity
between the paratope of the lymphocyte and the epitope of the pathogen. This concept
was used as the foundation for the artificial immune system algorithm defined in [14].
The optimization strategy assumes a pathogen as the optimal solution and finds the best
B-cell (design configuration) to match this pathogen. The main steps of the algorithm are
described in Figure 6.
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The first step of the algorithm is to generate and initialize B-lymphocytes that represent
different geometrical design configurations. In the present work, such initialization is based
on a randomized approach in the defined domain. In the next step, the fitness function is
evaluated, representing the structural conformity between the lymphocyte (paratope) and
pathogen (epitope).

LB(t) =
[

LB
1
t , LB

2
t , . . . , LB

j
t, . . . , LB

N
t

]
, (6)

where:

t—iteration index (population);
j—number of B-cells;
N—number of B-cells in the population;

LB
j
t—j-th B-cell in population t,

LB
j
t =

[
xj

1, xj
2, . . . , xj

i , . . . , xj
n

]
, (7)

where:

n—number of paratopes in the B-lymphocyte;

xj
i—i-th paratope in the j-th B-lymphocyte.

The main section of the algorithm responsible for the exploration and exploitation of
the design domain is the cloning and mutation procedure. The applied variable schemes
follow biological processes. Cloning is proportional to the fitness function result, as reported
in Equation (8).

Cj =
C

LRANK
, (8)

where:
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Cj—number of clones of j-th B-cell;
C—number of clones defined as algorithm parameter;
LRANK—lymphocyte rank basing on the fitness function result: 1, 2, 3, . . . , LN ;
LN—number of B-cells defined as algorithm parameter.

The mutation procedure, by contrast, uses the fitness function result and lymphocyte
rank to apply an inverse proportional rule. A better B-cell has a lower value of the mutation
coefficient to obtain convergence.

mj = m ∗ LRANK
LN

, (9)

where:

mj—mutation coefficient for j-th B-lymphocyte;
m—mutation coefficient.

A summary of the mutation procedure for clone CLB(t) is given in Equation (10).

∀x∗ j
i = xj

i + mjRND(−1, 1)
(

xUL
i − xLL

i

)
, (10)

where:

RND(−1,1)—random number from −1 to 1 with uniform probability;
xLL

i —lower range for design parameter xi;
xUL

i —upper range for design parameter xi.

Each clone is assessed against the fitness function and the algorithm proceeds to the
final step related to selection and suppression. A fixed number of B-cells is one of the
algorithm parameters; therefore, at the end of each iteration, some of clones need to be
rejected. This process is performed with a direct back-to-back comparison between the
B-cell and a B-cell clone. If the clone shows a better fitness function, it replaces the B-cell for
the next iteration. Additionally, as described in the literature [14], the applied congestion
coefficient aims to maintain continuous domain exploration. If parameter r defined in
Equation (11) is less than the defined threshold, the lymphocyte with the lower fitness
function is replaced by a randomly generated new lymphocyte.

r =

√√√√√∑n
i=1

(
xj

i − xj+1
i

)2

(
xUL

i − xLL
i
)2 , (11)

where:

r—distance between lymphocytes (memory cells).

Before the next iteration, the algorithm verifies the termination criteria. Artificial
immune systems are used in the solution of various engineering problems, as reported
in [15,16].

A more complex optimization strategy, as presented in this work, is the concept of a
costimulated artificial immune system (CAIS). The biological mechanism is described in
Figure 7.

The B-lymphocyte (B-cell) is activated—it is transformed into a lymphoblast only in
the case of additional stimulation from a T-lymphocyte (T-cell). The method of activation
depends on the recognition of a B-cell that presents an antigen to a T-cell through the
major histocompatibility complex (MHC) peptide. If the T-cell recognizes the antigen,
it produces interleukins, which starts the lymphoblast reaction and proliferation phase.
The lymphoblasts (activated lymphocytes) produce antibodies against the recognized
pathogen and this is part of the immunological reaction. In time, the lymphoblasts are
back-transformed into B-cells and some of them remain as plasma cells ready to produce
antibodies in the future to support memory reactions. If the B-cell at the first step does
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not receive positive stimulation from a T-cell, then it will be removed from the body, as
presented in Figure 8. This mechanism prevents autoimmunological diseases in the body.
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The adaptation of the presented scheme into an optimization strategy is reported
in Figure 9. The costimulation element is incorporated in order to assess a particular
design configuration in the optimization loop (represented by a B-cell) by a metamodel
(represented by a T-cell). The surrogate model (second-order polynomial function) is
established on a database of previously calculated design points. The main motivation for
the implementation of this mechanism is to collect information from each fitness function
evaluation in the database and use these data for the result prediction. Costimulation
is the rejection of less promising geometrical configurations, reducing the number of
analyses needed.

The CAIS requires an additional parameter to manage the representation of the T-
lymphocytes (reported in Table 1). The aim of the additional factor is to determine how
often the metamodel (T-cell representation) needs to be refreshed and to apply a margin for
the costimulation predictor (a decision point for the design configuration).

Table 1. Parameters of the CAIS: T-cell.

Parameter Value

Frequency of T-cell refresh, fitness function
evaluations 20

T-cell margin for criterion O1 5%

The presented approach (CAIS) was verified using test functions and compared with
a standard artificial immune system (AIS). The results are presented in Figure 10. The
performance of the algorithm was assessed taking into consideration the convergence to a
global minimum and the number of fitness function evaluations.
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The Ackley test function is described by expression (12), where the global minimum is
equal to 1.051 for x = 0.

f (x) = −20e−0.2
√

0.5x2 − e0.5cosπx + e + 20, (12)

The algorithm parameters used in the comparative study are reported in Table 2.
The minimalization task of the test function was run 100 times in the standard and

costimulated variants. As reported in the Table 2, the number of iterations was set to 10
and three memory cells were applied. The comparison of the average values from 100
runs showed a 61% lower number of fitness function evaluations for the CAIS than for
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the AIS. At the same time, the reached minimum was only 3% worse with respect to the
standard algorithm.

Table 2. Algorithm parameters.

Parameter Value

Memory cells 3
Clone number 6

Termination criteria—number of iterations 10
Mutation probability 0.75

The next test function used in the comparative assessment was the Bohachevsky
function, described by Equation (13), with a global minimum for x = 0, f (x) = 0.

f (x) = x2 − 0.3cos(3 π x) + 0.3, (13)

The parameters used in the study were the same and are reported in Table 2. Figure 11
reports the results and the comparison of the two algorithms.
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costimulated artificial immune system (CAIS).

Similarly, the optimization task was run 100 times for both algorithms: AIS and CAIS.
The outcomes remained the same. Comparing the averaged values of the reached minimum,
the AIS showed better results than the CAIS—in this particular case, by 29%. The CAIS,
however, required a lower number of function evaluations, by 69% on average.

In summary, the standard artificial immune system shows better convergence to a
global minimum based on the analyzed test functions; however, the costimulated algorithm
shows better effectiveness (less computational effort). This result is directly translated into
a shorter optimization lead time that is required in the component design phase (in the case
of real industrial problems).

2.3. FEM Model Description and Optimization Framework

An analysis based on a simplified two-dimensional model of a vane with casing is
performed. The nozzle guide vane is modeled by means of plane stress with thickness
elements. The casing is modeled by means of axisymmetric elements. Appropriate thick-
nesses are established based on the perimeters derived from the radius of the area’s center
of gravity (CoG), as reported in Figure 12. The aerodynamic profile was additionally scaled
based on the empty to full volume ratio.
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The FEM model is subdivided into different areas to reflect the different behavior
(axisymmetric and plane stress) and model thickness. These areas are merged by means of
contact elements defined as presented in Figure 13.
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Figure 13. FEM model constraints and contact pair definition.

The defined contacts restrain relative movement and guarantee the absence of sepa-
ration between the surfaces. The turbine casing is fixed in the radial and axial directions
on the forward cut face and rear flange. The temperature of the casing and nozzle is set to
ambient temperature.

The parameters for the optimization process are defined based on the strain energy
distribution for the first system mode in the baseline (reference) configuration. Figure 14
highlights the zones with energy accumulation due to the considered mode shape defor-
mation. A change in the stiffness in the highlighted zone will impact the natural mode
frequency and therefore qualitatively defines the area of interest for parameterization.

A parametric model is defined by the casing shell thicknesses and the nozzle outer
band hook’s geometrical characteristics, as presented in Figure 15. The parameters related
to the hook position and leaning also affect the casing geometry due to the need for casing
rail adjustment (the rails follow the hook to ensure a contact interface).

Tables 3 and 4 define the lower and upper bounds of the geometrical characteristics
applied in the optimization.



Appl. Sci. 2024, 14, 3991 11 of 16Appl. Sci. 2024, 14, x FOR PEER REVIEW 11 of 16 
 

 
Figure 14. Strain energy distribution for pendulum mode shape. 

A parametric model is defined by the casing shell thicknesses and the nozzle outer 
band hook’s geometrical characteristics, as presented in Figure 15. The parameters related 
to the hook position and leaning also affect the casing geometry due to the need for casing 
rail adjustment (the rails follow the hook to ensure a contact interface). 

 
Figure 15. Geometrical parameters dedicated to optimization. 

Tables 3 and 4 define the lower and upper bounds of the geometrical characteristics 
applied in the optimization. 

Table 3. Geometrical thickness and position parameters. 

Parameter Lower Bound, in Upper Bound, in 
Casing shell A 0.080 0.120 
Casing shell B 0.080 0.180 
Casing shell C 0.080 0.120 

Forward hook thickness 0.100 0.200 
Rear hook thickness 0.090 0.120 

Nozzle shell thickness 0.060 0.120 
Forward hook position −0.040 0.040 

Rear hook position −0.050 0.050 

Table 4. Geometrical angular parameters. 

Parameter Lower Bound, deg. Upper Bound, deg. 
Forward hook leaning 80 100 

Rear hook leaning 80 100 

The characteristic of the first system mode is presented in Figure 16. The nozzle is 
moving as a pendulum (an inner band traveling back and forth), being bonded to the tur-
bine casing. The second and the following system modes of the structure are not within 

Figure 14. Strain energy distribution for pendulum mode shape.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 11 of 16 
 

 
Figure 14. Strain energy distribution for pendulum mode shape. 

A parametric model is defined by the casing shell thicknesses and the nozzle outer 
band hook’s geometrical characteristics, as presented in Figure 15. The parameters related 
to the hook position and leaning also affect the casing geometry due to the need for casing 
rail adjustment (the rails follow the hook to ensure a contact interface). 

 
Figure 15. Geometrical parameters dedicated to optimization. 

Tables 3 and 4 define the lower and upper bounds of the geometrical characteristics 
applied in the optimization. 

Table 3. Geometrical thickness and position parameters. 

Parameter Lower Bound, in Upper Bound, in 
Casing shell A 0.080 0.120 
Casing shell B 0.080 0.180 
Casing shell C 0.080 0.120 

Forward hook thickness 0.100 0.200 
Rear hook thickness 0.090 0.120 

Nozzle shell thickness 0.060 0.120 
Forward hook position −0.040 0.040 

Rear hook position −0.050 0.050 

Table 4. Geometrical angular parameters. 

Parameter Lower Bound, deg. Upper Bound, deg. 
Forward hook leaning 80 100 

Rear hook leaning 80 100 

The characteristic of the first system mode is presented in Figure 16. The nozzle is 
moving as a pendulum (an inner band traveling back and forth), being bonded to the tur-
bine casing. The second and the following system modes of the structure are not within 

Figure 15. Geometrical parameters dedicated to optimization.

Table 3. Geometrical thickness and position parameters.

Parameter Lower Bound, in Upper Bound, in

Casing shell A 0.080 0.120
Casing shell B 0.080 0.180
Casing shell C 0.080 0.120

Forward hook thickness 0.100 0.200
Rear hook thickness 0.090 0.120

Nozzle shell thickness 0.060 0.120
Forward hook position −0.040 0.040

Rear hook position −0.050 0.050

Table 4. Geometrical angular parameters.

Parameter Lower Bound, deg. Upper Bound, deg.

Forward hook leaning 80 100
Rear hook leaning 80 100

The characteristic of the first system mode is presented in Figure 16. The nozzle is
moving as a pendulum (an inner band traveling back and forth), being bonded to the
turbine casing. The second and the following system modes of the structure are not within
the scope of interest since they are outside the operating range and are not in interaction
with any excitation source from shaft imbalance.

The optimization process is performed by means of an artificial immune system with
the framework presented in Figure 17 (green box item represents optimization algorithm
routine, blue box items identify CAE software operations). The process starts with the
definition of a parametric model considering the set of geometrical characteristics selected
from the strain energy distribution. The model is verified to ensure the geometry’s feasibility
within the established design variable ranges (Tables 3 and 4).
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Figure 17. Optimization framework.

The optimization loop uses a static metamodel [8] that is an approximation of the real
phenomena concerning the model area and natural frequency. The algorithm is responsible
for design space exploration, while the Ansys Workbench environment [15] is used to
extract the natural frequency and mode shape of the geometrical configuration. At the end
of the process, the obtained result on the metamodel is validated with the FEM results to
confirm the mathematical model’s prediction.

The above framework was applied with the classical artificial immune system and
with the costimulated variant. The results are compared in the next section.

3. Results

In the optimization process, the AIS algorithm with the parameters described in Table 5
was applied.

Table 5. Algorithm parameters.

Parameter Value

Lymphocyte number (memory cells) 3
Clone number 6

Termination criteria, iteration quantity 40
Probability of mutation 0.75

Number of design variables 10



Appl. Sci. 2024, 14, 3991 13 of 16

The model area change is presented in Figure 18 for three lymphocytes (memory cells).
In the chart, two separate phases can be distinguished. The first phase is aimed to increase
the model area and the system stiffness in order to meet the natural frequency criterion.
Lymphocyte B1 reached the natural frequency threshold at iteration 9, lymphocyte B2 at
iteration 14 and lymphocyte B3 at iteration 16. In the second phase, the algorithm reduces
the model area while keeping the natural frequency above 125 Hz (optimization constraint)
(see Figure 19).
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The memory cell is replaced by a clone if it is better than the current lymphocyte
(representing the design variant). Note that a change does not occur in every iteration.

The algorithm completed 40 iterations and performed an evaluation through the
metamodel 443 times. The convergence history for the averaged model area and the
frequency results are presented in Figure 20.
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Figure 21 shows the change in the standard deviation of the memory cells during the
iterations. The data for the natural frequency’s standard deviation revealed a reduction in
spread due to the applied constraint.
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A comparison of the best obtained configuration with the reference one is presented
in Figure 22. The reference model is a preliminary design configuration established on a
legacy low-pressure turbine nozzle design. The main changes observed are related to the
turbine case shell thickness (impacting both the frequency and model area) and the hook
leaning and position.
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The same study was performed by means of a commercially incorporated genetic algorithm
(GA). Table 6 reports the design variable values reached for the best geometrical configuration.

It can be noticed that a significantly larger number of fitness function evaluations was
achieved by the GA with a model area larger than that of the AIS and CAIS. Details are
reported in Table 7.

The presented solutions met the natural frequency criterion for the first system mode;
however, the AIS proposed a configuration with a smaller model area and used a smaller
number of iterations than the GA. Moreover, the proposed novel costimulated artificial
immune system’s results reveal a similar solution in terms of the model area with a further
benefit in the number of fitness function evaluations.
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Table 6. Design variable comparison: genetic algorithm vs. artificial immune system.

Parameter Name Genetic Algorithm
(GA)

Artificial Immune System
(AIS)

Costimulated Artificial Immune
System (CAIS)

Casing shell A [in] 0.110 0.099 0.098

Casing shell B [in] 0.165 0.142 0.150

Casing shell C [in] 0.111 0.120 0.120

Forward hook thickness [in] 0.183 0.200 0.200

Rear hook thickness [in] 0.107 0.111 0.111

Forward hook leaning [◦] 92.1 100.0 96.4

Rear hook leaning [◦] 82.3 80.0 82.8

Nozzle shell thickness [in] 0.083 0.063 0.061

Forward hook position [in] 0.036 0.040 0.040

Rear hook position [in] −0.048 −0.050 −0.050

Table 7. Algorithm solution comparison: genetic algorithm vs. artificial immune system.

Genetic Algorithm
(GA)

Artificial Immune
System (AIS)

Costimulated Artificial
Immune System (CAIS)

Number of fitness function evaluations 1374 443 380

Model area, in2 19.163 19.109 19.114

Natural frequency 125.0 125.1 125.0

4. Discussion

The presented study confirms the application of artificial immune systems in opti-
mization processes. It is suitable to support design selection where natural frequencies are
important from a technical requirement perspective. The presented approach demonstrates
data management between the AIS and Ansys Workbench based on session and CSV files
to exchange information about the design parameters (input data) and measured character-
istics (output data). The optimization process is based on a static metamodel. The AIS is
not widely implemented in commercial engineering optimization packages compared the
to GA. The CAIS variant brings the need to control the additional optimization parameters,
which increase the setup complexity and pre-work time. Compared to commercial applica-
tions of the genetic algorithm, the AIS gives more beneficial results in terms of the model
area and number of fitness function evaluations. Furthermore, the costimulated artificial
immune system is more efficient in terms of the number of cases with a similar model area,
as presented in Table 7, with the cost of a slightly poorer optimal design configuration.

Recommendations for further studies include the kinetic energy distribution in the
parametric model definition and the incorporation of metamodel updates at each itera-
tion, as well as additional benchmarking and back-to-back comparisons with other bio-
inspired algorithms.
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